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In this work, we introduce a class of balanced urn schemes with infinitely many colors indexed by Zd ,
where the replacement schemes are given by the transition matrices associated with bounded increment
random walks. We show that the color of the nth selected ball follows a Gaussian distribution on Rd after
O(logn) centering and O(

√
logn) scaling irrespective of whether the underlying walk is null recurrent or

transient. We also provide finer asymptotic similar to local limit theorems for the expected configuration
of the urn. The proofs are based on a novel representation of the color of the nth selected ball as “slowed
down” version of the underlying random walk.

Keywords: central limit theorem; infinite color urn; local limit theorem; random walk; reinforcement
processes; urn models

1. Introduction

1.1. Background and motivation

In recent years, there has been a wide variety of work on random reinforcement models of various
kind [3,11,13,15,17–20,24,29,30,33,34,36]. In particular, there has been several work on differ-
ent kinds of urn models and their generalizations [3,11,13,15,18,19,24,29–31]. The so called urn
schemes was started by the seminal work of Pólya [38]. Since then various generalizations with
finitely many colors have been studied in the literature [1–3,11–14,19,24–29,35]. See [36] for
an extensive survey of the known results. However, other than the classical work by Blackwell
and MacQueen [10], there has not been much development of infinite color generalization of the
Pólya urn scheme. In this paper, we introduce and analyze a new Pólya type urn scheme with
infinitely many colors indexed by Zd .

In this work, we will only consider balanced urn schemes. More precisely, if R :=
((R(i, j)))i,j∈Zd denotes the replacement matrix, that is, R(i, j) ≥ 0 is the number of balls
of color j to be placed in the urn when the color of the selected ball is i, then for a balanced urn,
all row sums of R are constant. In this case, we may assume R is a stochastic matrix. We will
also assume that the starting configuration U0 := (U0,j )j∈Zd is a probability distribution on the
set of colors, namely, Zd . As we will see from the proofs of our main results, this apparent loss
of generality can easily be removed if

∑
j∈Zd U0,j < ∞. Since R is a stochastic matrix and U0 a

probability distribution on Zd , we can now consider a Markov chain on Zd with transition matrix
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R and initial distribution U0. We will call such a chain, a chain associated with the urn model and
vice-versa. In this work, we are interested to study the process when R is the transition matrix of
a bounded increment random walk on Zd . This is a novel generalization of the Pólya urn scheme,
which we term as urn model with infinitely many colors.

Our main motivation comes from the work of Blackwell and MacQueen [10], where the au-
thors introduced a possibly infinite color generalization of Pólya urn scheme, with only a diago-
nal replacement scheme. The model then described a process whose limiting distribution is the
Ferguson distribution [9,10], also known as the Dirichlet process prior in the Bayesian statistics
literature [23]. Our model complements this work where we consider replacement mechanisms
with non-zero off-diagonal entries and observe that unlike in the Blackwell and MacQueen model
[10], the asymptotic configuration is non-random and is always approximately Gaussian after ap-
propriate centering and scaling.

It is worth mentioning here that due to the presence of the off-diagonal entries in the re-
placement matrix our models do not exhibit exchangeability of the observed sequence of col-
ors. Hence, we use completely different techniques than [10] to study our model. For finite
color case with off-diagonal entries, the typical approach is to use eigenvalue techniques and
martingale methods. For infinite color case, one may try to use eigenvalue techniques by con-
sidering the replacement matrix R as a bounded linear operator on an infinite dimensional
topological vector space. However, such an approach immediately leads to technical difficul-
ties.

In this work, we formulate a suitable “coupling” of the observed sequence of color with the
underlying Markov chain (see Proposition 7 in Section 3.1 for exact statement). This approach is
entirely new for studying urn models. So far we have been only able to use this approach when
R is transition matrix of a bounded increment random walk. However, we strongly believe that
the method may be generalized for more general replacement matrices.

Finally, we would like to note here that our model is also a generalization of a subclass of
models studied in [15], namely the class of linearly reinforced models. In [15] the authors prove
that for such models cardinality of all the colors will grow to infinity, provided a color is observed.
As we will see in Section 2, our results will not only show that the cardinality of all colors will
grow to infinity, but will also provide the exact rates of their growths.

1.2. Model

Let {Xj }j≥1 be i.i.d. random vectors taking values in Zd with probability mass function
p(u) := P(X1 = u), u ∈ Zd . We assume that the distribution of X1 is bounded, that is, there
exists a non-empty finite subset B ⊆ Zd such that p(u) = 0 for all u /∈ B . It is worthwhile to
note that the assumption that B is finite may be removed. Instead, if we assume X1 has moment
generating function on an open interval around 0, then all the results of this paper will hold. But
for simplicity, we will assume B to be finite.

Throughout this paper, we take the convention of writing all vectors as row vectors. Thus,
for a vector x ∈ Rd we will write xT to denote it as a column vector. The notation 〈·, ·〉 will
denote the usual Euclidean inner product on Rd and ‖ · ‖ the Euclidean norm. We shall always
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write

μ := E[X1],
Σ := E

[
XT

1 X1
]
, (1)

ϒ(λ) := E
[
exp

(〈λ,X1〉
)]

, λ ∈Rd .

We shall write Σ := ((σij ))1≤i,j≤d and assume that it is a positive definite matrix. Also Σ
1
2

will denote the unique positive definite square root of Σ , that is, Σ
1
2 is a positive definite

matrix such that Σ = Σ
1
2 Σ

1
2 . When d = 1, we will denote the mean and the second mo-

ment (and not the variance) by μ and μ2, respectively, and in that case we will assume
μ2 > 0.

Now let U0 be a probability distribution on Zd . Throughout this paper, we will assume there
exists r > 0, with ∑

v∈Zd

exp
(〈λ,v〉)U0,v < ∞, (2)

whenever ‖λ‖ < r . In particular, (2) is satisfied when U0,v = 0, for all but finitely many v ∈ Zd .
Let Sn := X0 + X1 + · · · + Xn, n ≥ 0 be the random walk on Zd starting at X0 distributed ac-

cording to U0 and with increments {Xj }j≥1 which are independent. Needless to say that {Sn}n≥0

is a Markov chain with state space Zd , initial distribution given by the distribution of X0 and the
transition matrix

R := ((
p(v − u)

))
u,v∈Zd . (3)

In this work, we consider the following infinite color generalization of Pólya urn scheme where
the colors are indexed by Zd . Denote by Un := (Un,v)v∈Zd ∈ [0,∞)Z

d
the configuration of the

urn at time n and define a random variable Zn by

P(Zn = v | Un,Un−1, . . . ,U0) ∝ Un,v, v ∈ Zd .

