
A Last Progeny Modified

Branching Random Walk

Partha Pratim Ghosh

Indian Statistical Institute

May 2022





Indian Statistical Institute

Doctoral Thesis

A Last Progeny Modified

Branching Random Walk

Author:

Partha Pratim Ghosh

Supervisor:

Antar Bandyopadhyay

A thesis submitted to the Indian Statistical Institute

in partial fulfilment of the requirements for

the degree of

Doctor of Philosophy (in Statistics)

Theoretical Statistics & Mathematics Unit

Indian Statistical Institute, Delhi Centre

May 2022





Dedicated to Ma and Baba





Acknowledgements

First of all, I want to thank my parents, Mr. Tapan Kumar Ghosh and Mrs. Ava

Ghosh, for all their support, their sacrifices, their unconditional love and their faith in

me. They have always encouraged me and kept me motivated. I also want to thank

them for being the first teachers in my life and for fueling my curiosity for knowledge.

Without them, this journey would have been impossible.

My sincere gratitude goes beyond words to my thesis supervisor, Professor Antar

Bandyopadhyay, for his invaluable guidance, immense patience, and continuous support.

The various academic discussions I had with him have always stimulated me and helped

me expand my horizon of thoughts. I am indebted to him for not only guiding me on

the path to quench the insatiable thirst for knowledge but, at the same time, giving me

the freedom to think in my own ways. He has also painstakingly reviewed all of my

research drafts and suggested edits that have made the text clearer and graceful. I feel

lucky to have him as a mentor.

In addition to my thesis supervisor, I would also like to thank all the other faculty

members of the Indian Statistical Institute, who taught me various basic and advanced

courses and helped me explore several research areas. Special thanks to Professor Rahul

Roy and Professor Anish Sarkar for sharing their immense knowledge in various academic

discussions I had with them. I am also grateful to all of my colleagues, seniors, and

juniors for the many beneficial conversations about the Ph.D. worries.

Indian Statistical Institute has given me many memories to cherish with so many

close friends. I especially thank Anushree di, Kaustav da, Subham, Sayan, Deepak,

Kiran, Indranil da, Atanu da, Sourav da, Yaswanth, Subhayan, and Pushkar da for

making this journey comfortable for me.

I also want to thank the anonymous referees, whose careful reading and detailed

comments have helped to improve the thesis.

Finally, I would like to thank Indian Statistical Institute for providing me with an

academic atmosphere with all the necessary facilities and also for financially supporting

my doctoral research.

Partha Pratim Ghosh

May 31, 2022

v





Contents

1 Introduction 1

1.1 Branching Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Survey of Known Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Almost Sure Asymptotic Limit . . . . . . . . . . . . . . . . . . . . 4

1.4.2 Centered Asymptotic Limits . . . . . . . . . . . . . . . . . . . . . 6

1.4.3 Brunet-Derrida Type Result . . . . . . . . . . . . . . . . . . . . . . 9

1.4.4 Large Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.5 Time Inhomogeneous Setup . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Coupling between a Maximum and a Linear Statistic 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 A Few Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Maximum Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Smoothing Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



viii CONTENTS

2.2.3 Link Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Scaling and Centering Operator . . . . . . . . . . . . . . . . . . . . 17

2.3 Transforming Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Asymptotics of the Right-most Position 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 A Specific Scaling Constant θ0 . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Few Auxiliary Results on the Linear Statistic . . . . . . . . . . . . . . . . 27

3.5 Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Almost Sure Asymptotic Limit . . . . . . . . . . . . . . . . . . . . 36

3.5.2 Centered Asymptotic Limits . . . . . . . . . . . . . . . . . . . . . 42

3.6 A Specific Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Brunet-Derrida Type Results 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Few Technical Results on Point Processes . . . . . . . . . . . . . . . . . . 49

4.3 Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Large Deviations 61

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 The Rate Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Comparison with Branching Random Walk . . . . . . . . . . . . . . . . . 75

5.4 Specific Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



6 Time Inhomogeneous Setup 79

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 An Auxiliary Result on the Linear Statistic . . . . . . . . . . . . . . . . . 81

6.3 Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.1 Asymptotic limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.2 Brunet-Derrida type results . . . . . . . . . . . . . . . . . . . . . . 87

6.4 A Specific Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Bibliography 91

ix





Chapter 1

Introduction

1.1 Branching Random Walk

Branching random walk (BRW) was introduced by Hammersley [23] in the early ’70s.

