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Chapter 1

Introduction

In the last three or so decades, the theory of probability has emerged as one of the major

tools for studying several natural as well as real world phenomena. In many such cases, the

randomness is perhaps assumed artificially but because of the high complexity of these problems,

the stochastic modeling has often provided a better understanding than any deterministic model.

One such stochastic model which has been of central importance in various applications related

to epidemiology, computer and other electrical networking, combinatorial optimization and

statistical physics, is the so called the random graphs. Like many other topics of mathematics,

the theory of random graphs started with purely mathematical interest, but soon became one of

the most important tools to study many applied problems.

In this thesis we will consider the following three problems related to the study of random

graphs and stochastic processes defined on them:

(i) Virus spread on a finite network;

(ii) Nearest neighbor algorithm for mean field traveling salesman problem; and

(iii) Random geometric graphs with Cantor distributed vertices.

The first problem is directly related to application of general random graph theory to the spread of

a virus or malware in a network which is of interest in epidemiology or computer networking. The

second problem is related to a famous combinatorial optimization problem known as traveling

1



2 Chapter 1: Introduction

salesman problem and the model we consider arises from statistical physics. We study a specific

approximation algorithm for this traveling salesman problem and try to study its performance.

The third and the last problem is related to the study of certain types of random graphs. We

study a curious case of random geometric graphs and show that the standard results may not

hold when we differ from the usual assumption in the theory of random geometric graphs. The

following section provides more detailed introduction to each of the three problems.

1.1 Summary of the thesis

1.1.1 Virus spread on a finite network

Our first problem deals with spread of a virus or malware through a network of agents. It involves

a very simple susceptible infected removed (SIR) model which was studied by Draief, Ganesh

and Massouli in (Draief et al., 2008). In this model, each susceptible agent, can be infected by its

infected neighbors at a rate, proportional to their number and remains infected till it is removed

after an unit time. While it is infected, it has the potential to infect its neighbors. In general,

removal can correspond to a quarantine of the machine from the network or patching the machine.

In this model, it is assumed that once a node is removed, it is “out of the network”. That is, it

can no longer be susceptible or infected. Such a model is justified, provided the epidemic spread

happens at a rate much faster than the rate of patching of the susceptible machines.

In brief, we consider a virus spread model on a finite closed population of n agents, connected

by some neighborhood structure which we model through a graphG, where the vertices represent

the agents. Starting with some initial infected vertices, at each discrete time step, an infected

vertex tries to infect its neighbors with probability β ∈ (0, 1) independently of others and then

it dies out. The process continues till all infected vertices die out. Our goal is to find some

good approximation to the total number of infected agents after the epidemic is over for a

general network G. To this end, we establish a lower bound for the expected total number of

infected agents and show that for a large class of graphs which satisfy certain properties, our

lower bound is asymptotically exact. The lower bound is obtained through a graph algorithm,

namely, breadth-first search algorithm and thus works for any network. We show that the
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networks for which this approach results to asymptotically exact answer, are the ones which

locally “look like a tree”. This informal description is made rigorous using the concept of local

weak convergence described by Aldous and Steele (2004). We also show that our lower bound

gives better approximation than the known matrix-based upper bounds which were found by

Draief et al. (2008). The details of this problem are available in Chapter 2.

1.1.2 Nearest neighbor algorithm for mean field traveling salesman problem

The second problem we study in this thesis, is based on a mix of combinatorial and probabilis-

tic techniques. Graph theory is very much tied to the geometric properties of combinatorial

optimization (Avis et al., 2005). The Traveling Salesman Problem (TSP), is an example of a

combinatorial optimization problem which has attracted the attention of the mathematicians

from ages. The task is to find the shortest tour among n cities given the intercity distances.

There are several randomized versions of this problem where the distances are taken to be

random. In particular the one which attracted considerable attention among mathematicians

and computer scientists is known as the Euclidean TSP, in which the n cities are randomly

distributed in a d-dimensional hypercube and the distances between cities are given by the

Euclidean metric and are thus random. The other random TSP, which has been of interest within

the statistical physics community is the mean field TSP. Here the distances between pairs of

cities, that is, d(ci, cj) are taken as independent random variables with a given distribution F .

Note that in this case, the geometric structure may break since the triangle inequality may not

necessarily hold with probability one. In fact we can not quite say that the numbers d(ci, cj)

really represent distances under any metric. This though seems artificial, but has interest in

the statistical physics literature. It is well known in theoretical computer science that given the

intercity distances (deterministic or random), the TSP in general is a NP-Complete problem

(Papadimitriou and Steiglitz, 1998). So there are several approximate algorithms which tries to

approximate the optimal tour with polynomial running time. Among them, one of the simplest is

the Nearest Neighbor (NN) Algorithm (Bellmore and Nemhauser, 1968), which is also known as

the next best method (GavettBose, 1965). It was one of the first algorithms used to determine



4 Chapter 1: Introduction

an approximate solution to the traveling salesman problem. The algorithm starts with a tour

containing a randomly chosen city and then always adds the nearest not yet visited city to the

last city in the tour. The algorithm terminates when every city has been added to the tour. For

the Euclidean TSP, the performance of this algorithm was studied in (Rosenkrantz et al., 1977),

where it has been shown that asymptotically the ratio of the total tour length from NN algorithm

to that of the optimal solution is of the order log n. For the mean field set up in a recent work

of Wästlund (2010), it is shown that if the underlying distribution of the intercity vertices has a

density near the origin which has a non-zero limit at 0, then the total length of the optimal tour

is asymptotically constant. In Chapter 3, we show that under same assumption the total length

of NN tour is asymptotically almost surely of the order log n. This shows that the performance

of the NN algorithm in comparison to the optimal is same in both mean filed and Euclidean set

ups. Moreover we also consider general distribution function for the i.i.d. intercity distances

and show that the asymptotic behavior of the total length of NN tour depends on the limiting

properties of the density function near 0.

1.1.3 Random geometric graphs with Cantor distributed vertices

The third and the last problem of the thesis considers a special random geometric graph. The

theory of random graphs was established in the late fifties and early sixties of the last century.

Among a few papers which appeared around (and even before) that time, the paper by Erdős

and Rényi (1960) is generally considered to have founded the field of random graphs. The

authors Erdös and Rényi studied the following random graph, which is now named after them:

it is a graph with n vetrices where an edge is present with probability p independent of other

edges. Another known model of random graphs is random geometric graph (RGG). This graph is

obtained by placing n vertices independently according to a common distribution on Euclidean

space and connecting two vertices if and only if, they are within some specified critical distance.

One of the main aspect what one studies in here is the connectivity of this graph. For uniform

and non-uniform underlying distribution, there are results on the connectivity threshold. Appel

and Russo (1997) proved strong law results for graphs, constructed on independent random
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variables distributed uniformly on [0, 1]d. Penrose (1999) extended this to graphs where vertices

are independent random points in Rd, d ≥ 2 with common density having connected compact

support with smooth boundary. He also assumed that, the essential infimum of density over

this support, is positive. Sarkar and Saurabh (2010) studied the weak convergence of connec-

tivity threshold when the density f of the underlying distribution on [0, 1], is regularly varying

at the origin. In Chapter 4, we give asymptotic result for connectivity of random geometric

graphs, where the underlying distribution of the vertices has no density. For that, we consider n

independent and identically Cantor distributed points on [0, 1]. We show that for this random

geometric graph, the connectivity threshold Rn, converges almost surely to a constant 1− 2φ

where 0 < φ < 1/2, which for the standard Cantor distribution is 1/3. We also show that

‖Rn − (1− 2φ)‖1 ∼ 2C (φ) n−1/dφ where C (φ) > 0 is a constant and dφ := −log 2/log φ is

the Hausdorff dimension of the generalized Cantor set with parameter φ.

In the next section, we present some graph theoretical concepts which we use in the chapters

that follow. Each chapter, is devoted to one of three problems that we mentioned above. In

Chapter 2, we study the first problem which is about the spreading of a virus on finite networks.

The details of this problem are based on (Bandyopadhyay and Sajadi, 2012a). The second

problems, based on (Bandyopadhyay and Sajadi, 2013), is described in Chapter 3 and involves

the application of NN algorithm for the mean field TSP. Third problem which is on RGG with

Cantor distributed vertices, is discussed in Chapter 4 and it is based on (Bandyopadhyay and

Sajadi, 2012b).

1.2 Preliminaries

1.2.1 Graph-theoretical terminology

The theory of graph began in 1735, when Leonhard Euler solved a popular puzzle about

Königsberg’s bridges (Alexanderson, 2006). The city of Königsberg (now is known as Kalin-

ingrad) included two large islands and there were seven bridges that join different parts of this

city. The puzzle was to find a way to walk through the city that wouldn’t cross each bridge
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twice. The field of graph theory has exploded after Euler solved this problem and became a very

popular area of discrete mathematics. Graph theory can be partitioned into two parts: the areas

of undirected graphs and directed graphs (digraphs). Even though both areas have important

applications, for various reasons, undirected graphs have been studied much more extensively

than directed graphs (Bang-Jensen and Gutin, 2009). In this thesis, we shall focus on undirected

graphs. In the following, we provide most of the terminology and notation used in this thesis.

An undirected graph (or just graph) G consists of a non-empty countable set V (G) of

elements called vertices and a countable set E(G) ⊆ V × V called edges. Each edge e =

{u, v} ∈ E(G) is an unordered pair of distinct vertices u and v, which are declared to be

adjacent or neighbors. We write G = (V,E) which means that V and E are the vertex set and

edge set of G, respectively.

A directed graph (or digraph) is a graph whose edges have direction and are called arcs.

Arrows on the arcs are used to encode the directional information. Thus, an arc from vertex u to

vertex v indicates that one may move from u to v but not from v to u.

Figure 1.1: A graph and a digraph

A subgraph G0 of a graph G, is a graph whose vertex set V0, is a nonempty subset of the

vertices of G and whose edges are a subset of the edges of G.

The cardinality of the set of neighbors of u is called the degree of u. When the degree of

every vertex is finite, we say that G is locally finite. When the set V itself is finite, we say that G

is finite. A path is a sequence of consecutive edges in a graph and the length of the path is the

number of edges traversed. Two vertices in a graph are said to be connected if there is a path
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that begins at one and ends at the other. The graph distance from u to v is then defined as the

minimum length of a path from u to v. Being connected to is an equivalence relation on V ; the

associated equivalence classes are called the connected components of G. When there is only

one connected component, we say that G is connected.

Graphs G1(V1, E1) and G2(V2, E2) are isomorphic, denoted G1(V1, E1) ∼= G2(V2, E2), if

there is a bijection (one-to-one correspondence) ψ from V1 to V2 such that any two vertices u

and v of G1 are adjacent in G1 if and only if ψ(u) and ψ(v) are adjacent in G2.

1.2.2 Graph algorithms

An algorithm is any well-defined computational procedure that takes a set of values, as input and

produces a set of values, as output. An algorithm is thus a sequence of computational steps that

transform the input into the output (Cormen et al., 2009). In the following, we briefly describe

two different graph algorithms.

Breadth-first search Breadth-first search (BFS) is one of the simplest algorithms for searching

a graph and the archetype for many important graph algorithms (Cormen et al., 2009). Consider

a graph G = (E, V ) and a distinguished root vertex v0 ∈ V . A BFS with the start point v0 is as

follows. First it explores all vertices which are adjacent to v0. In fact, it discovers every vertex

which is at graph distance one from v0, namely {v1, v2, . . . , vl}. Then for each i = 1, 2, . . . , l it

explores all unvisited neighbors of vi. These new visited vertices are at graph distance 2 from

v0. The search continues in this fashion until it reaches all vertices which are reachable from

the root v0. The name of BFS for this algorithm is because, all vertices at distance k from v0

are discovered before discovering any vertices at distance k + 1. BFS traverse a connected

component of a given graph and makes a spanning tree out of that graph with root v0 (see

Figure 1.2 for an example). In BFS spanning tree, for any vertex u reachable from v0, the simple

path from v0 to u, corresponds to a “shortest path” from v0 to u, that is, a path containing the

smallest number of edges. BFS algorithm is used for both directed and undirected graphs. We

briefly describe the algorithm here.

Step-0 Input graph G with a linear ordering of its vertices, say
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V := {v0, v1, v2, · · · , vn−1}. Let T ← {v0} and N ← {v0}.

Step-1 Write N = {vi1 , vi2 , · · · , vir} for some r ≥ 1 such that

i1 < i2 < · · · < ir .

Step-2 For l = 1 to r find all neighbors u of vil which are not in

T, put N ′ ←
{
u
∣∣∣u ∼ vil and u 6∈ T

}
and update T as

T ← T ∪N ′.

Step-3 Update N ← N ′.

Step-4 Go to Step-1 unless vertex set of T is same as that of V .

Step-5 Stop with output T as the BFS spanning tree with root v0.

Note that the BFS spanning tree is not necessarily unique, it depends on the starting point v0

which is typically called the root and also it depends on the ordering of the vertices in which the

exploration of neighbors is done in Step-2. Also note that if G is a tree to start with, then BFS

spanning tree is just itself. Figure 1.2 provides an illustration.

Figure 1.2: BFS Algorithm

In chapter 2, we show an application of BFS algorithm to get a lower bound on the expected

number of ever infected vertices.

The Nearest Neighbor algorithm In mathematics and computer science, an optimization

problem refers to an attempt to minimize or maximize a real function so called, the objective
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function. For example consider TSP in which a salesman visits n cities cyclically. He visits

each city only once, and finishes up where he started. In this case, the typical question which

arises, in what order he should visit the cities to minimize the distance traveled. Although there

are optimal algorithms to answer this question, but it is computationally unfeasible to obtain

the optimal solution to TSP. In fact, if number of cities is large, then it is almost impossible to

have an optimal solution within a reasonable amount of time. Therefore to solve such problems,

instead of optimal algorithms, one can use heuristics ones. Here we mention to two shortest path

algorithms, namely greedy(GR) and nearest neighbor (NN) algorithms as heuristic algorithms

which they are used to get a solution near to optimal one. It is known that, for TSP on n cities,

the running time for NN algorithm is O(n2). The implementation time of the GR algorithm

is O(n2 log2 n) and is thus somewhat slower than NN (Johnson and McGeoch, 1997). Every

decision which the GR algorithm takes, is the one with the most obvious immediate advantage.

For the TSP on n cities, which are labeled as {c1, c2, . . . , cn}, this algorithm works as follows.

First it sorts all the edges {ci, cj}. Then repeatedly, it selects the shortest edge and adds it to the

tour as long as it doesn’t create a cycle with less than n edges. The other heuristic algorithm is

NN algorithm which is one of the first algorithms used to determine an approximate solution to

the TSP. For each edge {ci, cj}, let d(ci, cj) be the distance between city ci and city cj . Briefly,

in the NN algorithm, a tour is constructed as follows:

Step-0: Input graph G with a linear ordering of its vertices

say V := {c1, c2, . . . , cn}. Let Tour ← {c1} and cπ(1) = c1.