Note that Zn represents the randomly chosen color at the (n + 1)th draw. Starting with U0 we
define (Un)n≥0 recursively as follows

Un+1 = Un + RZn, (4)

where RZn is the Znth row of the replacement matrix R. We will call the process (Un)n≥0 as the
infinite color urn model with initial configuration U0 and replacement matrix R. We will also
refer to it as the infinite color urn model associated with the random walk {Sn}n≥0 on Zd .

Random configuration of the urn: Observe that since R is a stochastic matrix

∑
v∈Zd

Un,v = n + 1, (5)
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for all n ≥ 0. Thus the random configuration of the urn, namely, Un

n+1 is a probability mass
function on the set of colors. In fact,

P(Zn = v | Un,Un−1, . . . ,U0) = Un,v

n + 1
, v ∈ Zd . (6)

In other words, the nth random configuration of the urn is the conditional distribution of the
(n + 1)th selected color, given U0,U1, . . . ,Un.

Expected configuration of the urn: By taking expectation in equation (5), we get∑
v∈Zd

E[Un,v] = n + 1, (7)

for all n ≥ 0. Thus (
E[Un,v ]

n+1 )v∈Zd is also a probability mass function. In fact, it is the distribution
of Zn, the (n + 1)th selected color. This follows by taking expectation on both sides of equation
(6),

P(Zn = v) = E[Un,v]
n + 1

. (8)

For the rest of this work, we will be interested in the asymptotic properties of the random and
expected configurations.

1.3. Notations

Most of the notations used in this paper are consistent with the literature on finite color urn
models. However, we use few specific notations as well, which are given below.

(i) As mentioned earlier, all vectors are written as row vectors unless otherwise stated. Col-
umn vectors are denoted by xT , where x is a row vector.

(ii) For any vector x, x2 will denote a vector with the coordinates squared.
(iii) The standard Gaussian measure on Rd will be denoted by �d with its density given by

φd(x) := 1

(2π)d/2
exp

(
−‖x‖2

2

)
, x ∈ Rd .

For d = 1, we will simply write � for the standard Gaussian measure on R and φ for its
density.

(iv) The symbol ⇒ will denote convergence in distribution of random variables.

(v) The symbol
p−→ will denote convergence in probability.

1.4. Outline

In the following section, we state the main results, which we prove in Section 4. In Section 3, we
state and prove two important results, which we use in the proofs of the main results. In Section 5,
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we further generalize our results for urns with infinitely many colors, where the color sets are
indexed by other countable lattices on Rd . An elementary technical result which is needed in the
proofs of the main results is deferred to the Appendix.

2. Main results

Throughout this paper, we assume that (	,F,P) is a probability space on which all the random
processes are defined.

2.1. Weak convergence of the expected configuration

We present in this subsection the central limit theorem for the randomly selected color. The cen-
tering and scaling of the central limit theorem are of the order O(logn) and O(

√
logn), respec-

tively. Such centering and scalings are available because the distribution of the randomly selected
color behaves like that of a delayed random walk, where the delay is of the order O(logn), see
Proposition 7.

Theorem 1. Consider an infinite color urn model with initial configuration U0 and replacement
matrix given by (3). Let Zn be the (n + 1)th selected color. Then

Zn − μ logn√
logn

⇒ Nd(0,Σ), as n → ∞. (9)

Recall that the probability mass function of Zn is given by (
E[Un,v ]

n+1 )v∈Zd . Thus the above
result essentially gives an asymptotic weak limit of the expected value of the configuration of the
urn, when viewed as a probability distribution on Rd , after centering by μ logn and scaling by√

logn.
The following result is an immediate application of Theorem 1.

Corollary 2. Consider the urn model associated with the simple symmetric random walk on Zd ,
d ≥ 1. Then, as n → ∞,

Zn√
logn

⇒ Nd

(
0, d−1Id

)
,

where Id is the d × d identity matrix.

The above result essentially shows that irrespective of the recurrent or transient behavior of
the under lying random walk, the associated urn models have similar asymptotic behavior. In
particular, the limiting distribution is always Gaussian with universal orders for centering and
scaling, namely, O(logn) and O(

√
logn), respectively.
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2.2. Weak convergence of the random configuration

In this subsection, we will present an asymptotic result for the random configuration of the urn.
Let M1 be the space of probability measures on Rd , d ≥ 1, endowed with the topology of
weak convergence. Let 
n be the random probability measure on Zd ⊂Rd corresponding to the
random probability vector Un

n+1 . It is easy to see that the function 
n is measurable.

Theorem 3. For any Borel subset A ⊆Rd , let


cs
n (A) = 
n

(√
lognAΣ1/2 + μ logn

)
,

where we define

xAΣ1/2 := {
xyΣ1/2:y ∈ A

}
.

Then, as n → ∞,


cs
n

p−→ �d in M1. (10)

We note that Theorem 3 is a stronger version of Theorem 1.