Over the last five decades, it has received a lot of attention from various researchers in

probability theory and statistical physics. The model, as such, is very simple to describe.

It starts with one particle at the origin. After a unit amount of time, the particle dies

and gives birth to a number of similar particles, which are placed at possibly different

locations on the real line R. These particles at possibly different places on R form the

so-called first generation of the process and can be described through a point process,

say Z on R. After another unit time, each of the particles in the first generation behaves

independently and identically as that of the parent, that is, it dies, but before that, it

produces a bunch of offspring particles which are displaced by independent copies of

Z. Further, the particles in generation one behave independently but identically of one

another. The process then continues in the next unit of time and so on.

If we denote the number of particles in generation n by Nn, then from the definition,

it follows that {Nn}n≥0 is a Galton-Watson branching process with progeny distribution

given by N := Z(R). So the backbone of the process is a branching process tree with

weighted edges, where the weights represent the displacements of the particles relative

to their respective parents. We write |v| = n if an individual v is in the n-th generation,

1



2 Chapter 1: Introduction

and S(v) denotes its position, which is the sum of all the displacements the particle v

and its ancestors have received. The stochastic process {S(v) : |v| = n}n≥0 is typically

referred to as the classical branching random walk (BRW).

X1
X2

X11 X12
X21 X22

Figure 1.1: I.I.D. Gaussian displacement binary BRW

To illustrate this, we consider a specific example. Let N = 2 with probability one and

Z = δξ1+δξ2 , where ξj ’s are i.i.d. N(0, 1). As displayed in Figure 1.1, the backbone of this

process is just a binary branching tree with weighted edges, and the weights on the edges

are i.i.d. N(0, 1) random variables. At time n, there are a total of 2n particles. Each

particle is positioned at a random distance from the origin with distribution the same

as the position of a random walker starting at the origin and taking n i.i.d. standard

Gaussian steps. Note that the positions of the particles at the same generation are

identical, but they need not be independent. In fact, for two particles u and v at the

n-th generation, if we denote u∧v as their least common ancestor in the associated tree,

then

Cov
(
S(u), S(v)

)
= |u ∧ v| .

Further, this leads to the following observation.

#
{
w : |w| = n,Cov

(
S(u), S(w)

)
≥ k

}
= 2n−k,
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for any non-negative integer k ≤ n. This observation is often referred to as “branching

random walk is log-correlated”.

1.2 The Modification

In this work, we consider a modified version of the classical BRW. The modification is

done at the last generation where we add i.i.d. displacements of a specific form. Since

the modifications have been done only at the last generation, we call this model a last

progeny modified branching random walk or abbreviate it as LPM-BRW.

In our model, we introduce two parameters. One is a non-negative real number, which

we denote by θ > 0. The other one is a positively supported distribution, which we will

denote by µ ∈ P(R̄+). The parameter θ should be thought of as a scaling parameter

for the extra displacement we give to each individual at the n-th generation. This extra

displacement is as follows. At a generation n ≥ 1, we give additional displacements to

each of the particles at the generation n, which are of the form 1
θAv := 1

θ (log Yv − logEv),

where {Yv}|v|=n are i.i.d. µ, while {Ev}|v|=n are i.i.d. Exponential (1) and they are

independent of each other and also of the process
(
S(u)

)
|u|≤n. We denote by R∗n(θ, µ)

the maximum position of this last progeny modified branching random walk (LPM-BRW),

i.e.,

R∗n(θ, µ) := max
|v|=n

{
S(v) +

1

θ
log(Yv/Ev)

}
. (1.1)

If the parameters θ and µ are clear from the context, then we will simply write this as

R∗n. A schematic of the process is given in Figure 1.2.

1.3 Motivation

Our main motivation to study this new LPM-BRW model is what we will see in the

sequel that, there is a nice coupling of R∗n with a linear statistic associated with BRW

(see Theorem 2.3.2 for details). For such statistic, asymptotics can be computed us-

ing various martingale techniques, some of which are known. This novel connection is

indeed the reason why the model intrigued us. Our model is one example where this
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ξ1
ξ2

ξ11 ξ12
ξ21 ξ22

Figure 1.2: Last progeny modified branching random walk (LPM-BRW)

coupling technique works. We believe (also see Chapter 2) that this connection is a novel

mathematical tool that has the potential for many more applications.