Step-1: Write Tour ←
{
cπ(1), cπ(2), . . . , cπ(i)

}
. Choose cπ(i+1) to be

the city cj that minimizes

{d(cπ(i), cj) : j 6= π(k), 1 ≤ k ≤ i} .

Update Tour as Tour ← Tour ∪
{
cπ(i+1)

}
.

Step-2: Go to Step-1 unless V \ Tour = ∅.

Step-3: Stop with output Tour as the NN tour with starting

city c1.
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For the convenience, when there are ties in Step-1, we assume that they can be broken arbitrar-

ily. The NN algorithm can be improved by repeating the algorithm for each possible starting

city and then take the minimum solution among them (GavettBose, 1965). Figure 1.3 shows an

example of using NN algorithm for finding the shortest tour among 5 cities. Starting city is c1

and the next visited cities in order are : c3, c5, c4 and c2.

Figure 1.3: The nearest neighbor tour

In Chapter 3 we present an application of NN algorithm for the mean filed TSP.

1.2.3 Connectivity threshold of random graphs

As we mentioned earlier, the theory of random graphs began in the late 1950s in several papers

by Erdös and Rényi. Random graphs are often used as a model of real-world networks such as

social links, computer networks, the Internet, the biological networks and the linking structure of
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the World Wide Web (Barabási et al., 2003, Gilbert, 1961, Newman et al., 2002, Penrose, 2003,

Watts and Strogatz, 1998).

Let ‖ . ‖ be some norm on Rd, for example the Euclidean norm and let r be some positive

parameter. A geometric graph on a finite set V ⊂ Rd, is an undirected graph with vertex set V

and with undirected edges, connecting all those pairs {u, v} such that ‖ u − v ‖ ≤ r. Other

terms which have been used for geometric graph are interval graphs (when d = 1), disk graphs

(when d = 2), and proximity graphs (Penrose, 2003). Random geometric graph (RGG), is a

geometric graph on random point configurations (Gilbert, 1961, Penrose, 1997, 2003). Often the

vertices of RGG are assumed to be distributed on [0, 1]d according to a Poisson point process.

Denote RGG by G = G(Vn, r). The connectivity threshold Rn for a finite set Vn ⊂ Rd, defined

to be the minimum value of r such that G is connected. Rn for Vn is also, the longest edge length

of the minimal spanning tree on V ; see for example (Penrose, 1997). It has been shown that if

r ≥
√

logn+γn
πn then G is connected with high probability as n→∞ if and only if γn → +∞

and disconnected with high probability if and only if γn → −∞ (Gupta and Kumar, 1998,

Penrose, 1997). We study the connectivity threshold of one particular RGG in Chapter 4.

1.2.4 Cantor distribution

The Cantor set C, is a rather remarkable subset of [0, 1], which was first discovered by Smith

(1875) but became popular after Cantor (1883). There are different ways to define and construct

the Cantor set. But, the popular one is the Cantor middle-thirds or ternary set construction. The

resulting set, is called the Standard Cantor set, which is constructed on the interval [0, 1] as

follows. One successively removes the open middle third of each subinterval of the previous set.

The Cantor set itself is the infinite intersection of all remaining sets. More precisely, starting

with C0 := [0, 1], we inductively define

Cn+1 :=
2n⋃
k=1

([
an,k, an,k +

bn,k − an,k
3

]
∪
[
bn,k −

bn,k − an,k
3

, bn,k

])
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where Cn :=
2n

∪
k=1

[an,k, bn,k]. The Standard Cantor set is then defined as

C =
∞⋂
n=o

Cn

Figure 1.4 shows the Cantor ternary set which is created by repeatedly deleting the open

middle thirds of a set of line segments.

Figure 1.4: Construction of the standard Cantor set

For constructing the one-dimensional generalization of the Cantor set, we start with unit

interval [0, 1] and at first stage we delete the interval (φ, 1− φ) where 0 < φ < 1/2 . Then, this

procedure is reiterated with two segments [0, φ] and [1− φ, 1]. We continue ad infinitum.

Lad and Taylor (1992) have defined a probability distribution based on the Cantor set. The

Cantor distribution with parameter φ where 0 < φ < 1/2 is the distribution of a random variable

X defined by

X =

∞∑
i=1

φi−1Zi (1.2.1)

where Zi are i.i.d. with P[Zi = 0] = P[Zi = 1 − φ] = 1/2. Intuitively one can construct

this distribution on the interval [0, 1], as follows. Start with unit probability mass uniformly

distributed over [0, 1]. After deleting the interval (φ, 1 − φ), by rescaling, make the total

probability mass to be one. Continue this procedure to infinity. Note that at nth stage the

probability mass is uniformly distributed over 2n compact intervals each of length φn. If a
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random variable X admits a representation of the form (1.2.1), we will write X ∼ Cantor(φ),

and will say that X has a Cantor distribution with parameter φ. Note that for φ = 1/3 we

obtain the standard Cantor distribution, in which unit probability mass is concentrated on those

points in [0, 1] whose ternary expansion contains only the digits 0 and 2. In the other words,

the standard Cantor distribution is the distribution that is uniform on the standard Cantor set.

Observe that Cantor (φ) is self-similar, in the sense that,

X
d
=

 φX with probability 1/2

φX + 1− φ with probability 1/2
(1.2.2)

This follows easily by conditioning on Z1.
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Chapter 2

Virus spread on finite networks

2.1 Introduction

2.1.1 Background and Motivation

Often it is observed that the normal operation of a system which is organized in a network of

individual machines or agents, is threatened by the propagation of a harmful entity through

the network. Such harmful entities are often termed as viruses. For example the Internet, as a

network is threatened by the computer viruses and worms which are self-replicating pieces of

code, that propagate in a network of computers. These codes use a number of different methods

to propagate, for example an e-mail virus typically sends copies of itself to all addresses in the

address book of the infected machine. Weaver et al. (2003) gives a good survey of different

techniques of propagation for computer viruses.

The progress of virus spread, through the network is amenable to mathematical modeling.

Such models, can be used to explain patterns or predict the future outcome of an epidemic

process. The study of mathematical models for epidemic spread has a long history in biological

epidemiology and in the study of computer viruses. Although the first model for epidemic spread,

is more than a century old (Hamer, 1906), one of the simplest and most fundamental of all

epidemiological models, is the one due to work of Kermack and McKendrick (1927), where

they introduced the first stochastic theory for epidemic spread. They proved the existence of

15
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an epidemic threshold, which determines whether the epidemic will spread or die out. They

introduced the so-called “SIR model”, in which individuals can be classified by their epidemio-

logical status, susceptible infected removed (SIR). In this model, every vertex is either infected or

healthy (but susceptible). Each susceptible agent, can be infected by its infected neighbors at a

rate, proportional to their number and remains infected till it is removed after an unit time. While

it is infected, it has the potential to infect its neighbors. In general, removal can correspond

to a quarantine of the machine from the network or patching the machine. In this model, it is

assumed that once a node is removed, it is “out of the network”. That is, it can no longer be

susceptible or infected. Such a model is justified, provided the epidemic spread happens at a rate

much faster than the rate of patching of the susceptible machines. As mentioned in Draief et al.

(2008), earlier work mainly focused on finding or approximating the law of large numbers limit

where the stochastic behavior was approximated by its mean behavior and hence mainly studied

deterministic models. More recent works (Barbour and Utev, 2004, Lefèvre and Utev, 1995),

have focused on stochastic nature of the models and have tried to prove asymptotic distribution

of the number of survivors, using a key concept called basic reproductive number, which is

defined as the expected number of secondary infective, caused by a single primary infective.

This concept of basic reproductive number is well defined under the uniform mixing assumption,

that is, when any infective can infect any susceptible equally likely and hence the underlying

network is given by a complete graph. For a general network, where basic reproductive number

may become vertex dependent, it is not clear how to use this concept effectively. In this chapter,

we study this model on a general network.

2.1.2 Model

We consider a closed population of n agents, connected by a network structure, given by an

undirected graph G = (V,E) with vertex set V containing all the agents and edge set E. A

vertex can be in either of the three states, namely, susceptible (S), infected (I) or removed (R). At

the beginning, the initial set of infected vertices is assumed to be non-empty and all others are

susceptible. The evolution of the epidemic is described by the following discrete time model:
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• After a unit epoch of time, each infected vertex instantaneously tries to infect each

susceptible neighbor with probability β ∈ (0, 1) independent of all others.

• Each infected vertex is removed from the network after a unit time.

Mathematically, at an integer multiple of unit time, say t, if a susceptible vertex v has Iv (t)

neighbors who are infected, then the probability of v being infected instantaneously will be

1− (1− β)Iv(t) and each susceptible vertex will get infected independently. Also an infected

vertex remains in the network only for a unit time, after that it tries to infect its susceptible

neighbors and then it is immediately removed.

As pointed out by Draief et al. (2008), this is a simple model, falling in the class of models

known as Reed-Frost Models, where infection period is deterministic and is same for every

vertex. It is worth noting that the evolution of the epidemic can be modeled as a Markov chain.

It is interesting to note that, the model is essentially same as the i.i.d. Bernoulli bond

percolation model with parameter β (Grimmett, 1999). This is because the set of ever infected (or

removed) vertices is same as the union of connected open components of i.i.d. bond percolation

on G, containing all the initial infected vertices. Although for percolation, it is customary to

work with an infinite graph G. If G is the complete graph Kn, then this model is fairly well

studied in literature and is known as the binomial random graph, also known as Erdös-Rényi

random graph (Bollobás, 2001, Janson et al., 2000).

In this chapter, our goal is to study the total number of vertices that eventually become

infected (and hence removed) without specifying the underlying network. In the paper by Draief

et al. (2008), the authors derived an explicit upper bound of the expected number of vertices ever

infected which depends on both the size of the network as well as the infection rate β. These

bounds also needed an assumption of “small” value for β. Unfortunately, the work of Draief et al.

(2008) did not provide any indication whether the derived upper bound is a good approximation

of the quantity of interest. In this work, we derive a simple lower bound of the expected number

of vertices ever infected which works for every infection rate 0 < β < 1. Our lower bound is

based on the breadth-first search (BFS) algorithm and hence easily computable for any general

finite network G. We also prove that, under certain assumptions on the qualitative behavior of
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the underlying graph, namely if G “locally looks like a tree” in the sense of Aldous and Steele

(2004) local weak convergence, then our lower bound is asymptotically exact for “small” β, thus

it provides a good approximation when the network is “large”. As we will see later, for such

graphs G, the range we cover for β always includes the range in which the upper bound obtained

by Draief et al. (2008) holds and in all these cases, the upper bound over estimates the expected

total number of infections.

2.1.3 Outline

In the following section, we state and prove our main results. Section 2.3 gives several examples

where our lower bound holds and gives asymptotically correct answer. Finally in Section 2.4 we

summarize the merits of our work and indicate some of its limitations as well.

2.2 Main Results and Proofs

We will denote by Y G,I , the total number of vertices ever infected when the epidemic runs on a

network G and the infection starts at the vertices in I ⊆ V . Note that Y G,I implicitly depends on

the size of the network. In Subsection 2.2.1 we present the results, when the epidemic starts with

only one infected vertex. We generalize these results for epidemic starting with more than one

infection, which are presented in Subsection 2.2.2. In both cases, our results rely on breadth-first

search (BFS) algorithm, which has been described in Subsection 1.2.2. Before stating our main

results, since we will compare our lower bound of E[Y G,I ] with the upper bound obtained in

Draief et al. (2008), we present here two main theorems from their work. Let A denote the

adjacency matrix of the undirected graph G and λ1(A), the eigenvalue with the largest absolute

value.

Theorem 2.2.1 (Draief et al., 2008, Theorem 2.1). Suppose βλ1(A) < 1. Then,

E[Y G,I ] ≤ 1

1− βλ1(A)

√
n|I| (2.2.1)

where I is the set of vertices initially infected.
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Theorem 2.2.2 (Draief et al., 2008, Theorem 2.3). Let G be an arbitrary graph with maximal

node degree denoted by ∆. If β∆ < 1 then

E[Y G,I ] ≤ 1

1− β∆
|I| . (2.2.2)

2.2.1 Starting with only one infected vertex

Our first result gives a lower bound of the expected total number of vertices ever infected, starting

with exactly one infected vertex.

Theorem 2.2.3. Let G be an arbitrary finite graph and v0 ∈ V be a fixed vertex of it. Let T

be a spanning tree of the connected component of G containing the vertex v0 and rooted at v0.

Let Y T,{v0} be the total number of vertices ever infected when the epidemic runs only on T and

starting with exactly one infection at v0. Then

E
[
Y T,{v0}

]
≤ E

[
Y G,{v0}

]
for all 0 < β < 1 . (2.2.3)

Moreover, if T is a BFS spanning tree of the connected component of v0 rooted at v0, then

E
[
Y T,{v0}

]
≤ E

[
Y T ,{v0}

]
≤ E

[
Y G,{v0}

]
for all 0 < β < 1 . (2.2.4)

Proof. Suppose G = (V,E) where V is the set of vertices and E is the set of edges and let

H = (V,E′) where E′ ⊆ E. So H ⊆ G, is a spanning sub-graph of G. Note that v0 is a

vertex in both H and G. Let (Xe)e∈E be i.i.d. Bernoulli (β) random variables indexed by the

edges of the graph G. We consider the random graphs Gβ := (Vβ, Eβ) and Hβ :=
(
Vβ, E

′
β

)
with the same vertex set Vβ = V and the random sets of edges Eβ :=

{
e ∈ E

∣∣Xe = 1
}

and

E′β :=
{
e ∈ E′

∣∣Xe = 1
}

. Note that Hβ is a spanning sub-graph of Gβ . Let CG,v0 and CH,v0

be the connected components of the vertex v0 in Gβ and Hβ respectively. From definition

CH,v0 ⊆ CG,v0 .

Now it follows from the definition of the infection spread model that
∣∣CG,v0∣∣ d

= Y G,{v0}
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and
∣∣CH,v0∣∣ d

= Y H,{v0}. So to prove equation (2.2.3) observe that

E
[
Y T,{v0}

]
= E

[∣∣∣CT,{v0}∣∣∣] ≤ E
[∣∣∣CG,{v0}∣∣∣] = E

[
Y G,{v0}

]
.

For the second part, we note that if T is a spanning tree of G with root v0, then

dG (v, v0) ≤dT (v, v0) for all v ∈ V , where dG and dT are the graph distance functions on

G and T respectively. Moreover, the BFS algorithm preserves the distances, so if T is a BFS

spanning tree with root {v0} then we must have

dG (v, v0) = dT (v, v0)

for all v ∈ V . Thus dT (v, v0) ≤ dT (v, v0) for all v ∈ V . Now from the model description, it

follows that for any spanning tree T with root v0 we have

E
[
Y T,{v0}

]
=
∑
v∈V

βdT (v,v0) .