2.3. Local limit theorem type results for the expected configuration

It turns out that under certain assumptions the expected configuration of the urn at time n, namely,
(E[Un]

n+1 )n≥0 satisfies a local limit theorem.
Note that X1 is a lattice random vector taking values in Zd . Also as we assume that the Σ =

E[XT
1 X1] is positive definite, so X1 is d-dimensional, that is, there is no sub-lattice A ⊆ Zd of

dimension less or equal to (d − 1) such that P(X1 ∈ A) = 1. Let L be its minimal lattice, that is,

P(X1 ∈ x +L) = 1 (11)

for every x ∈ Zd , such that, P(X1 = x) > 0, and if L′ is any closed subgroup of Rd , with P(X1 ∈
y + L′) = 1 for some y ∈ Zd , then L ⊆ L′ and the rank of L is d . We refer to pages 226–227
of [4] for formal definitions of minimal lattice of a d-dimensional lattice random variable and
its rank. Let � = det(L) (see pages 228–229 of [4] for more details). Now let x0 be such that
P(X1 ∈ x0 +L) = 1 and we define

L(d)
n :=

{
x:x = n√

logn
x0Σ

−1/2 − √
lognμΣ−1/2 + 1√

logn
zΣ−1/2, z ∈ L

}
. (12)

Theorem 4. Assume that P(X1 = 0) > 0. Then, as n → ∞

sup
x∈L(d)

n

∣∣∣∣det(Σ1/2)(
√

logn)d

�
P

(
Zn − μ logn√

logn
Σ−1/2 = x

)
− φd(x)

∣∣∣∣ −→ 0. (13)
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For d = 1, it is well known that (11) can be explicitly written as

P(X1 ∈ a + hZ) = 1, (14)

where a ∈ R, and h > 0, is the maximum value such that (14) holds. h is called the span for X1
(see Section 3.5 of [22]). Then from (12) we obtain

L(1)
n :=

{
x:x = n√

μ2 logn
a − μ√

μ2

√
logn + h√

μ2 logn
z, z ∈ Z

}
. (15)

Therefore, in one dimension, (13) can be stated as

sup
x∈L(1)

n

∣∣∣∣
√

μ2 logn

h
P

(
Zn − μ logn√

μ2 logn
= x

)
− φ(x)

∣∣∣∣ −→ 0. (16)

Observe that Theorem 4 covers only the case when P(X1 = 0) > 0. The next theorem is for the
special case when the urn is associated with the simple symmetric random walk on Zd , d ≥ 1,
which is not covered by Theorem 4.

Theorem 5. Assume that P(X1 = ±ei) = 1
2d

for 1 ≤ i ≤ d , where ei is the ith unit vector in
direction i. Then, as n → ∞

sup
x∈L(d)

n

∣∣∣∣(d)
d
2 (

√
logn)dP

( √
d√

logn
Zn = x

)
− φd(x)

∣∣∣∣ −→ 0, (17)

where L(d)
n is as defined in (12) with μ = 0 = x0, Σ = Id and L = √

dZd .

The following result is immediate from the above theorem.

Corollary 6. Assume that P(X1 = ±ei) = 1
2d

for 1 ≤ i ≤ d , where ei is the ith unit vector in
direction i. Then, as n → ∞

P(Zn = 0) ∼ 1

(
√

2πd logn)d
. (18)

As we see in Theorem 5, the assumption P(X1 = 0) > 0 of Theorem 4 can be removed. For
dimension d = 1, we will present later a somewhat technical result, namely, Theorem 10 in Sec-
tion 4.3, which will give another such example. Unfortunately, we do not know the full generality
under which the local limit theorem holds, though we conjecture that it holds for all cases.

3. Auxiliary results

In this section, we present two results which we need to prove our main results. These results are
two very important tools for studying infinite color urn models associated with random walks on
Zd and hence presented separately.
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For z ∈C, define �n(z) = ∏n
j=1(1 + z

j
), for n ≥ 1, and set �0(z) = 1. It is known from Euler

product formula for gamma function, which is also referred to as Gauss’s formula (see page 178
of [16]), that

lim
n→∞

�n(z)

nz

(z + 1) = 1 (19)

uniformly on compact subsets of C \ {−1,−2,−3, . . .}.
Recall ϒ(λ) := ∑

v∈B exp(〈λ,v〉)p(v) is the moment generating function of X1. It is easy
to note that ϒ(λ) is an eigenvalue of R corresponding to the right eigenvector x(λ) =
(exp(〈λ,v〉))T

v∈Zd . Let Fn = σ(Uj : 0 ≤ j ≤ n), n ≥ 0 be the natural filtration. Define

Mn(λ) = Unx(λ)

�n(ϒ(λ))
. (20)

From the fundamental recursion (4) we get,

Un+1 = Un + χn+1R, (21)

where χn+1 = (χn+1,v)v∈Zd is such that χn+1,Zn = 1 and χn+1,u = 0 if u �= Zn, where Zn is the
random color chosen from the configuration Un at the (n + 1)th draw. Thus,

Un+1x(λ) = Unx(λ) + χn+1Rx(λ)
(22)

= Unx(λ) + ϒ(λ)χn+1x(λ).

Thus,

E
[
Un+1x(λ) | Fn

] = Unx(λ) + ϒ(λ)E
[
χn+1x(λ) | Fn

] =
(

1 + ϒ(λ)

n + 1

)
Unx(λ).

Therefore, Mn(λ) is a non-negative martingale for every λ ∈ Rd . In particular E[Mn(λ)] =
M0(λ).

3.1. A representation of Zn

We now give a representation of the distribution of Zn in terms of the increments {Xj }j≥1. The
following proposition shows that the distribution of Zn is the same as a delayed random walk.

Proposition 7. For each n ≥ 1,

Zn
d= Z0 +

n∑
j=1

IjXj , (23)

where {Ij }j≥1 are independent Bernoulli random variables such that E[Ij ] = 1
j+1 , j ≥ 1 and are

independent of {Xj }j≥1; and Z0 is a random vector taking values in Zd distributed according to
the probability vector U0 and is independent of ({Ij }j≥1; {Xj }j≥1).
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A formal proof of this result is given below, using the martingale sequence (Mn(λ))n≥0, as
defined in (20). However, one can also establish the representation given in (23) intuitively. Let
Tn+1 be the random recursive tree on n + 1 vertices, say, {v0, v1, v2, . . . , vn} [21,39]. We put
i.i.d. weights on each of the n edges of Tn+1 given by {Xj }j≥1, as defined in Proposition 7. Let
Z0 with distribution given by U0 be as defined in Proposition 7. Then from the equations (21)
and (5), it follows that the distribution of Zn is given by

Z0 + weighted length of the path from v0 to vn in Tn+1.

This shows (23) must hold.
It may be noted here that the above representation is similar to a discrete time branching

random walk (BRW), with i.i.d. increments given by {Xj }j≥1, but on the random recursive tree
(Tn)n≥1. Unlike the usual BRW [5–7], in this case the underlying tree is not a Galton–Watson
branching process tree. Also as described above, in this case we are interested in studying the
position of a randomly chosen particle, instead of the maximum displacement.