The other motivation and perhaps more straightforward one, is to be able to compare

our results with the existing ones in the context of the classical BRW (such as, asymp-

totics derived in [2]). We see a difference appears in the constant factor in front of the

Bramson correction (see Theorem 3.5.3), but the final weak limit remains the same.

This in turn shows that the centered asymptotic results are heavily dependent on the

displacements given at the end nodes, but not the limit. While doing this comparison,

we also have been able to get the exact constant for the centered limit which was earlier

not known (see Remark 3.5.5 for the details).

1.4 Survey of Known Results

1.4.1 Almost Sure Asymptotic Limit

Hammersley [23] introduced the BRW model as the first-death problem in an age-

dependent branching process. In his model, he considered the tree to be a family tree,

and the edge weights were the lifespan of a person. And he asked at what point in time



1.4 Survey of Known Results 5

a death first occurs to some member of the n-th generation. Although he needed to

study the minimum of a branching random walk, the minimum can be converted into

the negative of the new maximum by changing the sign of the increments. So the study

of the minimum and the maximum are essentially the same. We will denote the position

of the right-most particle in the generation n by Rn ≡ Rn(Z). The following result was

proved by Hammersley.

Theorem 1.4.1 (Hammersley [23]). If P(N = 0) = 0, then there exists a constant γ

such that

Rn
n

p−→ γ.

Hammersley proved this using the properties of super-convolutive semigroups. Later,

it was also proved using Liggett’s version of Kingman’s subadditive ergodic theorem (see

Zeitouni [34] for the details).

Kingman [25] showed that the convergence in Theorem 1.4.1 is almost sure under

certain assumptions and also calculated γ explicitly. In his model, the ‘lifespans’ are

always non-negative and so after changing the sign, the underlying point process Z is

supported on (−∞, 0]. We define

ν(t) := logE
[∫

R
etx Z(dx)

]
, (1.2)

and we denote by ν∗ the Fenchel-Legendre transform of ν, i.e.,

ν∗(a) := sup
θ∈R

{
aθ − ν(θ)

}
. (1.3)

Kingman assumed that there exists θ > 0 such that 0 < ν(θ) <∞. This implies ν(0) > 0

and ν(t) <∞ for all t ≥ θ. He showed that

Theorem 1.4.2 (Kingman [25]). Under the above assumptions, on the event of survival

of the branching process,

Rn
n
→ γ a.s.,

where γ := sup
{
a : ν∗(a) < 0

}
.
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Relaxing the assumption in Kingman’s work [25] that Z is supported on (−∞, 0],

Biggins [9] showed that

Theorem 1.4.3 (Biggins [9]). If ν(θ) <∞ for some θ > 0, then on the event of survival

of the branching process,

Rn
n
→ γ a.s.,

where γ is as in Theorem 1.4.2.

1.4.2 Centered Asymptotic Limits

From historical point-of-view, it is interesting to note here that Biggins [9] wrote:

“Of course pride of place in the open problems goes to establishing more

detailed results than Theorem 1.4.3 of the kinds that are already available

for branching Brownian motion.”

Indeed, McKean [30] showed that for similar continuous time version with Branching

Brownian Motion (BBM), the maximum position, when centered by its median, con-

verges weakly to a travelling wave solution. Later Bramson [16, 14] gave detailed order

of the centering and showed that an “extra” logarithmic term appears, which later

was termed as the Bramson correction. Later Lalley and Sellke [27] gave a different

probabilistic interpretation of the travelling wave limit through certain conditional limit

theorem and using a new concept called the derivative martingales.

To obtain the centered asymptotic limits for BRW, Bachmann [6] considered the case

in which the underlying point process Z consists of N i.i.d. random variables from some

log-concave distribution and N satisfies P(N ≥ 1) = 1, P(N = 1) < 1 and E[N ] < ∞.

He showed that

Theorem 1.4.4 (Bachmann [6]). Under the above assumptions, there exists a strictly

monotone, continuous distribution function G (with G(0) = 1/2, in order that G is

unique) such that for any α ∈ (0, 1) and x ∈ R,

lim
n→∞

P (Rn ≤ qαn + x) = G (qα + x) ,
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where qαn and qα are the α-quantiles of the random variables Rn and the distribution

function G, respectively.