So we conclude that

E
[
Y T,{v0}

]
=
∑
v∈V

βdT (v,v0) ≤
∑
v∈V

βdT (v,v0) = E
[
Y T ,{v0}

]
,

as 0 < β < 1.

Let LBG,{v0} := E
[
Y T ,{v0}

]
be the lower bound obtained through BFS algorithm for a BFS

spanning tree T of G, rooted at v0. Then from the proof of Theorem 2.2.3 we get that

LBG,{v0} =
∑
v∈V

βdG(v,v0) , (2.2.5)

which is free of the choice of the BFS spanning tree. Later, we will see that, this helps us to

generalize the lower bound for epidemic starting with more than one infected vertex. We also

note that LBG,{v0} can be easily computed using the breadth-first search algorithm described

earlier.
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Our next result shows that if we have a “large” finite graph G on n vertices and the epidemic

starts with exactly one infected vertex v0, such that any cycle containing v0 is “relatively large”,

that is of order Ω (log n), then the lower bound LBG,{v0} given above, is asymptotically same as

the exact quantity E
[
Y G,{v0}

]
.

To state the result rigorously, we use the following graph theoretic notations. Given a graph

G, a fixed vertex v0 of G and d ≥ 1, let Vd (G) be the set of vertices of G which are at a graph

distance at most d from v0 in G. Let Nd (G, v0) be the induced sub-graph of G on the vertices

Vd (G).

Theorem 2.2.4. Let Gn be a connected graph on n vertices and {(Gn, vn0 )}n≥1 be a sequence

of rooted graphs with roots {vn0 }n≥1 such that there exists a sequence αn = Ω (log n) with

Nαn (Gn, v
n
0 ) is a tree for all n ≥ 1. Then, there exists 0 < β0 ≤ 1, such that for all 0 < β < β0

∣∣∣E [Y Gn,{vn0 }
]
− LBGn,{vn0 }

∣∣∣ −→ 0 as n→∞ (2.2.6)

and therefore
E
[
Y Gn,{v

n
0 }

]
LB
Gn,{vn0 }

−→ 1 as n→∞.

Proof. Let T n be a BFS spanning tree rooted at vn0 of the graph Gn and as defined earlier let

LBGn,{vn0 } = E
[
Y Tn,{vn0 }

]
. Denote ∂∗αnNαn (Gn, v

n
0 ) the set of infected vertices in Gn after

αn units of time starting with one infected vertex vn0 . Then

LBGn,{vn0 } ≤ E
[
Y Gn,{vn0 }

]
≤ E

[
Y Nαn(Gn,vn0 ),{vn0 }

]
+ nE

[∣∣∂∗αnNαn (Gn, v
n
0 )
∣∣]

≤ E
[
Y Nαn(Gn,vn0 ),{vn0 }

]
+ n2βαn

≤ LBGn,{vn0 } + n2βαn . (2.2.7)

Note that the first term of the second inequality in (2.2.7) is the expected number of infected

nodes within an αn neighbourhood of the initial infective vn0 . The second term there is an

upper bound of the expected number of nodes which may become infected outside of αn

neighbourhood of vn0 . But the number of nodes outside the neighbourhood is bounded by



22 Chapter 2: Virus spread on finite networks

n − E
[
Y Nαn(Gn,vn0 ),{vn0 }

]
≤ n. For the third equality note that since we have assumed that

Nαn (Gn, v
n
0 ) is a tree, so the nodes which are on the boundary of αn neighbourhood of vn0 , that

is the infected vertices in Gn after αn units of time starting with one infected at vertex vn0 , have

probability βαn to get infected after αn units of time. The last inequality follows from the fact

that Nαn (Gn, v
n
0 ) is a tree and hence is a subtree of T n. This proves (2.2.6) since by assumption

αn = Ω (log n). The last part of the theorem follows from the fact that LBGn,{vn0 } ≥ 1.

Although the assumption in the above theorem, may seem to be very restrictive, it is satisfied

in many examples including the n-cycle (see Subsection 2.3.2). The method of the proof on the

other hand, helps us generalize the result for a large class of graphs including certain random

graphs.

Recall the definition of graph isomorphism from Subsection 1.2.1. Following Aldous and

Steele (2004), we say a sequence of rooted random or deterministic graphs {(Gn, vn0 )}n≥1 with

roots {vn0 }n≥1 converges to a random or deterministic graph (G∞, v
∞
0 ) in the sense of local

weak convergence (l.w.c) and write (Gn, v
n
0 )

l.w.c.−−−→ (G∞, v
∞
0 ) if for any d ≥ 1,

P (Nd (Gn, v
n
0 ) ∼= Nd (G∞, v

∞
0 )) −→ 1 as n→∞ . (2.2.8)

where for two rooted graphs A and B with roots ρA and ρB we say A ∼= B and read “A and

B are isomorphic as rooted graphs” if A and B are isomorphic as graphs and the isomorphism

sends the root ρA to the root ρB . Note that for a sequence of deterministic graphs, (2.2.8) means

that the event occurs for “large” enough n.

Theorem 2.2.5. Let {(Gn, vn0 )}n≥1 be a sequence of rooted deterministic or random graphs

with deterministic or randomly chosen roots {vn0 }n≥1. Suppose that for each Gn the maximum

degrees of a vertex is bounded by a fixed constant, namely ∆. Suppose there is a rooted

deterministic or random tree T with root ρ such that

(Gn, v
n
0 )

l.w.c.−−−→ (T, ρ) as n→∞ . (2.2.9)

Let LBGn,{vn0 } := E
[
Y T n,{vn0 }

]
where T n is a BFS spanning tree rooted at vn0 of the graph
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Gn.

Then for β < 1
∆

(
E
[
Y Gn,{vn0 }

]
− LBGn,{vn0 }

)
−→ 0 as n→∞ . (2.2.10)

Moreover for β < 1
∆ we have

lim
n→∞

LBGn,{vn0 } = lim
n→∞

E
[
Y Gn,{vn0 }

]
= E

[
Y T,{ρ}

]
. (2.2.11)

Proof. Let T n be a BFS spanning tree rooted at vn0 of the graph Gn and also as defined earlier

let LBGn,{vn0 } = E
[
Y Tn,{vn0 }

]
. Fix d ≥ 1 and En be the event [Nd (Gn, v

n
0 ) ∼= Nd (T, ρ)].

Therefore from Theorem 2.2.3

LBGn,{vn0 } ≤ E
[
Y Gn,{vn0 }

]
= E

[
Y Gn,{vn0 }1En

]
+ E

[
Y Gn,{vn0 }1Ecn

]
. (2.2.12)

Now under our assumption, the degree of any vertex of Gn is bounded by ∆ and β < 1
∆ , so

using inequality (2.2.2), we get

E
[
Y Gn,{vn0 }1Ecn

]
≤ 1

1− β∆
P (Ecn) . (2.2.13)

Further note that if En occurs, Nd (Gn, v
n
0 ) is a tree rooted at vn0 and thus on En, Nd (Gn, v

n
0 )

is a sub-tree of T n. So

Y Nd(Tn,vn0 ),{vn0 }1En ≤ Y Tn,{v
n
0 }1En .

Denote ∂∗dNd (Tn, vn0 ) the set of infected vertices in Tn after d units of time starting with one

infected vertex vn0 . Hence we have

E
[
Y Gn,{vn0 }1En

]
≤ E

[
Y Nd(Tn,vn0 ),{vn0 }1En

]
+ E

[
Y Gn,∂∗dNd(Tn,v

n
0 )1En

]
≤ E

[
Y Nd(Tn,vn0 ),{vn0 }1En

]
+ E

[
Y Gn,∂∗dNd(Tn,v

n
0 )
]

= E
[
Y Nd(Tnn,vn0 ),{vn0 }1En

]
+ E

[
E
[
Y Gn,∂∗dNd(Tn,v

n
0 )| ∂∗dNd (Tn, vn0 )

]]
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≤ E
[
Y Nd(Tn,vn0 ),{vn0 }1En

]
+

1

1− β∆
E [|∂∗dNd (Tn, vn0 )|]

≤ LBGn,{vn0 } +
(β∆)d

1− β∆
, (2.2.14)

For the fourth inequality, we use inequality (2.2.2). In the last inequalities, note that there are

at most ∆d paths of length d from vn0 and each path has probability βd of infections occurring

all along the path. Therefore E [|∂∗dNd (Tn, vn0 )|] ≤ (β∆)d.

So finally combining (2.2.12), (2.2.14) and (2.2.13) we get that for β < 1
∆ and for any d ≥ 1

we have

(
E
[
Y Gn,{vn0 }

]
− LBGn,{vn0 }

)
≤ (β∆)d

1− β∆
+

1

1− β∆
P (Ecn) . (2.2.15)

Now under assumption (2.2.9), we have lim
n→∞

P (Ecn) = 0 so we conclude that for any d ≥ 1

lim sup
n→∞

(
E
[
Y Gn,{vn0 }

]
− LBGn,{vn0 }

)
≤ (β∆)d

1− β∆
. (2.2.16)

This proves (2.2.10) by taking d→∞ as β < 1
∆ .

Now for proving (2.2.11), we first observe that from (2.2.9) the degree of any vertex of T is

also bounded by ∆. So using (2.2.2), we get that for β < 1
∆

E
[
Y Nd(T,ρ),{ρ}

]
≤ 1

1− β∆
.

Moreover from the definition, Y Nd(T,ρ),{ρ} ↑ Y T,{ρ} as d→∞. So by the Monotone Conver-

gence Theorem we have

lim
d→∞

E
[
Y Nd(T,ρ),{ρ}

]
= E

[
Y T,{ρ}

]
≤ 1

1− β∆
<∞ . (2.2.17)

Thus for fixed ε > 0 we can find d ≥ 1 such that

∣∣∣E [Y T,{ρ}
]
− E

[
Y Nd(T,ρ),{ρ}

]∣∣∣ < ε (2.2.18)



2.2 Main Results and Proofs 25

and
(β∆)d

1− β∆
< ε . (2.2.19)

The last inequality holds as β < 1
∆ . Further, as degree of any vertex of T is bounded by ∆ so

arguing similar to the derivation of the equation (2.2.13) we conclude

E
[
Y Nd(T,ρ),{ρ}

]
−E

[
Y Nd(T,ρ),{ρ}1En

]
= E

[
Y Nd(T,ρ),{ρ}1Ecn

]
≤ 1

1− β∆
P (Ecn) . (2.2.20)

Also, arguing similar to the derivation of the equation (2.2.15) we have

∣∣∣E [Y Gn,{vn0 }
]
− E

[
Y Nd(Gn,vn0 ),{vn0 }1En

]∣∣∣ ≤ (β∆)d

1− β∆
+

1

1− β∆
P (Ecn)

≤ ε+
1

1− β∆
P (Ecn) , (2.2.21)

where the last equality follows from (2.2.19). Finally,

∣∣∣E [Y Gn,{vn0 }
]
− E

[
Y T,{ρ}

]∣∣∣ ≤ ∣∣∣E [Y Gn,{vn0 }
]
− E

[
Y Nd(Gn,vn0 ),{vn0 }1En

]∣∣∣
+
∣∣∣E [Y Nd(Gn,vn0 ),{vn0 }1En

]
− E

[
Y Nd(T,ρ),{ρ}

]∣∣∣
+
∣∣∣E [Y Nd(T,ρ),{ρ}

]
− E

[
Y T,{ρ}

]∣∣∣
≤ 2ε+

2

1− β∆
P (Ecn) ,

where the last inequality follows from the equations (2.2.18), (2.2.19), (2.2.20) and (2.2.21) and

also observing the fact that E
[
Y Nd(Gn,vn0 ),{vn0 }1En

]
= E

[
Y Nd(T,ρ),{ρ}1En

]
. Now under our

assumption (2.2.9) we have P (En) −→ 1. So we conclude that

lim
n→∞

E
[
Y Gn,{vn0 }

]
= E

[
Y T,{ρ}

]
. (2.2.22)

Thus using (2.2.10), it follows that

lim
n→∞

LBGn,{vn0 } = lim
n→∞

E
[
Y Gn,{vn0 }

]
= E

[
Y T,{ρ}

]
.
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This completes the proof.

An immediate and interesting application of the above theorem is the following result which

gives an explicit formula for the limit of epidemic spread on a randomly selected r-regular graph

when the infection starts from a randomly chosen vertex.

Theorem 2.2.6. Suppose Gn is a graph, selected uniformly at random from the set of all r-

regular graphs on n vertices where we assume nr is an even number. Let vn0 be an uniformly

selected vertex of Gn. Then for β < 1
r

lim
n→∞

E
[
Y Gn,{vn0 }

]
=

1 + β

1− (r − 1)β
. (2.2.23)

We note that in this case, the upper bound given in (Draief et al., 2008) is 1
1−rβ when β < 1

r

which is strictly bigger than the exact answer given in (2.2.23).

Proof. It is known (Aldous and Steele, 2004, Janson et al., 2000) that if Gn is a graph selected

uniformly at random from the set of all r-regular graphs on n vertices, where nr is even and vn0

be a randomly selected vertex of Gn then

(Gn, v
n
0 )

l.w.c.−−−→ (Tr, ρ) , (2.2.24)

where Tr is the infinite r-regular tree with root say ρ. The result then follows from Theorem

2.2.5 and equation (2.3.4).

2.2.2 Starting with more than one infected vertex

Now suppose instead of one infected vertex, we start with k infected vertices which are given by

the set I := {v0,1, v0,2, . . . , v0,k}. The following theorem gives a lower bound similar to that of

Theorem 2.2.3.

Theorem 2.2.7. LetG be an arbitrary finite graph and I := {v0,j}kj=1 be a fixed set of k vertices.