Proof. As noted before, the probability mass function for the color of the (n + 1)th selected
ball, namely Zn, is (

E[Un,v ]
n+1 )v∈Zd . So for λ ∈ Rd with ‖λ‖ < r , where r is as in (2), the moment

generating function of Zn is given by

1

n + 1

∑
v∈Zd

exp
(〈λ,v〉)E[Un,v] = �n(ϒ(λ))

n + 1
E

[
Mn(λ)

]

= �n(ϒ(λ))

n + 1
M0(λ) (24)

= M0(λ)

n∏
j=1

(
1 − 1

j + 1
+ ϒ(λ)

j + 1

)
.

The equation (23) follows from (24). �

Observe that in the proof of Proposition 7 we require the assumption (2), which guarantees
that M0(λ) is finite.

3.2. Uniform L2 boundedness

Our next theorem states that around a non-trivial closed neighborhood of 0 the martingales
(Mn(λ))n≥0 are uniformly (in λ) L2-bounded.

Proposition 8. There exists δ > 0 such that

sup
λ∈[−δ,δ]d

sup
n≥1

E
[
M

2
n(λ)

]
< ∞. (25)
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Proof. From (22), we obtain

E
[(

Un+1x(λ)
)2 |Fn

] = (
Unx(λ)

)2 + 2ϒ(λ)Unx(λ)E
[
χn+1x(λ) | Fn

]
+ ϒ2(λ)E

[(
χn+1x(λ)

)2 |Fn

]
.

It is easy to see that

E
[
χn+1x(λ) | Fn

] = 1

n + 1
Unx(λ) and E

[(
χn+1x(λ)

)2 | Fn

] = 1

n + 1
Unx(2λ). (26)

Therefore, we get the recursion

E
[(

Un+1x(λ)
)2] =

(
1 + 2ϒ(λ)

n + 1

)
E

[(
Unx(λ)

)2]
(27)

+ ϒ2(λ)

n + 1
E

[
Unx(2λ)

]
.

Dividing both sides of (27) by �2
n+1(ϒ(λ)),

E
[
M

2
n+1(λ)

] = (1 + 2ϒ(λ)
n+1 )

(1 + ϒ(λ)
n+1 )2

E
[
M

2
n(λ)

] + ϒ2(λ)

n + 1

E[Unx(2λ)]
�2

n+1(ϒ(λ))
. (28)

Recall that Mn(2λ) is a martingale, thus E[Unx(2λ)] = �n(ϒ(2λ))M0(2λ). Therefore from
(28), we get

E
[
M

2
n(λ)

] = �n(2ϒ(λ))

�n(ϒ(λ))2
M

2
0(λ)

(29)

+
n∑

k=1

ϒ2(λ)

k

{
n∏

j>k

(1 + 2ϒ(λ)
j

)

(1 + ϒ(λ)
j

)2

}
�k−1(ϒ(2λ))

�2
k(ϒ(λ))

M0(2λ).

We observe that as ϒ(λ) > 0, so
1+ 2ϒ(λ)

j

(1+ ϒ(λ)
j

)2
< 1 and hence �n(2ϒ(λ))

�2
n(ϒ(λ))

< 1. Thus

E
[
M

2
n(λ)

] ≤ M
2
0(λ) + ϒ2(λ)M0(2λ)

n∑
k=1

1

k

�k−1(ϒ(2λ))

�2
k(ϒ(λ))

. (30)

Using (19), we know that

�2
n

(
ϒ(λ)

) ∼ n2ϒ(λ)


2(ϒ(λ) + 1)
. (31)

Note that ϒ(0) = 1 and ϒ(λ) is continuous as a function of λ. So given η > 0, there exists
0 < K1,K2 < ∞, such that for all λ ∈ [−η,η]d , K1 ≤ ϒ(λ) ≤ K2. Since the convergence in (19)
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is uniform on compact subsets of [0,∞), given ε > 0 there exists N1 > 0 such that for all n ≥ N1

and λ ∈ [−η,η]d ,

(1 − ε)

2(ϒ(λ) + 1)


(ϒ(2λ) + 1)

n∑
k≥N1

1

k1+2ϒ(λ)−ϒ(2λ)

≤
n∑

k≥N1

1

k

�k−1(ϒ(2λ))

�2
k(ϒ(λ))

≤ (1 + ε)

2(ϒ(λ) + 1)


(ϒ(2λ) + 1)

n∑
k≥N1

1

k1+2ϒ(λ)−ϒ(2λ)
.

Recall that ϒ(λ) = ∑
v∈B exp(〈λ,v〉)p(v). Since the cardinality of B is finite, we can choose

a δ0 > 0 such that for every λ ∈ [−δ0, δ0]d , 2ϒ(λ) − ϒ(2λ) > 0. Choose δ = min{η, δ0}.
Since 2ϒ(λ) − ϒ(2λ) is continuous as a function of λ, there exists a λ0 ∈ [−δ, δ]d such that
minλ∈[−δ,δ]d (2ϒ(λ) − ϒ(2λ)) = 2ϒ(λ0) − ϒ(2λ0) > 0. Therefore,

∞∑
k=1

1

k1+2ϒ(λ)−ϒ(2λ)
≤

∞∑
k=1

1

k1+2ϒ(λ0)−ϒ(2λ0)
.

Therefore given ε > 0 there exists N2 > 0 such that ∀λ ∈ [−δ, δ]d

∞∑
k>N2

1

k1+2ϒ(λ)−ϒ(2λ)
≤

∞∑
k>N2

1

k1+2ϒ(λ0)−ϒ(2λ0)
< ε.


2(ϒ(λ)+1)

(ϒ(2λ)+1)

, ϒ2(λ) and M0(2λ) being continuous as functions of λ, they are bounded for λ ∈
[−δ, δ]d . Choose N = max{N1,N2}. From (30) we obtain for all n ≥ N ,

E
[
M

2
n(λ)

] ≤ M
2
0(λ) + C1

N∑
k=1

1

k

�k−1(ϒ(2λ))

�2
k(ϒ(λ))

+ C2ε (32)

for an appropriate positive constants C1, C2.∑N
k=1

1
k

�k−1(ϒ(2λ))

�2
k(ϒ(λ))

and M
2
0(λ) being continuous as functions of λ, they are bounded for λ ∈

[−δ, δ]d . Therefore, from (32) we obtain that there exists C > 0 such that for all λ ∈ [−δ, δ]d
and for all n ≥ 1

E
[
M

2
n(λ)

] ≤ C.