Using recursive distributional equations, Aldous and Bandyopadhyay [4] proved the

tightness of the centered maximum. They assumed that P(N ≥ 1) = 1, P(N = 1) < 1,

and ν(t) <∞ for some t > 0, and proved

Theorem 1.4.5 (Aldous and Bandyopadhyay [4]). If

(
median(Rn+1)−median(Rn), n ≥ 0

)
is bounded above,

then (
Rn −median(Rn), n ≥ 1

)
is tight.

A similar result was also obtained by Bramson and Zeitouni [15]. They studied the

branching random walk where the point process Z consists of N i.i.d. random variables

from a distribution F for which there exist a > 0 and M0 > 0 satisfying

F (x+M) ≤ e−aMF (x)

for all x ≥ 0 and M ≥ M0. They assumed that P(N ≥ 1) = 1, P(N = 1) < 1, and

E[N t] <∞ for some t > 0, and showed

Theorem 1.4.6 (Bramson and Zeitouni [15]). Under the above assumptions,

(
Rn −median(Rn), n ≥ 1

)
is tight.

Note that the above results tell us about the asymptotics of Rn shifted by its median

or the α-th quantile, but none of them provides an exact formula for the median or the

α-th quantile.

The second-order term for Rn was then obtained in 2009 by two independent groups

of researchers, Hu and Shi, and Addario-Berry and Reed. Hu and Shi [24] showed that

if one assumes that E[N1+δ], ν(−δ), and ν(1 + δ) are finite for some δ > 0, E[N ] > 1,

and ν(1) = ν ′(1) = 0, then
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Theorem 1.4.7 (Hu and Shi [24]). Under the above assumptions, conditionally on the

system’s survival

lim inf
n→∞

Rn
log n

= −3

2
a.s.;

lim sup
n→∞

Rn
log n

= −1

2
a.s.; and

Rn
log n

p−→ −3

2
.

Addario-Berry and Reed [1], on the other hand, considered a supercritical branching

random walk where the underlying point process Z consists of N i.i.d. random variables.

They proved

Theorem 1.4.8 (Addario-Berry and Reed [1]). Suppose that the following conditions

hold:

• there exists an integer d ≥ 2 such that P(N ≤ d) = 1;

• there exists ϑ > 0 such that ν(−ϑ) <∞; and

• there exists θ0 > 0 in the interior of the set {t : ν(t) < ∞} satisfying ν(θ0) =

θ0ν
′(θ0).

Let S be the event that the branching random walk survives. Then

E
[
Rn|S

]
=
ν(θ0)

θ0
n− 3

2θ0
log n+O(1),

and there exist constants C > 0, δ > 0 depending only on the increment distribution,

such that for all x ∈ R

P
(∣∣∣Rn − E

[
Rn|S

]∣∣∣ ≥ x∣∣∣∣S) ≤ Ce−δx.
This immediately implies that under the above assumptions, conditionally on the

system’s survival,

Rn −
ν(θ0)

θ0
n+

3

2θ0
log n is tight.
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Finally, Aı̈dékon [2] proved that the centered maximum converges in law to a ran-

domly shifted Gumbel distribution when E[N ] > 1 and there is a θ0 ∈ (0,∞) satisfying

ν(θ0) = θ0ν
′(θ0). Under some mild conditions on the underlying progeny point process,

he showed that

Theorem 1.4.9 (Aı̈dékon [2]). There exists a finite positive constant c such that for all

x ∈ R,

lim
n→∞

P
(
Rn −

ν(θ0)

θ0
n+

3

2θ0
log n ≤ x

)
= E

[
e
−cD∞θ0e

−θ0x
]
,

where D∞θ0 > 0 on the event of systems survival and it is also the a.s. limit of the

derivative martingale {Dn}n≥1 defined as

Dn = −
∑
|v|=n

(
θ0S(v)− nν(θ0)

)
e(θ0S(v)−nν(θ0)).

This essentially settles the long-standing open problem of Biggins [9].

1.4.3 Brunet-Derrida Type Result

The point process convergence for the classical BRW was proved by Madaule [29]. He

showed that

Theorem 1.4.10 (Madaule [29]). Under the assumptions of Theorem 1.4.9, condition-

ing on the set of non-extinction, the centered point process at the n-th generation, denoted

by

Zn =
∑
|v|=n

δ{
θ0S(v)−logEv−nν(θ0)+ 3

2
logn−logD∞θ0

},
converges in distribution to a decorated Poisson point process, and the limiting point

process is independent of D∞θ0 .