Let T be a spanning forest of the connected components of G containing the vertices in I with
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exactly k trees which are rooted at the vertices in I . Then

E
[
Y T,I

]
≤ E

[
Y G,I

]
for all 0 < β < 1 . (2.2.25)

Moreover, if T is a breath-first-search spanning forest of the connected components of G contain-

ing the vertices in I with exactly k trees which are rooted at the vertices in I then

E
[
Y T,I

]
≤ E

[
Y T ,I

]
≤ E

[
Y G,I

]
for all 0 < β < 1 . (2.2.26)

Given a finite labeled graph G and a fixed set of vertices I = {v0,j}kj=1 of it, by a breath-

first-search spanning forest of the connected components of G containing the vertices in I with

exactly k trees which are rooted at the vertices in I , we mean a spanning forest of G with exactly

k connected components which are rooted at the vertices {v0,1, v0,2, · · · , v0,k}, that are obtained

through the breath-first-search algorithm, starting at some vertex v ∈ I and assuming that all the

vertices {v0,1, v0,2, · · · , v0,k} are at the same level. Alternately, we can consider a new graph

G∗ which is same as G except it has one “artificial” vertex, say v∗ which is connected to the

vertices v0,1, v0,2, · · · , v0,k through k “artificial” edges and we perform the BFS algorithm on

G∗ starting with the vertex v∗, to obtain a BFS spanning tree, say T ∗ of G∗ rooted at v∗. Then

a breath-first-search spanning forest of G with exactly k trees which are rooted at the vertices

{v0,1, v0,2, · · · , v0,k} is given by the forest T ∗ \ {v∗}. This alternate description, is quite useful

in practice. Note that if {T i}1≤i≤k are the k connected components, rooted respectively at

{v0,1, v0,2, · · · , v0,k} of T , a breath-first-search spanning forest of the connected components of

G containing the vertices in I , then the following identity holds for every β ∈ (0, 1) :

E
[
Y T ,I

]
=

k∑
i=1

E
[
Y Ti,I

]
=

E
[
Y T

∗,{v∗}]− 1

β
. (2.2.27)

Using the above identity, we can now generalize all the results of the previous section for

epidemic spread starting with more than one infected vertex.
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We write LBG,I for E
[
Y T ,I

]
which is the lower bound of E

[
Y G,I

]
for starting with k

infected vertices given by I . Observe that from equation (2.2.27) we can write

LBG,I =

k∑
i=1

E
[
Y Ti,I

]
, (2.2.28)

where T =
k
∪
i=1
T i is as above. It is worth nothing here that the lower bound LBG,I does not

depend on the choice of T but the representation given in equation (2.2.28) uses a specific choice

of T .

Theorem 2.2.8. Let {(Gn, In)}n≥1 be a sequence of graphs where each Gn has k-roots given

by the set In :=
{
vn0,1, v

n
0,2, · · · , vn0,k

}
such that there exists a sequence αn = Ω(log n) with

Nαn(Gn, In) :=
k
∪
j=1

Nαn

(
Gn, v

n
0,j

)
is a forest with k components. Then, there exists 0 <β0≤ 1,

such that for all 0 < β < β0

∣∣E [Y Gn,In
]
− LBGn,In

∣∣ −→ 0 as n→∞ (2.2.29)

and therefore
E[Y Gn,In ]

LBGn,In
−→ 1 as n→∞.

The proof of this result is similar to that of Theorem 2.2.4 and follows from the identity

(2.2.27). The details are thus omitted.

Our next result is parallel to the Theorem 2.2.5 which needs a generalization of the concept

of local weak convergence which was introduced by Wästlund (2012).

We will say a sequence of random or deterministic graphs {Gn}n≥1 with k roots given by

the set In :=
{
vn0,1, v

n
0,2, · · · , vn0,k

}
, n ≥ 1 converges to a random or deterministic graph G∞

with k-roots say I∞ :=
{
v∞0,1, v

∞
0,2, · · · , v∞0,k

}
in the sense of local weak convergence (l.w.c) and

write (Gn, In)
l.w.c.−−−→ (G∞, I∞) if for any d ≥ 1

P
(
Nd

(
Gn, v

n
0,j

) ∼= Nd

(
G∞, v

∞
0,j

)
for all 1 ≤ j ≤ k

)
−→ 1 as n→∞ . (2.2.30)

Note that for a sequence of deterministic graphs, (2.2.30) means that the event occurs for “large”
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enough n.

Theorem 2.2.9. Let (Gn)n≥1 be a sequence of deterministic or random graphs. Suppose each

Gn has deterministic or randomly chosen k roots given by In :=
{
vn0,1, v

n
0,2, · · · , vn0,k

}
and the

maximum degree of each Gn is bounded by a fixed constant, namely ∆. Suppose T :=
k
∪
j=1

Tj is

a forest with k rooted tress with roots I∞ := {ρ1, ρ2, · · · , ρk}. We assume that

(Gn, In)
l.w.c.−−−→ (T, I∞) as n→∞ . (2.2.31)

Then for β < 1
∆ (

E
[
Y Gn,In

]
− LBGn,In

)
−→ 0 , (2.2.32)

as n→∞. Moreover

lim
n→∞

LBGn,In = lim
n→∞

E
[
Y Gn,In

]
= E

[
Y T,I∞

]
=

k∑
j=1

E
[
Y Tj ,{ρj}

]
. (2.2.33)

Proof. For each n ≥ 1 as done above we define a new rooted graph G∗n with artificial vertex v∗n

which is connected to the k-roots in In of Gn through k artificial edges. Also we consider T∗

defined similarly with an artificial root ρ∗ connecting to {ρ1, ρ2, · · · , ρk}. Then our assumption

of local weak convergence (2.2.31) is equivalent to

(G∗n, v
∗
n)

l.w.c.−−−→ (T∗, ρ∗) as n→∞ . (2.2.34)

This together with the relation (2.2.27) and Theorem 2.2.5 completes the proof.

It is worth noting that in case {Tj}1≤j≤k are i.i.d. (if they are random) or isomorphic (if they

are constant), then equation (2.2.33) can be reformulated as

lim
n→∞

LBGn,In = lim
n→∞

E
[
Y Gn,In

]
= E

[
Y T,I∞

]
= kE

[
Y T1,{ρ1}

]
. (2.2.35)

As in the case of starting with one infected vertex, the following theorem is an immediate
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application of the above results.

Theorem 2.2.10. Suppose Gn is a graph, selected uniformly at random from the set of all

r-regular graphs on n vertices where we assume nr is an even number. Let I :=
{
vn0,j

}k
j=1

be

k uniformly and independently selected vertices of Gn. Then for β < 1
r

lim
n→∞

E
[
Y Gn,In

]
= k

1 + β

1− (r − 1)β
. (2.2.36)

Proof. Since the vertices in In are selected uniformly at random, from Aldous and Steele (2004)

we have

(Gn, In)
l.w.c.−−−→ (Tr, I∞) , (2.2.37)

where I∞ := {ρ1, ρ2, · · · , ρk} and Tr is a forest with k infinite r-regular tree with roots in I∞.

The result then follows from Theorems 2.2.9 and 2.2.6.

Once again we note that in this case, the upper bound k
1−rβ given in (Draief et al., 2008) for

β < 1
r , is strictly bigger than the exact answer given in (2.2.36) and the gap increases with k, the

initial number of infections.

2.3 Examples

2.3.1 Tree

If G is a tree and the epidemic starts with only one infected vertex say ρ which we call the root,

then from the construction of the lower bound it is clear that LBG,{ρ} = E
[
Y G,{ρ}]. In certain

cases one can find explicit formula for this quantity. Two such examples are discussed below.

Regular Tree Consider a rooted r-array tree (r ≥ 2), with height m, denote it by T (r,m).

The height of a rooted tree is the length of a longest path from the root. In T (r,m) every internal

vertex, except the root ρ has degree r. A vertex v is said to be an internal vertex, if it has a

neighbor which is not on the unique path from v to ρ. We assume that the degree of the root ρ is
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(r − 1). Figure 2.1 shows a rooted 4-regular tree with height 2.

Figure 2.1: T (4, 2), rooted 4-regular tree with height 2

Let µm := E[Y T (r,m),{ρ}]. Note that the total number of vertices in T (r,m) is (r−1)m+1−1
r−2 .

Now, to calculate the exact value of µm we note that

µm = 1 + (r − 1)βµm−1 (2.3.1)

which gives the formula

µm =
[(r − 1)β]m+1 − 1

(r − 1)β − 1
. (2.3.2)

As T (r,m) is a tree, so the lower bound is exact, that is, LBT (r,m),{ρ} = µm. Now the upper

bound from Draief et al. (2008) is 1
1−rβ for β < 1

r . If β < 1
r then by Theorem 2.2.5 we get

E
[
Y T (r),{ρ}

]
= lim

m→∞
µm =

1

1− (r − 1)β
, (2.3.3)

where T (r) is the rooted infinite r-regular tree, where each vertex except the root ρ has degree r

and the degree of the root is (r − 1).

We observe a gap between the lower bound (which in this case agrees with µm ) to that of

the upper bound obtained from Draief et al. (2008).

Now let Tr be the infinite r-regular tree where each vertex including the root, has degree r.

Such a tree can be viewed as a disjoint union of r rooted infinite r-regular trees, whose roots are
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joined to the root, say ρ of Tr. Thus from (2.3.3) we get that for β < 1
r

LBTr,{ρ} = E
[
Y Tr,{ρ}

]
= 1 +

rβ

1− (r − 1)β
=

1 + β

1− (r − 1)β
. (2.3.4)

Galton-Watson Tree Consider a Galton-Watson branching process starting with one individ-

ual. Let the mean of the offspring distribution be c > 0. We denote the random tree generated

by this process as GW (c) with root ρ. Once again, as discussed above, since GW (c) is a tree,

therefore LBGW(c),{ρ} = E
[
Y GW(c),{ρ}]. Now in this case, the epidemic process starting with

only one infection at ρ, is a Galton-Watson branching process starting with one individual as

the root and with mean of the new progeny distribution being βc. So in particular if β < 1
c then

from standard branching process theory E
[
Y GW(c),{ρ}] < ∞ and equals 1

1−βc (Athreya and

Ney, 2004).

Star graph A Star graph, denote by Sn, is a graph consisting of a root ρ and n − 1 leaves,

each of which is attached only to the root. For this graph BFS lower bound and the exact value

of E[Y Sn,{ρ}] is:

1 + (n− 1)β

Note that upper bound from Draief et al. (2008) is 1
1−
√
n−1β

, for
√
n− 1β < 1.

2.3.2 Cycle

Cycle graph is a graph that consists of a single cycle. We denote the cycle with n vertices by

Cn. For simplicity, we assume n is odd and then from the BFS algorithm, it is immediate that

starting with one infected individual, say at vn0 , we have

LBCn,{vn0 } = 1 + 2
(
β + β2 + · · ·+ β

n−1
2

)
(2.3.5)

which converges to 1+β
1−β as n→∞ for any 0 < β < 1. Now it is clear from the definition that

(Cn, v
n
0 )

l.w.c.−−−→ (Z, 0) . (2.3.6)
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Thus using Theorem 2.2.5 we conclude that if β < 1
2 then

lim
n→∞

LBCn,{vn0 } = lim
n→∞

E
[
Y Cn,{vn0 }

]
=

1 + β

1− β
. (2.3.7)

In fact this holds for any 0 < β < 1. This is because for a cycle graph, the assumption in

Theorem 2.2.4 holds for αn = n/3. Thus from the proof of Theorem 2.2.4, we conclude that the

equation (2.3.7) holds for any 0 < β < 1.

Now if the epidemic starts with k initial infected vertices given by In :=
{
vn0,1, v

n
0,2, · · · , vn0,k

}
which are uniformly distributed, then it is easy to see that

(Cn, In)
l.w.c.−−−→ (Zj , 0)1≤j≤k , (2.3.8)

where Zj is just a copy of Z. Then by Theorem 2.2.9 we conclude that for 0 < β < 1
2 ,

lim
n→∞

LBCn,In = lim
n→∞

E
[
Y Cn,In

]
= k

1 + β

1− β
. (2.3.9)

As earlier, we can use Theorem 2.2.8 with αn = Ω (n) to conclude that (2.3.9) holds for all all

0 < β < 1.

2.3.3 Generalized Cycle

Suppose in a cycle graph, we choose randomly without replacement, 2m vertices and connect

these vertices by joining edges between them, where m ≥ 1 is fixed. We call this graph a

Generalized Cycle and denote it by GC (n,m). Now consider the epidemic model on this graph

with one initial infected vertex vn0 . For large enough n, the probability of having at least one of

the m pairs inside a neighborhood of vn0 of radius r is given by

1−
(

1− 2r(2r + 1)

n(n− 1)

)m

which tends to zero as n→∞. Therefore, a fixed neighborhood of the root is a tree with high

probability, in fact it is isomorphic to a neighborhood of integer line. Hence by Theorem 2.2.5 it
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follows that for β < 1
2

lim
n→∞

LBGC(n,m),{vn0 } = lim
n→∞

E
[
Y GC(n,m),{vn0 }

]
=

1 + β

1− β
. (2.3.10)

Similarly if we start with k initial infected vertices, say In :=
{
vn0,j

}k
j=1

which are chosen

uniformly at random, then it is easy to see that

(GC (n,m) , In)
l.w.c.−−−→ (Zj , 0)1≤j≤k , (2.3.11)

where Zj is just a copy of Z. Thus by Theorem 2.2.9 we get

lim
n→∞

LBGC(n,m),In = lim
n→∞

E
[
Y GC(n,m),In

]
= k

1 + β

1− β
, (2.3.12)

when β < 1
3 , because the maximum degree in GC (n,m) is 3.

2.3.4 Cube graph

The cube graph is the graph obtained from the vertices and edges of the 3-dimensional unit

cube. We denote it by Q3. Suppose initially only the vertex (0, 0, 0) is infected. Consider a

BFS spanning tree T of Q3 rooted at (0, 0, 0). Since Q3 has only 8 vertices so Y T ,{(0,0,0)} takes

values {0, 1, 2, 3, 4, 5, 6, 7} and

LBT ,{(0,0,0)} = E
[
Y T ,{(0,0,0)}

]
= 1 + 3β + 3β2 + β3

= (1 + β)3 .

Figure 2.2 shows how to obtain the BFS spanning tree on Cube graph.

In general, the d-dimensional cube graph say Qd is a d-regular graph which has n = 2d

vertices. Following a similar calculation as done above, one can show that for an epidemic
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Figure 2.2: BFS spanning tree on Cube graph

starting at one vertex, the lower bound obtained in Theorem 2.2.3 for the expected total number

of vertices ever infected is given by (1 + β)d.

In this example, computation of the exact value of E
[
Y Qd,{(0,0,0)}] is difficult, but we note

that there is a gap between the upper bound in (2.2.2), namely 1
1−dβ which is valid only when

β < 1
d and our lower bound. However this is an example which does not fall under any of the

theorem we discussed in this chapter and hence we are not sure if the lower bound gives a good

approximation.

2.4 Discussion

The goal of this study has been to get a better idea of the expected total number of vertices ever

infected with as little assumption as possible on the underlying graph G. Our approach has been

to find an appropriate lower bound of this expectation. Although from a practical point of view,
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approximation from above with an upper bound is a more conservative method. As shown in the

examples given in Section 2.3, the only known upper bounds obtained in Draief et al. (2008)

often over estimate the exact quantity. Moreover the upper bounds in Draief et al. (2008) hold

only for “small” values of the parameter β. For an arbitrary finite network, we have obtained

a lower bound of the expectation of the number of vertices ever infected for any value of the

parameter β which is computable through the breadth-first search algorithm. Theorems 2.2.4,

2.2.5, 2.2.8 and 2.2.9 show that this lower bound is asymptotically exact for a large class of

graphs when β value is “small”, which always includes the values of β for which the upper

bounds from Draief et al. (2008) hold.