This proves (25). �
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4. Proofs of the main results

For proving the central and local limit theorems, we will use the representation (23), which after
the appropriate centering and scaling can be re-written as

Zn − μ logn√
logn

d= Z0√
logn

+
∑n

j=1 IjXj − μ logn√
logn

. (33)

So, without loss of generality, we may assume that Z0 ≡ 0, in other words, the initial configura-
tion of the urn consists of only one ball of color 0.

4.1. Proofs for the expected configuration

Proof of Theorem 1. Observe that

E

[
n∑

j=1

IjXj

]
− μ logn =

n∑
j=1

1

j + 1
μ − μ logn −→ μ(γ − 1), (34)

where γ is the Euler’s constant.
Let Σn = Var(

∑n
j=1 IjXj ). It is easy to see that

Σn =
n∑

j=1

(
1

j + 1
E

[
XT

1 X1
] − μT μ

(j + 1)2

)
.

Thus as n → ∞
1

logn
Σn −→ Σ, (35)

where the matrix convergence is entry-wise.
Recall P(X1 ∈ B) = 1, where B ⊂ Z is a finite set, thus for any ε > 0, we have

1

logn

n∑
j=1

E
[‖IjXj‖21{‖Ij Xj ‖>ε logn}

] −→ 0, (36)

as n → ∞. Therefore, by the Lindeberg–Feller Central Limit Theorem (see Proposition 2.27 on
page 20 of [40]) we conclude that as n → ∞

Zn − μ logn√
logn

⇒ Nd(0,Σ).

This completes the proof. �
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4.2. Proofs for random configuration

In this subsection, we will present the proof of Theorem 3. We start with the following lemma.

Lemma 9. Let δ be as in Proposition 8, then for every λ ∈ [−δ, δ]d as n → ∞,

Mn

(
λ√

logn

)
p−→ 1. (37)

Proof. Observe that M0(λ) ≡ 1, since Z0 ≡ 0. Therefore, from equation (29) we get

E
[
M

2
n(λ)

] = �n(2ϒ(λ))

�2
n(ϒ(λ))

+ �n(2ϒ(λ))

�2
n(ϒ(λ))

n∑
k=1

ϒ2(λ)

k

�k−1(ϒ(2λ))

�k(2ϒ(λ))
.

Replacing λ by λn = λ√
logn

, we obtain

E
[
M

2
n(λn)

] = �n(2ϒ(λn))

�2
n(ϒ(λn))

+ �n(2ϒ(λn))

�2
n(ϒ(λn))

n∑
k=1

ϒ2(λn)

k

�k−1(ϒ(2λn))

�k(2ϒ(λn))
. (38)

We observe that

lim
n→∞ϒ(λn) = 1. (39)

Since the convergence in formula (19) is uniform on compact sets of [0,∞), we observe that for
λ ∈ [−δ, δ]d

lim
n→∞

�n(2ϒ(λn))

�2
n(ϒ(λn))

= 
2(2)


(3)
= 1

2
.

Therefore,

lim
n→∞

�n(2ϒ(λn))

�2
n(ϒ(λn))

ϒ2(λn)

k

�k−1(ϒ(2λn))

�k(2ϒ(λn))
= 1

2

1

k

�k−1(1)

�k(2)

= 1

(k + 2)(k + 1)
.

Now using Proposition 8 and the dominated convergence theorem, we get

lim
n→∞

�n(2ϒ(λn))

�2
n(ϒ(λn))

n∑
k=1

ϒ2(λn)

k

�k−1(ϒ(2λn))

�k(2ϒ(λn))
=

∞∑
k=1

1

(k + 2)(k + 1)
= 1

2
.

Therefore, from (38) we obtain

E
[
M

2
n(λn)

] −→ 1 as n → ∞. (40)



3256 A. Bandyopadhyay and D. Thacker

Observing that E[Mn(λn)] = 1, we get

Var
(
Mn(λn)

) → 0, (41)

as n → ∞. This implies

Mn(λn)
p−→ 1 as n → ∞,

completing the proof of the lemma. �

Proof of Theorem 3. Note that 
n is the random probability measure on Zd ⊂Rd , correspond-
ing to the random probability vector Un

n+1 . That is, for any Borel subset A of Zd ,


n(A) = 1

n + 1

∑
v∈A

Un,v.

For λ ∈Rd the corresponding moment generating function is given by

1

n + 1

∑
v∈Zd

exp
(〈λ,v〉)Un,v = 1

n + 1
Unx(λ) = 1

n + 1
Mn(λ)�n

(
ϒ(λ)

)
. (42)

The moment generating function corresponding to the scaled and centered random measure 
cs
n

is

∑
v∈Zd

exp

(〈
λ,

v − μ logn√
logn

Σ−1/2
〉)

Un,v

n + 1

= 1

n + 1
exp

(−〈
λ,μ

√
lognΣ−1/2〉)Unx

(
λΣ−1/2

√
logn

)

= 1

n + 1
exp

(−〈
λ,μ

√
lognΣ−1/2〉)Mn

(
λΣ−1/2

√
logn

)
�n

(
ϒ

(
λΣ−1/2

√
logn

))
.

To show (10) it is enough to show that for every subsequence {nk}k≥1, there exists a further
subsequence {nkj

}∞j=1 such that as j → ∞

exp(−〈λ,μ
√

lognkj
〉)

nkj
+ 1

Mnkj

(
λ√

lognkj

)
�n

(
ϒ

(
λ√

lognkj

))
−→ exp

(
λΣλT

2

)
(43)

for all λ ∈ [−δ, δ]d almost surely, where δ is as in Proposition 8. From Theorem 1, we know that

Zn − μ logn√
logn

⇒ Nd(0, Id).
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Therefore using (24) as n → ∞ we obtain,

exp
(−〈λ,μ

√
logn〉)E[

exp

(〈
λ,

Zn√
logn

〉)]

= 1

n + 1
exp

(−〈λ,μ
√

logn〉)�n

(
ϒ

(
λ√

logn

))
−→ exp

(
λΣλT

2

)
.