However, we would also like to mention here that even though the lower bound we present,

works for any infection parameter 0 < β < 1, if the underlying graph has many loops, such

as the complete graph Kn, then it does not necessarily give a good approximation. To see this,

consider the complete graph Kn and suppose that the epidemic starts at a fixed vertex v0. Then

the lower bound LBKn,{vn0 } = 1 + (n− 1)β. Now, let X1 be the number of infected vertices

at time t = 1. In this case it is easy to see that X1 ∼ Binomial (n− 1, β). Let u be one of

n− 1−X1 vertices which are not infected at time t = 1. Since Kn is the complete graph, so the

conditional probability of u becomes infected at time t = 2 given X1 is 1− (1− β)X1 . Hence

E
[
Y Kn,{v0}

]
≥ 1 + (n− 1)β + E

[
(n− 1−X1)

(
1− (1− β)X1

)]
= 1 + (n− 1)β + (n− 1)− (n− 1)

(
1− β2

)n−1

− (n− 1)β + (n− 1)β (1− β)
(
1− β2

)n−2

Therefore we get

lim sup
n→∞

E
[
Y Kn,{v0}

]
− LBKn,{vn0 }

LBKn,{vn0 }
≥ 1− β

β
. (2.4.1)

where LBKn,{vn0 } := E[Y Tn,{vn0 }]. Here, it is worth mentioning that for the complete graph

if we start with one infected vertex, then as discussed in Section 2.1, the set of vertices ever

infected is no other than an Erdös-Rényi random graph with parameter n and β. Thus asymptotic

behavior of E
[
Y Kn,{v0}

]
is well understood in the literature (Bollobás, 2001, Janson et al.,
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2000).
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Chapter 3

Nearest neighbor algorithm for the

mean field TSP 1

3.1 Introduction

The traveling salesman problem (TSP) is a very well known combinatorial optimization problem.

The aim is to find the shortest tour, connecting a number of cities visited by a traveling salesman

on his sales route, such that he visits each city exactly once and finally returns to the starting city.

Formally, we are given a set {c1, c2, . . . , cn} of cities and for each pair {ci, cj} of distinct cities,

a distance d(ci, cj). The goal is to find a permutation π of the cities that minimizes the quantity

n∑
i=1

d(cπ(i), cπ(i+1)) (3.1.1)

where π(n+ 1) = 1. This quantity is called the tour length, since it is the total distance traveled

by the salesman. We shall concentrate in this chapter on the symmetric TSP, in which the

distances satisfy

d(ci, cj) = d(cj , ci) for 1 ≤ i, j ≤ n.

There are several randomized versions of this problem where the distances are taken to be
1This chapter is based on the paper by Bandyopadhyay and Sajadi (2013)

39
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random. In particular the one which attracted considerable attention among mathematicians and

computer scientists is known as the Euclidean TSP, in which the n cities are randomly distributed

in a d-dimensional hypercube and the distances between cities are given by the Euclidean metric

and are thus random. The other random TSP, which has been of interest within the statistical

physics community is the mean field TSP. Here the distances between pairs of cities, i.e., d(ci, cj)

are taken as independent random variables with a given distribution F . Note that in this case,

the geometric structure may break since the triangle inequality may not necessarily hold with

probability one. In fact we cannot quite say that the numbers d(ci, cj) really represent distances

under any metric. Although this seems artificial, however such models are of interest in statistical

physics literature.

It is well known in algorithm literature (Papadimitriou and Steiglitz, 1998) that TSP in

general is a NP-Complete problem. So there are several approximate algorithms which tries to

approximate the optimal tour with polynomial running time. Among them, one of the simplest is

the Nearest Neighbor (NN) Algorithm, which has been described in Subsection 1.2.2.

Denote the distance d(ci, cj) by Lij . Since the NN algorithm is to move to the nearest

non-visited city, therefore starting from c1, by using this algorithm we need to find the nearest

city to it. We call it v2. In this way, we need to find

min {L12, L13, . . . , L1n}

Then from city v2 we find the nearest city to that and call it v3. Here we need to find

min {Lv2u|u ∈ {2, 3, . . . , n} and u 6= v2} .

We continue the algorithm till all n cities have been visited. Then from there we go back to

starting city which is c1.

Define TNNn to be the length of NN tour among n cities in the TSP, then

TNNn =

n∑
i=1

Lvivi+1 , v1 = 1 = vn+1 (3.1.2)
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3.1.1 The deterministic TSP

The performance of nearest neighbor algorithm has been studied for the TSP when the distances

are defined through a metric. Let T optn be the length of the optimal tour and dxe denote the

smallest integer greater than or equal to x. Rosenkrantz et al. (1977) measured the closeness of a

tour by the ratio of the obtained tour length, to the optimal tour length. They proved that if the

cities are placed in a metric space and the intercity distances are given by the metric then

TNNn

T optn

≤ 1

2
dlog2 ne+

1

2
.

They also showed that for each m > 3, there exists a traveling salesman graph with n = 2m − 1

nodes inside a metric space such that

TNNn

T optn

>
1

3
log2(n+ 1) +

4

9
.

3.1.2 The random TSP

One of the famous mathematical results for the Euclidean TSP is Beardwood-Halton-Hammersley

theorem which studies the large sample behavior of the length of shortest tour in TSP. Let the

cities be independently and uniformly distributed on [0, 1]d. Beardwood et al. (1959) showed

that there is a constant 0 < βTSP (d) <∞ such that with probability one

T optn

n
d−1
d

−→ βTSP (d)

They also proved that for nonuniform random samples, there is an universal constant βTSP (d)

such that
T optn

n
d−1
d

−→ βTSP (d)

∫
Rd
f(x)(d−1)/ddx a.s.

where f(x) is the density of the absolutely continuous part of the distribution of cities with a

compact support.

Asymptotic results in the mean field TSP have been obtained by Wästlund (2010). Let Lij’s
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be independent random variables from a fixed distribution on the nonnegative real numbers.

Suppose as t −→ 0+

P(Lij < t)

t
−→ 1

He proved that for large n,

T optn
P−→ 1

2

∫ ∞
0
h(x) dx (3.1.3)

where h as a function of x is implicitly defined through the equation

(
1 +

x

2

)
e−x +

(
1 +

h(x)

2

)
e−h(x) = 1

Although there seems to be no simple expression for this limit in terms of known mathematical

constants, it can be evaluated numerically to be approximately 2.041548.

In this chapter we study the limiting behavior of the total length of the tour, obtained by NN

algorithm for the mean field TSP. Our motivation is similar to that of Rosenkrantz et al. (1977).

We would like to compare the apparent “loss” (that is, more distance to be traversed) accrued

by using the NN algorithm with respect to the optimal solution. But because of (3.1.3), it is

enough to consider the limiting behavior of TNNn . We show that if F , the distribution of the

distance between cities, has a density which is continuous at 0 with F ′ (0+) > 0, then the total

length of the NN tour for mean field TSP scales as log n. This parallels the conclusions drawn in

Rosenkrantz et al. (1977) for Euclidean TSP. Moreover we also consider a general distribution

function F with non-negative support and show that the asymptotic behaviors for TNNn depend

on the limiting properties of the density near 0.

The rest of the chapter is structured as follows. In Section 3.2, we study the last edge of NN

tour in the mean field TSP. The main results are presented in Section 3.3. Section 3.4 provides

some technical results which we use in the proof of main results. Section 3.5 includes the

discussion about the assumptions on distribution F and also the relation of objective function

with lower records.
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3.2 The last edge of the NN tour

We will assume that the mean and the variance of F are finite and F has a density f . Let

the distances between cities be denoted by {Lij}1≤i≤j≤n which are i.i.d with distribution F

supported on [0,∞) with 0 ∈ support (F ) and density f . Let Llast
n be the length of the last edge,

which joins the last visited city to the first city. Then the length of NN tour, TNNn , can be written

as

TNNn
d
=

n−1∑
i=1

min
i<j≤n

Lij + Llast
n (3.2.1)

Let Lfirst
n := min

1<j≤n
L1j . Then (3.2.1) can be rewritten as,

TNNn
d
=

n−1∑
i=2

min
i<j≤n

Lij + Lfirst
n + Llast

n (3.2.2)

The following proposition shows that the last edge in NN tour does not play an important role.

Proposition 3.2.1. In the NN tour for mean field TSP, the distribution function of Lfirst
n + Llast

n

converges to F as n −→ ∞ and
n−1∑
i=2

min
i<j≤n

Lij is independent of Lfirst
n + Llast

n . Moreover as

n −→∞,

E
[
L

first
n + Llast

n

]
−→ µ

and

E
[(
L

first
n + Llast

n

)2
]
−→ µ2 + σ2 ,

where µ and σ2 are the mean and the variance of F .

Proof. For k = 1, 2, . . . , n − 1, let Xk := L1k+1 and X(k) be the kth order statistic of

X1, X2, . . . , Xn−1. Note that by assumption Xk’s are i.i.d. F .

Notice that by construction the successive vertices 1 = v1, v2, v3, . . . , vn of the tour have the

property that for every 2 ≤ k ≤ n given {v2, v3, · · · , vk−1} the vertex vk is uniformly dis-

tributed on the set {1, 2, . . . , n} \ {1, v2, v3, · · · , vk−1}. Thus for every 3 ≤ k ≤ n given v2,

the vertex vk is uniformly distributed on the set {2, 3, . . . , n} \ {v2}. So in particular the last

vertex of the tour vn is also uniformly distributed on the set {2, 3, . . . , n} \ {v2}. Hence given
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X1, X2, . . . , Xn−1, the length of the last edge is uniform on
{
X(2), X(3), . . . , X(n−1)

}
. Now

for any bounded continuous function h we have,

E
[
h
(
Llast
n

)]
=

1

n− 2

n−1∑
k=2

E
[
h
(
X(k)

)]
=

1

n− 2

n−1∑
k=1

E
[
h
(
X(k)

)]
−

E
[
h
(
X(1)

)]
n− 2

=
1

n− 2

n−1∑
k=1

E [h (Xk)]−
E
[
h
(
X(1)

)]
n− 2

=
n− 1

n− 2
E [h (X1)]−

E
[
h
(
X(1)

)]
n− 2

.

Therefore

lim
n−→∞

E
[
h
(
Llast
n

)]
= E [h (X1)] ,

for every bounded continuous function h, thus the distribution function of Llast
n converges to F

as n −→∞. Now observe that Lfirst
n −→ 0 almost surely, so by Slutsky’s theorem we have the

distribution function of Lfirst
n + Llast

n converges to F as n −→∞.

Now observe that by similar calculations as above

E
[
Lfirst
n + Llast

n

]
=
n− 1

n− 2
E [X1] +

n− 3

n− 2
E
[
X(1)

]
−→ µ .

The last limit follows from the dominated convergence theorem by observing that X(1) −→ 0

almost surely and 0 ≤ X(1) ≤ X1.

Further,

E
[(
Llast
n

)2
]

=
n− 1

n− 2
E
[
X2

1

]
−

E
[
X2

(1)

]
n− 2

−→ µ2 + σ2 ,

and

E
[(
Lfirst
n

)2
]

= E
[
X2

(1)

]
−→ 0 .
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Finally,

E
[
Lfirst
n Llast

n

]
=
n− 1

n− 2
E
[
X(1)X̄n−1

]
−

E
[
X2

(1)

]
n− 2

[
where X̄n−1 :=

1

n− 1

n−1∑
k=1

Xk

]

≤
√
E
[
X2

(1)

]
E
[
X̄2
n−1

]
−

E
[
X2

(1)

]
n− 2

[using Cauchy-Schwarz inequality]

=

√
E
[
X2

(1)

] (
µ2 +

σ2

n− 1

)
−

E
[
X2

(1)

]
n− 2

−→ 0 .

Combining all these we have

E
[(
Lfirst
n + Llast

n

)2
]
−→ µ2 + σ2 .

3.3 Main results

For the distribution function F we define F−1 : (0, 1) → [0,∞) by F−1 (u) :=

inf
{
x ∈ R

∣∣∣F (x) ≥ u
}

, 0 < u < 1. It is then a standard fact that F−1 (U) ∼ F when

U ∼ Uniform [0, 1]. We start with a lemma which will give an useful representation of TNNn .

Lemma 3.3.1. Let the distances between cities, (Lij)i<j≤n for i = 1, . . . , n − 1 be i.i.d

with F denoting its common distribution function. Define the random variable Wi :=

F−1

(
1− exp(−Yi

i
)

)
where {Yi}1≤i≤n−1 are i.i.d. Exponential random variable each with

mean one. Then
n−1∑
i=2

min
i<j≤n

Lij
d
=

n−2∑
i=1

Wi .

Thus

TNNn
d
=

n−2∑
i=1

Wi +Rn , (3.3.1)

where Rn
d
= L

first
n + Llast

n and is independent of {Wi}n−2
i=1 .
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Proof. Let (ξij)i<j≤n be i.i.d. Exponential random variable each with mean one. Then

n−1∑
i=2

min
i<j≤n

Lij
d
=

n−1∑
i=2

min
i<j≤n

F−1(1− e−ξij )

d
=

n−1∑
i=2

F−1(1− e
− min
i<j≤n

ξij
)

d
=

n−2∑
i=1

F−1(1− e−
Yi
i )

where Yi’s are i.i.d. Exponential random variable each with mean one.

Finally (3.3.1) follows from equation (3.2.2).

In the proofs of our main results, we primarily study properties of Wi rather than min
i<j≤n

Lij .

Observe that

P(Wi ≤ w) = 1− {1− F (w)}i for w ≥ 0. (3.3.2)

Lemma 3.3.2. Assume that F has a density f and as t −→ 0+, f(t)
tα −→ C, where C ∈ (0,∞)

is constant and −1 < α < 1. Then as n −→∞, {
n−2∑
i=1

(Wi−E[Wi])}n≥1, converges a.s. and in

L2.

Proof. By assumption as t −→ 0+, f(t)
tα −→ C, therefore given ε > 0, there exists δ > 0, such

that for all 0 < t < δ, we have

(C − ε)tα < f(t) < (C + ε)tα .

Hence for 0 < x < δ,
(C − ε)
1 + α

x1+α < F (x) <
(C + ε)

1 + α
x1+α

which implies

(
1 + α

C + ε
)

1
1+αx

1
1+α < F−1(x) < (

1 + α

C − ε
)

1
1+αx

1
1+α . (3.3.3)
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Put δ1 := − ln(1− δ). If Yii < δ1 (which ensures that 1− exp(−Yi
i ) < δ), then we have

Wi 1

[
Yi
i
< δ1

]
< (

1 + α

C − ε
)

1
1+α

(
1− exp(−Yi

i
)

) 1
1+α

1

[
Yi
i
< δ1

]
. (3.3.4)

Observe that for β > 0,

E

[(
1− exp(−Yi

i
)

)β]
=

∫ ∞
0

(1− exp(−y/i))β exp(−y)dy

= i

∫ 1

0
uβ(1− u)i−1du

= Γ(1 + β)
Γ(i+ 1)

Γ(i+ 1 + β)

≤ Γ(2 + β)
1

(i+ 1 + β)β
.

The last inequality follows from the Wendel’s double inequality (Wendel, 1948), which says for

real x > 0 and 0 < s < 1 we have

x

(x+ s)1−sΓ(x) ≤ Γ(x+ s) ≤ xsΓ(x) (3.3.5)

Therefore

E
[
W 2
i 1[

Yi
i
< δ1]

]
< (

1 + α

C − ε
)

2
1+αΓ

(
2 +

2

1 + α

)
1(

i+ 1 + 2
1+α

) 2
1+α

. (3.3.6)

Now as i −→ ∞, Yi
i

a.s.−→ 0. This follows from the Borel-Cantelli lemma, because for any

ε0 > 0, the sequence of probabilities P (Yi > ε0 i) = e−ε0 i are summable. Define

I0(ω) := min

{
i | Yj(ω)

j
< δ1, ∀j ≥ i

}
. (3.3.7)

Fix m > 1, then

[I0 = m] =

[
Yi
i
< δ1,∀i ≥ m and

Ym−1

m− 1
> δ1

]
.
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Hence

P(I0 = m) ≤ e−(m−1)δ1

Now,

∞∑
i=1

E[W 2
i ] =

∞∑
m=1

E[
m−1∑
i=1

W 2
i 1(I0 = m)] +

∞∑
m=1

E[
∞∑
i=m

W 2
i 1(I0 = m)]. (3.3.8)

But,

E[
m−1∑
i=1

W 2
i 1(I0 = m)] = E[

m−2∑
i=1

W 2
i 1(I0 = m)] + E[W 2

m−11(I0 = m)]

Since [I0 = m] depends on random variables Ym−1, Ym, Ym+1, ... therefore for 1 ≤ i ≤ m− 2,

Wi is independent of [I0 = m], hence

E[
m−2∑
i=1

W 2
i 1(I0 = m)] ≤ e−(m−1)δ1

m−2∑
i=1

E[W 2
i ].

Since E[W 2
i ] is a decreasing sequence, we have

m−2∑
i=1

E[W 2
i ] ≤ (m− 2)E[W 2

1 ].

Therefore

E[

m−2∑
i=1

W 2
i 1(I0 = m)] ≤ (m− 2)e−(m−1)δ1E[W 2

1 ]. (3.3.9)

By Cauchy-Schwarz Inequality

E[W 2
m−11(I0 = m)]] ≤

√
E[W 4

m−1]P(I0 = m).

Now for m > 4,

E[W 4
m−1] ≤ E[W 4

4 ] ≤ µ4. (3.3.10)

Therefore

E[W 2
m−11(I0 = m)]] ≤ µ2e−(m−1)

δ1
2 . (3.3.11)
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In the last equality of (3.3.10), we use the fact that for k non-negative random variables

Z1, Z2, ..., Zk,

(min(Z1, Z2, ..., Zk))
k ≤

k∏
j=1

Zj .

From (3.3.9) and (3.3.11), we have

∞∑
m=1

E[
m−1∑
i=1

W 2
i 1(I0 = m)] <∞ (3.3.12)

Now we consider the second term of the equation (3.3.8) and observe

∞∑
m=1

E

[ ∞∑
i=m

W 2
i 1 (I0 = m)

]
=

∞∑
m=1

[ ∞∑
i=m

E
[
W 2
i 1 (I0 = m)

]]

≤
∞∑
m=1

[ ∞∑
i=m

E
[
W 2
i 1

(
Yi
i
< δ1

)
1

(
Ym−1

m− 1
> δ1

)]]
(

as [I0 = m] ⊆
[
Yi
i
< δ1 and

Ym−1

m− 1
> δ1

]
for all i ≥ m

)
=

∞∑
m=1

[ ∞∑
i=m

E
[
W 2
i 1

(
Yi
i
< δ1

)]
e−(m−1)δ1

]
( as Yi and Ym−1 are independent for all i ≥ m)

≤
∞∑
m=1

e−(m−1)δ1

 ∞∑
i=m

K ′α
1(

i+ 1 + 2
1+α

) 2
1+α

 (by equation (3.3.6))

≤
∞∑
m=1

e−(m−1)δ1K ′α

[ ∞∑
i=m

1

i
2

1+α

]

≤
∞∑
m=1

K ′′αe
−(m−1)δ1

[
as

2

1 + α
> 1

]
< ∞ (3.3.13)

where K ′α = ( 1+α
C−ε)

2
1+αΓ

(
2 + 2

1+α

)
and K ′′α is a positive constant. Thus from equa-

tions (3.3.12) and (3.3.13) we conclude

∞∑
i=1

E[W 2
i ] <∞ (3.3.14)
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Therefore Var[
n∑
i=1

Wi] is bounded for all n. This shows that
n−2∑
i=1

(Wi − E[Wi]) as a martingale

converges a.s. and in L2.

Theorem 3.3.1. Assume that as t −→ 0+, f(t)
tα −→ C, where C ∈ (0,∞) is constant and

−1 < α < 1. Then as n −→∞,

{TNNn − E[TNNn ]}n≥1 converges weakly. (3.3.15)

Proof. From equation (3.2.2) we have

TNNn − E[TNNn ]
d
=

n−1∑
i=2

min
i<j≤n

Lij − E[
n−1∑
i=2

min
i<j≤n

Lij ] + Lfirst
n + Llast

n − E[Lfirst
n + Llast

n ].

But by Lemma 3.3.2 and Lemma 3.3.1,

{
n−1∑
i=2

min
i<j≤n

Lij − E[

n−1∑
i=2

min
i<j≤n

Lij ]

}
n>1

converges in

L2 and hence by Proposition 3.2.1,
{
TNNn − E[TNNn ]

}
n>1

converges weakly.

The next three results consider three cases of the behavior of f near 0. Theorem 3.3.2 covers

the case when f near zero converges to a positive constant. In this case, TNNn scales as constant

times log n. Theorem 3.3.3 and Theorem 3.3.4 consider the cases when limt→0 f(t) is zero and

infinity respectively. We use the notation an ∼ bn to denote an is asymptotically equal to bn,

that is, lim
n−→∞

an
bn

= 1.

Theorem 3.3.2. Assume that as t −→ 0+, f(t) −→ f(0), where f(0) ∈ (0,∞). Then as

n −→∞,
TNNn

log n

P−→ 1

f(0)
(3.3.16)

and

E[TNNn ] ∼ 1

f(0)
log n. (3.3.17)

Moreover, convergence in (3.3.16) happens in L2.
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Proof. We will show
TNNn

log n

L2−→ 1

f(0)
as n −→∞ ,

which will imply (3.3.16). Now,

E
[
TNNn

log n
− 1

f(0)

]2

= E
[
TNNn − E[TNNn ]

log n
+

E[TNNn ]

log n
− 1

f(0)

]2

=

E

(n−1∑
i=2

min
i<j≤n

Lij − E[
n−1∑
i=2

min
i<j≤n

Lij ]

)2


(log n)2

+

E
[(
Lfirst
n + Llast

n − E[Lfirst
n + Llast

n ]
)2
]

(log n)2
+

[
E[TNNn ]

log n
− 1

f(0)

]2

=

Var

[
n−1∑
i=2

min
i<j≤n

Lij

]
(log n)2

+
Var

[
Lfirst
n + Llast

n

]
(log n)2

+

[
E[TNNn ]

log n
− 1

f(0)

]2

. (3.3.18)

Note that
n−1∑
i=2

min
i<j≤n

Lij is independent of Llast
n + Lfirst

n . Now by Lemma 3.3.2, Lemma 3.3.1

and Proposition 3.2.1, the first two terms in equation (3.3.18) converges to zero as n −→ ∞.

Convergence to zero of the last term in equation (3.3.18) follows from the following observation.

By assumption f(t) −→ f(0) as t −→ 0+, so using the inequality (3.3.3) when f(0) = C and

α = 0, we get that as i −→∞,
f(0)Wi

Yi
i

−→ 1 a.s.

where Yi’s are i.i.d. Exponential random variable each with mean one andWi = F−1

(
1− exp(−Yi

i
)

)
.

Therefore as n −→∞

f(0)

n−2∑
i=1

Wi

n−2∑
i=1

Yi
i

−→ 1 a.s.
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Now, since Var

[
n−2∑
i=1

Yi
i

]
is bounded for all n, therefore by the martingale convergence theorem

n−2∑
i=1

Yi
i
− E

[
n−2∑
i=1

Yi
i

]
converges almost surely. But E

[
n∑
i=1

Yi
i

]
=

n∑
i=1

1

i
∼ log n, thus

f(0)

n−2∑
i=1

Wi

log n
−→ 1 a.s. (3.3.19)

Now by Lemma 3.3.2 and Lemma 3.3.1,
n−2∑
i=1

Wi−E[
n−2∑
i=1

Wi] converges a.s. to a random variable.

This observation along with (3.3.19) give

lim
n−→∞

E[

n−2∑
i=1

Wi]

log n
=

1

f(0)
(3.3.20)

and therefore by equation (3.3.1) and Proposition 3.2.1,

lim
n−→∞

E[TNNn ]

log n
=

1

f(0)

This also proves E[TNNn ] ∼ 1
f(0) log n.

When the distribution F is Exponential, the expected value of the length of NN tour among

n cities scales as log n. This is a special case of Theorem 3.3.2, when f(0) = 1. The following

corollary is a consequence of Theorem 3.3.2.

Corollary 3.3.1. In the mean field TSP, suppose F is the Exponential distribution with mean

one. Then TNNn − log n converges weakly.

Proof. Consider a mean field TSP on n cities {1, 2, ..., n}, where for each 1 ≤ i ≤ n − 1,

the intercity distances {Lij}i<j≤n, are i.i.d. Exponential random variable each with mean one.

Starting at city 1, our job is to find the nearest city to it, that means to find min
1<j≤n

L1j . Now we

have a tour, with 2 cities in it. Finding the next nearest city to the last visited city in this tour,

in distribution is the same as finding the minimum of n− 3 independent Exponential random
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variables.

Since min
i<j≤n

Lij has an Exponential distribution with mean 1
n−i , then we have

E[
n−1∑
i=1

min
i<j≤n

Lij ] =
1

n− 1
+

1

n− 2
+ . . .+

1

2
+ 1 (3.3.21)

Since Var[
n−1∑
i=1

min
i<j≤n

Lij ] =

n−1∑
i=1

1

i2
, hence for all n ≥ 1,Var

(
n−1∑
i=1

min
i<j≤n

Lij − E[

n−1∑
i=1

min
i<j≤n

Lij ]

)
is bounded. Therefore by the martingale convergence theorem, we conclude that the martingale

sequence

{
n−1∑
i=1

min
i<j≤n

Lij − E[

n−1∑
i=1

min
i<j≤n

Lij ]

}
n≥1

converges a.s. and in L2. (3.3.22)

Note that as we saw in equation (3.3.21), E[
n−1∑
i=1

min
i<j≤n

Lij ] =
n−1∑
i=1

1

i
. Using the fact that,

n∑
i=1

1

i
= log n+ γ +O(

1

n
)

where γ := lim
n−→∞

(
n∑
k=1

1

k
− log n

)
is the Euler constant, shows that

{
E[
n−1∑
i=1

min
i<j≤n

Lij ]− log n

}
n≥1

is a convergent sequence. Now from (3.2.2), we have

TNNn − log n
d
=

n−1∑
i=2

min
i<j≤n

Lij − E[

n−1∑
i=2

min
i<j≤n

Lij ] + E[

n−1∑
i=2

min
i<j≤n

Lij ]− log n+ Lfirst
n + Llast

n

d
=

n−1∑
i=2

min
i<j≤n

Lij − E[

n−1∑
i=2

min
i<j≤n

Lij ] + E[

n−1∑
i=1

min
i<j≤n

Lij ]− log n

+ Lfirst
n + Llast

n − E
[
Lfirst
n

]
.

Therefore by using (3.3.22) and Proposition 3.2.1, we get
(
TNNn − log n

)
n≥1

converges weakly.

Theorem 3.3.3. Assume that as t −→ 0+, f(t)
tα −→ C, whereC > 0 is constant and 0 < α < 1.
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Then as n −→∞,

TNNn

n1− 1
1+α

P−→ Kα (3.3.23)

where

Kα := (
1 + α

C
)

1
1+α

1 + α

α
Γ(1 +

1

1 + α
)

and

E[TNNn ] ∼ Kαn
1− 1

1+α (3.3.24)

Moreover, convergence in (3.3.23) happens in L2.

Proof. Recall the double inequality (3.3.3) in the proof of Lemma 3.3.2. By the assumption of

the theorem and (3.3.3), as i −→∞,

( C
1+α)

1
1+αWi

(Yii )
1

1+α

−→ 1 a.s.

where Yi’s are i.i.d. Exponential random variable each with mean one andWi = F−1

(
1− exp(−Yi

i
)

)
.

Therefore as n −→∞

( C
1+α)

1
1+α

n−2∑
i=1

Wi

n−2∑
i=1

(
Yi
i

)
1

1+α

−→ 1 a.s.

Since 0 < α < 1 so 2
1+α > 1, thus Var

(
n−2∑
i=1

(
Yi
i

)
1

1+α

)
is uniformly bounded and so by the

martingale convergence theorem
n−2∑
i=1

(
Yi
i

)
1

1+α − E

[
n−2∑
i=1

(
Yi
i

)
1

1+α

]
converges almost surely. But

E

[
n−2∑
i=1

(
Yi
i

)
1

1+α

]
= Γ(1 +

1

1 + α
)

n−2∑
i=1

(
1

i
)

1
1+α .
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Thus
n−2∑
i=1

Wi

Kαn
1− 1

1+α

−→ 1 a.s. (3.3.25)

where

Kα := (
1 + α

C
)

1
1+α

1 + α

α
Γ(1 +

1

1 + α
) .

Now
n−2∑
i=1

Wi −Kαn
1− 1

1+α =
n−2∑
i=1

Wi − E[
n−2∑
i=1

Wi] + E[
n−2∑
i=1

Wi]−Kαn
1− 1

1+α .

Recall that by Lemma 3.3.2,
n−2∑
i=1

Wi − E[

n−2∑
i=1

Wi] has an almost sure limit, so using (3.3.25) we

get

lim
n−→∞

E[

n−2∑
i=1

Wi]

n1− 1
1+α

= Kα (3.3.26)

and hence by Lemma 3.3.2, Lemma 3.3.1 and equation (3.3.1),

E[TNNn ] ∼ Kαn
1− 1

1+α .