Now using Theorem 14 from the Appendix it is enough to show (43) only for λ ∈ Qd ∩[−δ, δ]d
which is equivalent to proving that for every λ ∈ Qd ∩ [−δ, δ]d as j → ∞

Mnkj

(
λ√

lognkj

)
−→ 1 almost surely.

From Lemma 9, we know that for all λ ∈ [−δ, δ]d

Mn

(
λ√

logn

)
p−→ 1 as n → ∞.

Therefore using the standard diagonalization argument, we can say that given a subsequence
{nk}k≥1 there exists a further subsequence {nkj

}∞j=1 such that for every λ ∈ Qd ∩ [−δ, δ]d

Mnkj

(
λ√

lognkj

)
−→ 1 almost surely.

This completes the proof. �

4.3. Proofs of the local limit type results

In this section, we present the proofs for the local limit theorems.

Proof of Theorem 4. Since without loss we have assumed U0 = δ0, so from Proposition 7, we

obtain Zn
d= ∑n

j=1 IjXj . The random vector Xj is a lattice random vector. Therefore, IjXj is
also a lattice random vector. By our assumption P(X1 = 0) > 0, so 0 ∈ B , therefore, Xj and
IjXj are supported on the same lattice.

Observe that Zn is a lattice random vector, for every n ∈ N. By Fourier inversion formula (see
(21.28) on page 230 of [4]), we get for x ∈ L(d)

n ,

P

(
Zn − μ logn√

logn
Σ−1/2 = x

)

= �

(2π
√

logn)d det(Σ1/2)

∫
(
√

lognF∗Σ1/2)

ψn(t) exp
(−i〈t, x〉)dt,
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where ψn(t) = E[exp(i〈t, Zn−μ logn√
logn

Σ−1/2〉)], � = |det(L)| and F∗ is the fundamental domain
for X1 as defined in equation (21.22) on page 229 of [4]. Also, by Fourier inversion formula we
have

φd(x) = 1

(2π)d

∫
Rd

exp
(−i〈t, x〉) exp

(
−‖t‖2

2

)
dt .

Thus, given ε > 0, there exists N > 0 such that for all n ≥ N , we get the estimate

∣∣∣∣det(Σ1/2)(
√

logn)d

�
P

(
Zn − μ logn√

logn
Σ−1/2 = x

)
− φd(x)

∣∣∣∣
≤ 1

(2π)d

∫
(
√

lognF∗Σ1/2)

∣∣∣∣ψn(t) − exp

(
−‖t‖2

2

)∣∣∣∣dt + ε.

Therefore, it is enough to prove that as n → ∞
∫

(
√

lognF∗Σ1/2)

∣∣∣∣ψn(t) − exp

(
−‖t‖2

2

)∣∣∣∣dt −→ 0. (44)

Now we follow an argument similar to the proof of a local limit theorem for sum of i.i.d. lattice
random variables in one dimension, as given on page 190 of [37]. We observe that to prove (44),
it is then enough to show that for any ε > 0, we can choose a compact subset A ⊆ Rd , such that
for all n large enough

I(n,A) :=
∫

(
√

lognF∗Σ1/2)\A
∣∣ψn(t)

∣∣dt < ε. (45)

Fix ε > 0, we will show that (45) holds for a suitable choice of a compact subset A of Rd .
Note that, for every t ∈ Rd , and each n

∣∣ψn(t)
∣∣ ≤ ∣∣gn(t)

∣∣,
where

gn(t) := E

[
exp

(〈
it,

∑n
j=1 IjXj√

logn
Σ−1/2

〉)]
= 1

n + 1
�n

(
ϒ

(
1√

logn
itΣ−1/2

))
, (46)

where the last equality follows from argument similar to that of (24). This implies that

I(n,A) ≤
∫

(
√

lognF∗Σ1/2)\A
∣∣gn(t)

∣∣dt

(47)

= (
√

logn)d
∫
F∗Σ1/2\ 1√

logn
A

∣∣gn(
√

lognw)
∣∣dw.
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We can choose δ > 0, such that for all w ∈ B(0, δ) \ {0}, there exists b > 0, such that

∣∣ϒ(iw)
∣∣ ≤ 1 − b‖w‖2

2
(48)

(see Lemma 2.3.2(a) of [32] for a proof). From (46), we obtain for some positive constant C1,

∣∣gn(
√

lognw)
∣∣ ≤ exp

(
−

n∑
j=1

b

j + 1

wΣwT

2

)

(49)

≤ C1 exp

(
−b

wΣwT

2
logn

)
,

where the first inequality follows from 1 − x ≤ exp(−x), and the second inequality is implied by
(48). We write

(
√

logn)d
∫
F∗Σ1/2\ 1√

logn
A

∣∣gn(
√

lognw)
∣∣dw = I1(n,A) + I2(n),

where

I1(n,A) := (
√

logn)d
∫

(B(0,δ)Σ1/2\ 1√
logn

A)∩F∗Σ1/2

∣∣gn(
√

lognw)
∣∣dw

and

I2(n) = (
√

logn)d
∫
F∗Σ1/2\B(0,δ)Σ1/2

∣∣gn(
√

lognw)
∣∣dw.

Now it is enough to show that for a suitable choice of a compact subset A of Rd and n sufficiently
large, I1(n,A) < ε and I2(n) −→ 0 as n → ∞.