Note that

E[
TNNn

n1− 1
1+α

−Kα]2 = E[
TNNn − E[TNNn ]

n1− 1
1+α

+
E[TNNn ]

n1− 1
1+α

−Kα]2

=

E

(n−1∑
i=2

min
i<j≤n

Lij − E[
n−1∑
i=2

min
i<j≤n

Lij ]

)2


(n1− 1
1+α )2

+

E
[(
Lfirst
n + Llast

n − E[Lfirst
n + Llast

n ]
)2
]

(n1− 1
1+α )2

+

[
E[TNNn ]

n1− 1
1+α

−Kα

]2

=

Var

[
n−1∑
i=2

min
i<j≤n

Lij

]
(n1− 1

1+α )2
+

Var
[
Lfirst
n + Llast

n

]
(n1− 1

1+α )2
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+

[
E[TNNn ]

n1− 1
1+α

−Kα

]2

converges to zero as n −→∞. Hence

TNNn

n1− 1
1+α

P−→ Kα

and in L2.

Theorem 3.3.4. Let −1 < α < 0 and assume that as t −→ 0+, f(t)
tα −→ C, where C > 0

is constant. Then the sequence {E[TNNn ]}n≥1, is a convergent sequence and TNNn converges

weakly.

Proof. As it has mentioned in the proof of Lemma 3.3.2, since 1
1+α > 1, we get

sup
n≥1

Var(
n−2∑
i=1

Wi) <∞ .

Therefore
n−2∑
i=1

Wi − E[
n−2∑
i=1

Wi] as a martingale converges a.s. and in L2. So by equation (3.3.1)

and Proposition 3.2.1, TNNn − E[TNNn ] converges weakly.

Now to complete the proof it is enough to show that
{
E
[
TNNn

]}
n≥1

is a convergent sequence.

For that we apply Lemma 3.4.1 to get

E[TNNn ] =

∫ ∞
0

[
F̄ (t)

]2 [
1−

(
F̄ (t)

)n−2
]

F (t)
dt+ E[Lfirst

n + Llast
n ] . (3.3.27)

Now fix ε > 0 and get δ > 0 such that the equations leading to the double inequality (3.3.3)

holds. Also find M > 0 such that F (M) ≥ 1
2 . Consider the function G : [0,∞) → [0,∞)

defined as

G (t) :=


1

F (t) if 0 < t < δ

1
F (δ) if δ ≤ t ≤M

2F̄ (t) otherwise

.
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Then for any n > 1 and t > 0 we have

[
F̄ (t)

]2 [
1−

(
F̄ (t)

)n−2
]

F (t)
≤ G(t) .

Also note that
∫∞
M G(t) dt ≤ 2

∫∞
0 F̄ (t) dt <∞ as F is positively supported and has finite first

moment. Further by the choice of δ we get that on (0, δ) the density f is strictly positive and F

is strictly increasing. So

∫ δ

0
G(t) dt =

∫ δ

0

dt

F (t)

=

∫ F (δ)

0

dw

w f (F−1(w))
[substitute w = F (t)]

≤ κ
∫ 1

0

1

w1+ α
1+α

dw <∞ ,

where κ > 0 is some constant and the last but one inequality follows by using the double

inequality (3.3.3) and the final inequality holds because −1 < α < 0. Thus we get that

∫ ∞
0
G(t) dt <∞ .

So by the dominated convergence theorem we conclude that

lim
n→∞

∫ ∞
0

[
F̄ (t)

]2 [
1−

(
F̄ (t)

)n−2
]

F (t)
dt

exists. This along with Proposition 3.2.1 proves that
{
E
[
TNNn

]}
n≥1

is convergent sequence,

which completes the proof of the theorem.

Remark 3.3.1. Our results cover the cases where |α| < 1. Note that the case α ≤ −1 cannot

happen, since f is a density function. For α ≥ 1 we do not have any general result except for the

particular choice of F , namely when F is Weibull distribution with shape parameter (1 + α) and
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scale parameter 1, we show in the following proposition that after proper scaling, the weak limit

distribution of TNNn is Normal.

Proposition 3.3.1. Let α ≥ 1 and for 1 ≤ i ≤ n−1, the intercity distances {Lij}i<j≤n in mean

field TSP be i.i.d. Weibull distribution with shape parameter (1 + α) and scale parameter 1, i.e.,

f(t) = (1 + α)tαe−t
(1+α)

1 (t > 0) .

Then as n −→∞, for α > 1

TNNn − E[TNNn ]

n
1
2
− 1

1+α

d−→ N(0,
α+ 1

α− 1
σ2(α)) (3.3.28)

and for α = 1,
TNNn − E[TNNn ]√

log n

d−→ N(0, σ2(α)) (3.3.29)

where σ2(α) = Γ( 2
1+α + 1)− Γ2(1 + 1

1+α).

Proof. By assumption that F is Weibull distribution with shape parameter (1 + α) and scale

parameter 1, we get

F (x) = 1− e−x1+α , x ≥ 0

Therefore F−1(t) = [− log(1− t)]
1

1+α , where 0 < t < 1. Hence,

n−1∑
i=2

min
i<j≤n

Lij
d
=

n−2∑
i=1

Wi

=
n−2∑
i=1

[− log(e−
Yi
i )]

1
1+α

=

n−2∑
i=1

(
Yi
i

)
1

1+α

where Yi’s are i.i.d. Exponential random variable each with mean one. Note that

µ(α) := E
[
Y

1
1+α

i

]
= Γ(1 +

1

1 + α
)
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and

σ2(α) := Var

[
Y

1
1+α

i

]
= Γ(

2

1 + α
+ 1)− Γ2(1 +

1

1 + α
) .

Let

Vi(α) :=
Y

1
1+α

i − E[Y
1

1+α

i ]

σ(α)i
1

1+α

√√√√n−2∑
i=1

(
1

i
)

2
1+α

and Zn(α) =
n−2∑
i=1

Vi(α). Observe that E[Vi(α)] = 0 and
n−2∑
i=1

Var[Vi(α)] = 1 . Choose δ > 0

such that δ > α− 1. So for some M > 0,

n−2∑
i=1

E
[
|Vi(α)|2+δ

]
≤ M

σ(α)2+δ

1

[
n−2∑
i=1

(
1

i
)

2
1+α ]

2+δ
2

n−2∑
i=1

(
1

i
)

2+δ
1+α .

Since 2
1+α ≤ 1 and 2+δ

1+α > 1, we have

lim
n→∞

n−2∑
i=1

E
[
|Vi(α)|2+δ

]
= 0 .

Hence Lyapunov condition is satisfied for α ≥ 1 and so Zn(α) converges in distribution to a

standard Normal random variable, as n goes to infinity. Now by equation (3.2.2) we have

TNNn − E[TNNn ]

n
1
2
− 1

1+α

d
=

n−2∑
i=1

(
Yi
i

)
1

1+α − E[
n−2∑
i=1

(
Yi
i

)
1

1+α ]

{Var[
n−2∑
i=1

(
Yi
i

)
1

1+α ]}1/2

{Var[
n−2∑
i=1

(
Yi
i

)
1

1+α ]}1/2

n
1
2
− 1

1+α

+
Lfirst
n + Llast

n − E[Lfirst
n + Llast

n ]

n
1
2
− 1

1+α

,

and thus the proof of proposition for α > 1 is completed by Proposition 3.2.1. Note that when
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α = 1, by equation (3.2.2) we get

TNNn − E[TNNn ]
d
=

n−2∑
i=1

(
Yi
i

)
1
2 − E[

n−2∑
i=1

(
Yi
i

)
1
2 ]

{Var[
n−2∑
i=1

(
Yi
i

)
1
2 ]}1/2

{Var[
n−2∑
i=1

(
Yi
i

)
1
2 ]}1/2

+ Lfirst
n + Llast

n − E[Lfirst
n + Llast

n ] .

But,

Var[
n−2∑
i=1

(
Yi
i

)
1
2 ] = σ2(1)

n−2∑
i=1

1

i

Therefore by Proposition 3.2.1 and the fact that
n−2∑
i=1

1

i
∼ log n we get,

TNNn − E[TNNn ]√
log n

d−→ N(0, σ2(1))

3.4 Technical result

The following lemma gives an expression for the mean of TNNn in terms of the distribution

function F . Under some further assumption on F it also shows how the behavior of E
[
TNNn

]
depends on the behavior of the density f of F near zero.

Lemma 3.4.1. Consider a mean field TSP with i.i.d. edge weights with distribution F which is

supported on [0,∞). Then

E[TNNn ] =

∫ ∞
0

[
F̄ (t)

]2 [
1−

(
F̄ (t)

)n−2
]

F (t)
dt+ E[L

first
n + Llast

n ] .

Moreover if F admits a continuous density f which is strictly positive on the support [0,∞) then

E[TNNn ] =

∫ 1

0

(1− w)2(1− [1− w]n−2)

w

1

f(F−1(w))
dw + E[L

first
n + Llast

n ] .



3.5 Discussion 61

Proof. Let F̄ (t) = 1− F (t). From equation (3.2.2) we have

E[TNNn ] =
n−1∑
i=2

E[ min
i<j≤n

Lij ] + E[Lfirst
n + Llast

n ]

But,

E[ min
i<j≤n

Lij ] =

∫ ∞
0

[F̄ (t)]n−idt,

and hence

E[TNNn ] =

∫ ∞
0

[
F̄ (t)

]2 [
1−

(
F̄ (t)

)n−2
]

F (t)
dt+ E[Lfirst

n + Llast
n ] ,

which proves the first part of the lemma.

Now if we assume that F admits a continuous density f which is strictly positive on the

support [0,∞) then the second expression follows by changing the variable w = F (t) in the

first.

3.5 Discussion

We end this chapter with the following two subsections.

3.5.1 Assumptions on distribution function F

In our theorems, we assumed that the second moment of F exists. This assumption is not needed.

The following lemma says that if F is a positively supported distribution with finite βth-moment

then for any k > 2
β we must have E

[(
min

1≤i≤k
Zi

)2
]
<∞ where Z1, Z2, . . . are i.i.d. F .

Lemma 3.5.1. SupposeZ is a non-negative random variable such that for some β > 0, E[Zβ] <

∞. Then for any k > 2
β we have

∫ ∞
0
t {P(Z > t)}k dt <∞ .

The proof of this lemma follows easily from Markov’s inequality, so we omit it here. Now as
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before let random variable Wi = F−1

(
1− exp(−Yi

i
)

)
where Yi’s are Exponential with mean

one. We have assumed that F has finite first moment so then by taking k = 3 in Lemma 3.5.1

above we can conclude that Wi has finite second moment for i ≥ 3. Thus under the assumptions

of Lemma 3.3.2 and following the proof of this lemma we can conclude that
n−2∑
i=k

(Wi − E[Wi])

converges almost surely and in L2. Thus all the results stated in Section 3.3 hold except those on

L2 convergence.

3.5.2 The relation of the objective function with lower records

Recall the equation (3.2.2)

TNNn
d
=

n−1∑
i=2

min
i<j≤n

Lij + Lfirst
n + Llast

n

The study of the asymptotic behavior of
n−1∑
i=2

min
i<j≤n

Lij , can give more information about the

behavior of the TNNn for large n. One way to look at this summation, is through looking at the

sum of lower records. Let {Xi}i≥0 , be a sequence of independent and identically distributed

random variables with continuous distribution function F on [0,∞). The random variable

Xj is called a lower record, if Xj ≤ min {X1, ..., Xj−1}. By convention, X0 is the first

lower record. Define K0 ≡ 1, and for n ≥ 1, Kn = min
{
j > Kn−1 : Xj < XKn−1

}
. Then{

RLn := XKn , n ≥ 0
}

is called the sequence of ”lower records” from F . Define the random

variable Dn := Kn −Kn−1 to be the number of trials to get a new record and Nn, the number

of lower records among X1, X2, ..., Xn. Then one can write

TNNn
d
=

Nn∑
i=1

RLi Di

In (Bose et al., 2003), there is necessary and sufficient condition for the partial sums of lower

records to converge almost surely to a proper random variable. In fact they have proved that∑∞
n=1R

L
n < ∞ a.e. if and only if

∫ 1
0 x

F (dx)
F (x) < ∞. In our case, we have a weighted partial

sum and that sum is up to a random variable Nn. Therefore, an answer to the question whether
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Nn∑
i=1

RLi Di converges or not, can lead us to know more about the behavior of TNNn .
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Chapter 4

Random geometric graph with Cantor

distributed vertices1

4.1 Introduction

4.1.1 Background and motivation

As we mentioned in Subsection 1.2.3, a random geometric graph consists of a set of vertices,

distributed randomly over some metric space, in which two distinct such vertices are joined by

an edge, if the distance between them is sufficiently small. More precisely, let Vn be a set of n

points in Rd, distributed independently according to some distribution F on Rd. Let r be a fixed

positive real number. Then, random geometric graph G = G(Vn, r) is a graph with vertex set

Vn where two vertices v = (v1, . . . , vd) and u = (u1, . . . , ud) in Vn are adjacent if and only if

‖v − u‖ ≤ r where ‖.‖ is some norm on Rd.

A considerable amount of work has been done on the connectivity threshold defined as

Rn = inf
{
r > 0

∣∣∣G(Vn, r) is connected
}
. (4.1.1)

The case when the vertices are assumed to be uniformly distributed on [0, 1]d, Appel and Russo

1This chapter is based on the paper by Bandyopadhyay and Sajadi (2012b)

65
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(2002) showed that with probability one

lim
n→∞

n

log n
Rdn =

 1 for d = 1,

1
2d for d ≥ 2

, (4.1.2)

when the norm ‖.‖ is taken to be the L∞ or the sup norm. Later Penrose (2003) showed that

the limit in (4.1.2) holds but with different constants for any Lp norm for 1 ≤ p ≤ ∞. Penrose

(1999) considered the case when the distribution F has a continuous density f with respect to

the Lebesgue measure which remains bounded away from 0 on the support of F . Under certain

technical assumptions such as smooth boundary for the support, he showed that with probability

one,

lim
n→∞

n

log n
Rdn = C

where C is an explicit constant which depends on the dimension d and essential infimum of f

and its value on the boundary of the support. Recently, Sarkar and Saurabh (2010) [personal

communication], studied a case when the density f of the underlying distribution may have

minimum zero. They in particular, proved that when the support of f is [0, 1] and f is bounded

below on any compact subset not containing origin but it is regularly varying at the origin, then

Rn
F−1(1/n)

=⇒ Y1+α

where

Yα := sup
{
S

1/α
n+1 − S

1/α
n : n ≥ 0

}
and for n ≥ 1, Sn =

n∑
i=1

Xi where Xi’s are i.i.d. Exponential random variables with mean one

and S0 = 0. The proof by Sarkar and Saurabh (2010) can easily be generalized to the case where

the density is zero at finitely many points. A question then naturally arises what happens to

the case when the distribution function is flat on some intervals, that is, if density exists then

it will be zero on some intervals. Also what happens in the some what extreme case, when

the density may not exist even though the distribution function is continuous and has flat parts.



4.1 Introduction 67

To consider these questions, in this chapter, we study the connectivity of random geometric

graphs where the underlying distribution of the vertices has no mass and is also singular with

respect to the Lebesgue measure, that is, it has no density. For that, we consider the generalized

Cantor distribution with parameter φ denoted by Cantor(φ) as the underlying distribution of

the vertices of the graph. The distribution function is then flat on infinitely many intervals. See

Subsection 1.2.4 for the definition of Cantor distribution. We will show that the connectivity

threshold converges almost surely to the length of the largest flat part of the distribution function

and we also provide some finer asymptotic of the same.