I1(n,A) ≤ C1(
√

logn)d
∫

B(0,δ)Σ1/2\ 1√
logn

A

exp

(
−b

wΣwT

2
logn

)
dw (50)

≤ C1

∫
B(0,δ

√
logn)Σ1/2\A

exp

(
−b

tΣtT

2

)
dt < ε, (51)

where in the above equation we use (49) to obtain the first inequality, and for the last inequality
we note that for a given ε > 0, we choose a compact A ⊆Rd , such that

C1

∫
Rd\A

exp

(
−b

tΣtT

2

)
dt < ε. (52)

Since the lattices for X1 and I1X1 are same, for all w ∈ F∗ \ B(0, δ), we get |ϒ(iw)| < 1, so
there exists an 0 < η < 1, such that, |ϒ(iwΣ−1/2)| ≤ η, for all w ∈ F∗Σ1/2 \ B(0, δ)Σ1/2.
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Therefore, using the inequality 1 − x ≤ exp(−x), we obtain

∣∣gn(
√

lognw)
∣∣ ≤ exp

(
−

n∑
j=i

1

j + 1
(1 − η)

)
≤ C2 exp

(−(1 − η) logn
)

(53)

for some positive constant C2. Therefore, using equation (21.25) on page 230 of [4], we obtain

I2(n) ≤ C′
2(

√
logn)d exp

(−(1 − η) logn
) −→ 0 as n → ∞, (54)

where C′
2 is an appropriate positive constant. This completes the proof. �

Proof of the Theorem 5. In this case P(X1 = ±ei) = 1
2d

for 1 ≤ i ≤ d , where ei is the ith unit
vector in direction i. Thus μ = 0 and Σ = 1

d
Id .

For notational simplicity, we consider the case d = 2, the general case can be written similarly.
Now for each j ∈ N, IjXj is a lattice random vector with the minimal lattice Z2. It is easy

to note that 2πZ × 2πZ is the set of all periods for IjXj and its fundamental domain is given
by (−π,π)2. Similar to the proof of Theorem 4, it is enough to show that for any ε > 0, we can
choose a compact subset A of Rd , such that for all n large enough

I(n,A) < ε, (55)

where

I(n,A) :=
∫

Hn\A
∣∣ψn(t)

∣∣dt,

with Hn := (−√
lognπ,

√
lognπ)2.

As before, we can write

I(n,A) = I1(n,A) + I2(n).

Using arguments similar to (51), one can easily show I1(n,A) < ε. It remains to show that

I2(n) −→ 0 as n → ∞.

To do so, we first observe that for t = (t(1), t (2)) ∈ R2, the characteristic function for X1
is given by ϒ(it) = 1

2 (cos t (1) + cos t (2)). If t ∈ [−π,π]2 be such that |ϒ(it)| = 1, then
t ∈ {(π,π), (−π,π), (π,−π), (−π,−π)}. The function cos θ is continuous and decreasing as a
function of θ for t ∈ [π

2 ,π]. Choose 0 < η < π
2 such that for t ∈ A1 = (−π,π)2 ∩Bc(0, δ)∩Dc ,

we have |ϒ(it)| < 1, where D = [π − η,π)2 ∪ [−π + η,−π) × [π − η,π) ∪ [−π + η,−π)2 ∪
[π − η,π) × [−π + η,−π), and δ is as in (48). Let us write

I2(n) := J1(n) +J2(n),

where

J1(n) := logn

∫
A1

∣∣ψn(
√

lognw)
∣∣dw,
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and

J2(n) := logn

∫
D

∣∣ψn(
√

lognw)
∣∣dw.

It is easy to note that

J1(n) ≤ logn

∫
A1

∣∣ψn(
√

lognw)
∣∣dw,

where A1 denotes the closure of A1. For w ∈ A1, there exists 0 < α < 1, such that, |ϒ(it)| ≤ α.
Therefore, using bounds similar to that in (53) we can show that

J1(n) −→ 0 as n → ∞.

We observe that

J2(n) ≤ 4 logn

∫
[π−η,π]2

∣∣ψn(
√

lognw)
∣∣dw.

Hence, it is enough to show that as n → ∞

logn

∫
[π−η,π]2

∣∣ψn(
√

lognw)
∣∣dw −→ 0.

For w ∈ [π − η,π]2, we have 0 < |(1 + ϒ(iw)
j

)| ≤ (1 + cos(π−η)
j

) ≤ 1. Therefore,

∣∣ψn(w)
∣∣ = 1

n + 1

n∏
j=1

∣∣∣∣
(

1 + ϒ(iw)

j

)∣∣∣∣ ≤ 1

n + 1
.

So,

logn

∫
[π−η,π]2

∣∣ψn(
√

lognw)
∣∣dw ≤ η2

n + 1
logn −→ 0 as n → ∞. �

We now assume that d = 1 and P(X1 = 0) = 0. Let h̃ be the span for X1. We can now write
P(I1X1 ∈ a + hZ) = 1, where a ∈ R and h > 0 is the span for I1X1. It is easy to note that
h ≤ h̃. The following result gives a local limit theorem under the assumption that h̃ < 2h. This
assumption is non-trivial, and a concrete case is, when P(X1 = 1) = P(X1 = 2) = 1/2. Then,
h̃ = 1. The support for I1X1 is {0,1,2} and h = 1, satisfying the assumption h̃ < 2h.

Theorem 10. Assume that h̃ < 2h, then, as n → ∞

sup
x∈L(1)

n

∣∣∣∣
√

μ2 logn

h
P

(
Zn − μ logn√

μ2 logn
= x

)
− φ(x)

∣∣∣∣ −→ 0, (56)

where L(1)
n is as defined in (15).
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Proof. This proof is similar to the proof of Theorem 4, except we now have d = 1, which is sim-
pler. So we omit most of the details and only point out the key differences, where the assumption
h̃ < 2h is crucial.

We begin by observing that the bounds for |
√

μ2 logn
h

P(
Zn−μ logn√

μ2 logn
= x) − φ(x)| are similar to

those in the proof of Theorem 4, except for that of I2(n), where in this case,

I2(n) := √
logn

∫ √
μ2π

h

√
μ2δ

∣∣gn(w
√

logn)
∣∣dw

and δ is chosen as in (48) and gn(·) is as in (46). We have to show

I2(n) −→ 0 as n → ∞.

The span of X1 being h̃, for all t ∈ [δ, 2π

h̃
), |ϒ(it)| < 1. Note that here we use the assumption

h̃ < 2h. The characteristic function being continuous in t , there exists 0 < η < 1, such that,

|ϒ( it√
μ2

)| ≤ η for all t ∈ [δ√μ2,
π

√
μ2

h
] ⊂ [δ√μ2,

2π
√

μ2

h̃
). So, as n → ∞,

I2(n) ≤ C2σ exp
(−(1 − η) logn

)
(π − δ)

√
logn −→ 0. (57)

�

5. Urns with colors indexed by other lattices on Rd

We can further generalize the urn models with colors indexed by certain countable lattices in Rd .
Such a model will be associated with the corresponding random walk on the lattice. To state the
results rigorously we consider the following notations.

Let {Xj }j≥1 be a sequence of random d-dimensional i.i.d. vectors with non-empty support
set B ⊆ Rd and probability mass function p. We assume that B is finite. Consider the countable
subset

Sd :=
{

k∑
i=1

nibi :n1, n2, . . . , nk ∈ N, b1, b2, . . . , bk ∈ B

}

of Rd which will index the set of colors.
As before we consider Sn := X0 +X1 +· · ·+Xn, n ≥ 0, the random walk starting at X0 which

is distributed as U0. We say a process (Un)n≥0 is a urn scheme with colors indexed by Sd and
replacement matrix R and starting configuration U0, if (Un)n≥1 is defined recursively by (21),
where now R is given by

R := ((
p(v − u)

))
u,v∈Sd . (58)

Following the same nomenclature as done earlier, we will call this process the infinite color urn
model associated with the random walk {Sn}n≥0 on Sd . Naturally, when Sd = Zd , this process is
exactly the one discussed earlier.
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We will use same notations as earlier for the mean, non-centered second moment matrix and
moment generating function for the increment X1 (see (1) for the definitions). As before, we
denote by Zn the (n + 1)th selected color. Just like in the previous case, the expected proportion
of colors in the urn at time n will be given by the distribution of Zn but now on Sd .

From the proof of Proposition 7, it follows that the result holds also for this generalization.
This enable us to generalize Theorem 1 and Theorem 3 as follows.

Theorem 11. Consider an infinite color urn model with initial configuration U0 and replacement
matrix given by (58). Let Zn be the (n + 1)th selected color. Then

Zn − μ logn√
logn

⇒ Nd(0,Σ), as n → ∞. (59)

Theorem 12. Let 
n ∈ M1 be the random probability measure corresponding to the random
probability vector Un

n+1 . Let


cs
n (A) = 
n

(√
lognAΣ1/2 + μ logn

)
,

where A is a Borel subset of Rd . Then, as n → ∞,


cs
n

p−→ �d in M1. (60)

The proofs of these two theorems are similar to Theorem 1 and Theorem 3, respectively, and
hence omitted.

As an application we now consider a specific example, namely, the triangular lattice in two
dimensions. For this the support, set for the i.i.d. increment vectors is given by

B = {
(1,0), (−1,0),ω,−ω,ω2,−ω2},

where ω, ω2 are the complex cube roots of unity. The law of X1 is uniform on B . This gives the
random walk on the triangular lattice in two dimensions. The following is an immediate corollary
of Theorem 11.

Corollary 13. Consider the urn model associated with the random walk on two dimensional
triangular lattice then as n → ∞

Zn√
logn

⇒ N2

(
0,

1

2
I2

)
. (61)

Proof. Since 1 + ω + ω2 = 0, therefore it is immediate that μ = 0. Also we know that ω =
1
2 + i

√
3

2 . Writing ω = (Re(ω) + i Im(ω)), we get

E
[(

X
(1)
1

)2] = 2

6

(
1 + (

Re(ω)
)2 + (

Re
(
ω2))2)

.
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Since Re(ω) = Re(ω2), therefore

E
[(

X
(1)
1

)2] = 2

6

(
1 + 2

(
Re(ω)

)2) = 1

2
.

Similarly, Im(ω) = − Im(ω2), and hence E[(X2
1)

2] = 2
6 ((Im(ω))2 + (Im(ω2))2) = 1

2 . Finally

E
[
X

(1)
1 X

(2)
1

] = −2

6
Im

(
1 + ω + ω2) = 0.

So Σ = 1
2 I2. The rest is just an application of Theorem 11. �

Appendix

We present here an elementary but technical result which we have used in the proof of Theorem 3.
It is really a generalization of the classical result for Laplace transform, namely, Theorem 22.2
of [8].

Theorem 14. Let νn be a sequence of probability measures on (Rd ,B(Rd)) and let mn(· ) be the
corresponding moment generating functions. Suppose there exists δ > 0 such that mn(λ) −→
exp(

‖λ‖2

2 ) as n → ∞ for every λ ∈ [−δ, δ]d ∩Qd , then as n → ∞
νn ⇒ �d. (62)

Proof. Choose a δ′ ∈Q such that 0 < δ′ < δ, and observe that for every a > 0

νn

(([−a, a]d)c) ≤
d∑

i=1

exp
(−δ′a

)(
mn

(−δ′ei

) + mn

(
δ′ei

))
,

where {ei}di=1 are the d-unit vectors. Now for our assumption we get mn(δ
′ei) −→ exp( δ′2

2 ) and

mn(−δ′ei) −→ exp( δ′2
2 ) as n → ∞ for every 1 ≤ i ≤ d . Thus, we get

sup
n≥1

νn

(([−a, a]d)c) −→ 0 as a → ∞.

So the sequence of probability measures (νn)n≥1 is tight. Therefore, for every subsequence
{nk}k≥1 there exists a further subsequence {nkj

}j≥1 and a probability measure ν such that as
n → ∞,

νnkj
⇒ ν.

Then by dominated convergence theorem

mnkj
(λ) −→ m∞(λ), ∀λ ∈ (−δ, δ)d ∩Qd ,
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where m∞ is the moment generating function of ν. But from our assumption

mnkj
(λ) −→ exp

(‖λ‖2

2

)
, ∀λ ∈ [−δ, δ]d ∩Qd .

So we conclude that

m∞(λ) = exp

(‖λ‖2

2

)
, ∀λ ∈ (−δ, δ)d ∩Qd .

Since both sides of the above equation are continuous functions on their respective domains, we

get that m∞(λ) = exp(
‖λ‖2

2 ) for every λ ∈ (−δ, δ)d . But the standard Gaussian distribution is
characterize by the values of its moment generating function in a open neighborhood of 0, so we
conclude that every sub-sequential limit is standard Gaussian. This proves (62). �
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