Before we state the main results, we give a brief description of the Hausdorff dimension,

based on (Falconer, 1986). Let {Ui} be a δ-cover of a set U , i.e., U ⊂
⋃
i Ui and 0 < |Ui| ≤ δ,

∀i, where for a non-empty subset A of Rn, |A| = sup{|x− y| : x, y ∈ A}. Let E ⊂ Rn and let

d be a non-negative number. For δ > 0 define

Hdδ(E) = inf

∞∑
i=1

|Ui|d,

where the infimum is over all (countable) δ-covers {Ui} of E. To get the Hausdorff d-dimension

outer measure of E (defined by Hd(E)), we let δ −→ 0. Thus, Hd(E) = lim
δ−→0

Hdδ(E). This

limit exists, but maybe infinite. The restriction of Hd to the σ−field of Hd-measurable sets

is called Hausdorff d-dimension measure. There is a unique value, dE , called the Hausdorff

dimension of E such that,

Hd(E) =∞ if 0 ≤ d < dE

and

Hd(E) = 0 if dE < d <∞.

Define dφ to be the Hausdorff dimension of generalized Cantor set. It is known that for the

standard Cantor set, this dimension is log 2
log 3 (see Theorem 2.1 of Chapter 7 of Stein and Shakarchi,

2005). Also, for generalized Cantor set, dφ is given by dφ = − log 2
log φ (see Exercise 8 of Chapter 7

of Stein and Shakarchi, 2005). Note that the standard Cantor set is a special case when φ = 1/3.
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4.2 Main results

Let X1, X2, ..., Xn be independent and identically distributed random variables with Cantor(φ)

distribution on [0, 1]. Given the graph G = G(Vn, r), where Vn = {X1, X2, . . . , Xn}, let Rn be

defined as in (4.1.1).

Theorem 4.2.1. For any 0 < φ < 1/2, as n −→∞ we have

Rn −→ 1− 2φ a.s. (4.2.1)

Proof. We draw a sample of size n from Cantor(φ) on [0, 1]. LetNn be the number of elements

falling in the subinterval [0, φ] and n−Nn in [1−φ, 1]. From the construction Nn ∼ Bin
(
n, 1

2

)
.

In selecting this sample of size n, there are three cases which may happen. Some of these points

may fall in interval [0, φ] and rest in interval [1− φ, 1]. That means Nn /∈ {0, n}. In this case

the distance between the points in [0, φ] and [1 − φ, 1] is at least 1 − 2φ. The other cases are

when all points fall in [0, φ] or all fall in [1− φ, 1] , which in this case Nn = n or Nn = 0. Let

mn = min
1≤i≤n

Xi, Mn = max
1≤i≤n

Xi and we define

Ln := max {Xi| 1 ≤ i ≤ n and Xi ∈ [0, φ]} (4.2.2)

and

Un := min {Xi| 1 ≤ i ≤ n and Xi ∈ [1− φ, 1]} . (4.2.3)

We will take Ln = 0 (and similarly Un = 0) if the corresponding set is empty.

Now find a K ≡ K (φ) such that φK < 1
2 (1− φ) (1− 2φ). Note that such a K <∞ exists

since 0 < φ < 1. Let I1, I2, . . . , I2K be the 2K sub-intervals of length φK which are part of

the Kth stage of the “removal of middle interval” for obtaining the generalized Cantor set with

parameter φ. For 1 ≤ j ≤ 2K define Nj :=
∑n

i=1 1 (Xi ∈ Ij), which is the number of sample

points in the sub-interval Ij . From the construction of the the generalized Cantor distribution
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with parameter φ it follows that

NK := (N1, N2, . . . , N2K ) ∼ Multinomial
(
n;

(
1

2K
,

1

2K
, · · · , 1

2K

))
, (4.2.4)

and N [0,φ]
n =

∑
Ij⊆[0,φ]

Nj . Consider the event En :=
2K

∩
j=1

[Nj ≥ 1]. Observe that on the event En

the maximum inter point distance between two points in [0, φ] as well as in [1− φ, 1] is at most

2φK + φ (1− 2φ) < 1− 2φ by the choice of K. Thus on En we must have Rn = Un−Ln and

so we can write

Rn = (Un − Ln) 1En +R∗n 1Ecn (4.2.5)

where R∗n a is random variable such that 0 < R∗n < φ a.s. Observe that conditioned on

[N1 = r1, N2 = r2, . . . , N2K = r2K ] we have Un
d
= 1 − φ + φmn−k and Ln

d
= φMk and

N
[0,φ]
n = k where k =

∑
Ij⊆[0,φ]

rj . More generally

((Ln, Un) ,NK)n≥1
d
=
((
φM

N
[0,φ]
n

, 1− φ+ φm
n−N [0,φ]

n

)
,NK

)
n≥1

. (4.2.6)

Note that to be technically correct we define M0 = m0 = 0.

Now it is easy to see that mn −→ 0 and Mn −→ 1 a.s. But by the SLLN, N [0,φ]
n /n −→ 1/2

a.s., thus both
(
N

[0,φ]
n

)
and

(
n−N [0,φ]

n

)
are two subsequences which are converging to infinity

a.s. Moreover

P (Ecn) ≤
2K∑
j=1

P (Nj = 0) = 2K
(

1− 1

2K

)n
= 2K exp (−αKn) , (4.2.7)

where αK = − log
(
1− 1

2K

)
> 0. Thus

∑∞
n=1 P (Ecn) < ∞, so by the First Borel-Cantelli

Lemma we have

P (Ecn infinitely often ) = 0 ⇒ P (En eventually ) = 1 .

In other words 1En −→ 1 a.s. and 1Ecn −→ 0 a.s. Finally observing that 0 ≤ R∗n ≤ φ we get
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from equations (4.2.5) and (4.2.6),

Rn −→ (1− 2φ) .

Our next theorem gives finer asymptotic but before we state the theorem, we provide here

some basic notations and facts. Let mn :=min{X1, X2, . . . , Xn}. Recall the equation (1.2.2) in

the Subsection (1.2.4). Therefore we get

mn
d
=

 φmk with probability 2−n
(
n
k

)
for k = 1, 2, ..., n

φmn + 1− φ with probability 2−n
(4.2.8)

Let an := E[mn]. Using (4.2.8) Hosking (1994) derived the following recursion formula for the

sequence (an)

(2n − 2φ) an = 1− φ+ φ
n−1∑
k=1

(
n

k

)
ak, n ≥ 1 (4.2.9)

Moreover Knopfmacher and Prodinger (1996) showed that whenever 0 < φ < 1/2 then as

n→∞,
an

n
− 1
dφ

−→ C (φ) , (4.2.10)

where

C (φ) :=
(1− φ)(1− 2φ)

φ log 2
Γ(− log2 φ)ζ(− log2 φ) , (4.2.11)

and dφ = − log 2
log φ is the Hausdorff dimension of the generalized Cantor set. Here Γ(·) and ζ(·)

are the Gamma and Riemann zeta functions, respectively.

Our next theorem gives the rate convergence of Rn to (1− 2φ) in terms of the L1 norm.

Theorem 4.2.2. For any 0 < φ < 1/2, as n −→∞ we have

‖Rn − (1− 2φ)‖1
n
− 1
dφ

−→ 2C (φ) , (4.2.12)

where C (φ) is as in equation (4.2.11) and ‖·‖1 is the L1 norm.
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Proof. Let R∗n, En and N [0,φ]
n be as defined in the proof of the Theorem 4.2.1. Observe that

E [|Rn − (1− 2φ)|]

= E [(Rn − (1− 2φ))1En ] + E
[
|R∗n − (1− 2φ)|1Ecn

]
= E

[
(Un − Ln − (1− 2φ))1En12K≤N [0,φ]

n ≤n−2K

]
+ E

[
|R∗n − (1− 2φ)|1Ecn

]
= E

[
(Un − Ln − (1− 2φ))1

2K≤N [0,φ]
n ≤n−2K

]
−E

[
(Un − Ln − (1− 2φ))1Ecn12K≤N [0,φ]

n ≤n−2K

]
+ E

[
|R∗n − (1− 2φ)|1Ecn

]
= E

[
(Un − Ln − (1− 2φ))1

1≤N [0,φ]
n ≤n−1

]
−E

[
(Un − Ln − (1− 2φ))1Ecn11≤N [0,φ]

n ≤n−1

]
+ E

[
|R∗n − (1− 2φ)|1Ecn

]
.

(4.2.13)

In above the first equality holds because of (4.2.5) and the fact that on the event En we must

have Rn > 1 − 2φ. Second, third and fourth equalities follows from the simple fact that

En ⊆
[
2K ≤ N [0,φ]

n ≤ n− 2K
]
.

Now recall that an = E[mn], so for the first part of the right-hand side of the equation

(4.2.13) we can write

E
[
(Un − Ln − (1− 2φ))1

1≤N [0,φ]
n ≤n−1

]
=

φ

2n

n−1∑
k=1

(
n

k

)
(an−k + ak)

=
1

2n−1
[(2n − 2φ) an − (1− φ)] , (4.2.14)

where the last equality follows from (4.2.9). The other two parts of the right-hand side of the

equation (4.2.13) are bounded in absolute value by

P (Ecn) ≤ 2K exp (−αKn)

because of (4.2.7). Now observe that from equation (4.2.10) we get that an ∼ C (φ)n
− 1
dφ where

dφ = − log 2
log φ is the Hausdorff dimension of the generalized Cantor set. Thus using (4.2.13) and



72 Chapter 4: Random geometric graph with Cantor distributed vertices

(4.2.14) we conclude that

E [|Rn − (1− 2φ)|]
an

−→ 2 as n −→∞ .

This completes the proof using (4.2.10).

4.3 Discussion

Consider the standard Cantor distribution. According to Theorem 4.2.2, the L1-norm of Rn−1/3
an

converges to 2. The question now naturally arises is whether this convergence can also be in

probability. For that, we need to check whether the ratio E[m2
n]

a2n
converges to 1. This is because

as we have seen in the proof of Theorem 4.2.1 (see equations (4.2.5) and (4.2.6)), for φ = 1/3,

Rn
d
=

[
1

3
+

1

3

(
m
n−N [0,φ]

n
+m

N
[0,φ]
n

)]
1En +R∗n 1Ecn . (4.3.1)

Therefore,

(
Rn
an

)
d
=

[
1

3an
+

1

3

(m
n−N [0,φ]

n
+m

N
[0,φ]
n

an

)]
1En +

R∗n
an

1Ecn

d
=

[
1

3an
+

1

3

(
m
n−N [0,φ]

n

a
n−N [0,φ]

n

a
n−N [0,φ]

n

an
+
m
N

[0,φ]
n

a
N

[0,φ]
n

a
N

[0,φ]
n

an

)]
1En +

R∗n
an

1Ecn .

Now using the fact that an ∼ n− log2 3 and also N [0,φ]
n /n −→ 1/2 a.s. and 0 ≤ R∗n ≤ 1

3 a.s., all

we need to check is whether mnan converges almost surely to 1 or not. Put bn := E[m2
n] and note

that for ε > 0,by Chebyshev’s inequality

P
(
|mn

an
− 1| > ε

)
≤ bn − a2

n

ε2a2
n

.

Unfortunately, numerical result show that the ratio bn
a2n

does not converge to 1. As n increases,

the ratio bn
a2n

also increases. For example for n = 1000, φ = 1
3 , the value of this ratio is 3.85.

Table 4.1, presents values of this ratio for different values of n and also φ. Note that from the
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equation (4.2.9) we get

an =
1− φ

2n − 2φ
+

φ

2n − 2φ

n−1∑
k=1

(
n

k

)
ak

and from the equation (4.2.8) we get ,

bn =
(1− φ)2

2n − 2φ2
+

φ2

2n − 2φ2

n−1∑
k=1

(
n

k

)
bk +

2φ(1− φ)

2n − 2φ2
an .

n φ = 1
3 φ = 1

4 φ = 1
5 φ = 1

6 φ = 1
10 φ = 1

100 φ = 1
1000

1 1.5 1.6 1.67 1.71 1.82 1.98 2
2 1.94 2.28 2.52 2.71 3.14 3.9 3.99
3 2.3 2.94 3.48 3.93 5.12 7.63 7.96
4 2.56 3.51 4.42 5.25 7.76 14.77 15.87
5 2.74 3.93 5.18 6.43 10.84 28.13 31.58
6 2.85 4.2 5.71 7.33 13.87 52.38 62.69
7 2.93 4.36 6.03 7.89 16.36 94.53 123.97
8 3 4.48 6.23 8.21 18.02 163.43 243.81
9 3.06 4.58 6.36 8.4 18.88 267.22 475.61
10 3.12 4.69 6.5 8.55 19.21 407.86 916.79
30 3.57 5.77 8.48 11.68 29.43 1370.7 28406.11
70 3.73 6.19 9.32 13.11 34.96 2510.13 188579.89
140 3.79 6.36 9.67 13.73 37.89 3236.76 403229.41
200 3.81 6.42 9.83 14.05 38.69 4566.98 274654.83
250 3.82 6.43 9.84 14.07 39.63 4117.59 452071.68
300 3.83 6.46 9.87 14.08 39.26 3890.95 540362.35
350 3.83 6.48 9.93 14.19 39.16 4474.16 462054.02
450 3.83 6.48 9.96 14.29 40.26 4950.65 392114.82
550 3.84 6.49 9.95 14.24 40.32 4292.15 590138.17
600 3.84 6.5 9.96 14.24 40.03 4202.98 625579.2
700 3.84 6.51 10.01 14.32 39.79 4668.34 558303.69
750 3.84 6.52 10.02 14.36 39.94 4979.78 499881.31
850 3.84 6.51 10.03 14.4 40.47 5265.81 425619.25
900 3.85 6.51 10.02 14.4 40.71 5209.37 432379.16
950 3.85 6.51 10.01 14.38 40.85 5061.99 467998.79

1000 3.85 6.51 10 14.36 40.9 4870.52 520766.74

Table 4.1: Values of bn
a2n

for different n and φ

At the end of this section, it is worth noting that our proofs for Theorem 4.2.1 and Theo-
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rem 4.2.2, depend on the recursive nature of the generalized Cantor distribution (see equation

(1.2.2)). Thus unfortunately, they do not have obvious extensions for other singular distributions.

It will be interesting to derive a version of Theorem 4.2.1 for a general singular distribution with

no mass and flat parts. Intuitively it seems that the final limit should be the length of the longest

flat part. It will be more interesting if Theorem 4.2.2 can also be generalized for general singular

distributions with no mass and flat parts where (1− 2φ) is replaced by the length of the longest

flat part and dφ is replaced by the Hausdorff dimension of the support.
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