Following is the definition of a decorated Poisson point process:

Definition (Decorated Poisson Point Process). Let Z =
∑

i≥1 δζi be a Poisson point

process on R with intensity measure λe−x dx for some λ > 0. Then, independently

for each point ζi, we replace it with a point process χi shifted by ζi, where {χi}i≥1 are
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independent copies of a point process χ and are also independent of the Poisson point

process Z. Then the resulting point process

X =
∑
i≥1

Tζi (χi)

is called the Poisson point process Z decorated by χ. Here, Tx represents the translation

by x.

1.4.4 Large Deviations

Gantert and Höfelsauer [21] calculated the large deviations for the laws of {Rn/n}n≥1.

They considered the case where the point process Z consists of N i.i.d. copies of some

random variable X, whose moment-generating function is finite in a neighbourhood of

0. They showed that if E[N ] > 1, and the process satisfies both the Kesten-Stigum and

the Schröder conditions, i.e., E[N logN ] <∞ and P(N ≤ 1) > 0, then

Theorem 1.4.11 (Gantert and Höfelsauer [21]). Under the above assumptions, condi-

tionally on the event of survival of the branching process, the laws of {Rn/n}n≥1 satisfy

the large deviation principle with the rate function

Φ(x) =



I(x)− logE[N ] if x > γ;

0 if x = γ;

inf
0<t≤1

{
ρt+ tI

(
x−(1−t)γ

t

)}
if x < γ,

where ρ = − logP(N = 1), and I is the rate function for the random walk whose incre-

ments are i.i.d. copies of X.

As mentioned in Gantert and Höfelsauer [21], the Schröder condition is only required

for the lower large deviations, i.e., x < γ. That means the upper large deviations remain

the same even if we omit the Schröder condition. However, the result is incomplete since

it does not provide the lower large deviation rate function in this case.
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1.4.5 Time Inhomogeneous Setup

The time inhomogeneous setup was studied by Fang and Zeitouni [20]. In their setup,

the underlying point process consists of two i.i.d. mean zero Gaussian random variables,

whose variances vary with generations. For each n ≥ 1, the variance is σ2
1 in the first

bn/2c many generations and in the remaining dn/2e many generations, it is σ2
2. Here,

bxc denotes the greatest integer less than or equal to x, and dxe represents the smallest

integer greater than or equal to x. They showed that

Theorem 1.4.12 (Fang and Zeitouni [20]). When σ2
1 < σ2

2,

Rn −
(√(

σ2
1 + σ2

2

)
log 2

)
n+

√
σ2

1 + σ2
2

4
√

log 2
log n is tight.

Theorem 1.4.13 (Fang and Zeitouni [20]). When σ2
1 > σ2

2,

Rn −
√

2 log 2 (σ1 + σ2)

2
n+

3 (σ1 + σ2)

2
√

2 log 2
log n is tight.

Note that in this section, we have only stated the results that are relevant to our work.

There are many other very important and interesting results that are not mentioned here.

1.5 Outline

The thesis is organized as follows. Chapter 2 provides our most important tool: the

coupling between the maximum statistic and a linear statistic. Chapter 3 contains the

asymptotics of the maximum. In Chapter 4, we present Brunet-Derrida type results for

our LPM-BRW model. The large deviation rate functions are discussed in Chapter 5.

Finally, in Chapter 6, we provide the results in the time inhomogeneous setup.





Chapter 2

Coupling between a Maximum

and a Linear Statistic 1

2.1 Introduction

In this chapter, we first define a few operators on the space of probabilities which we

use to develop a novel mathematical tool. This novel technique allows us to obtain a

very simple coupling between the right-most position of our LPM-BRW model with a

more well-studied statistical quantity known as the smoothing transform. This coupling

helps us to get the results related to our LPM-BRW model in the subsequent chapters.

2.2 A Few Operators

Let Z =
∑

j≥1 δξj be a point process on R. In the sequel, we denote P(A) as the set

of all probabilities on a measurable space (A,A), R̄ = [−∞,∞] and R̄+ = [0,∞]. We

define the following operators.

1This chapter is based on Section 3 of the paper entitled “Right-most position of a last progeny
modified branching random walk” [7].

13
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2.2.1 Maximum Operator

Definition 2.2.1. The maximum operator MZ : P
(
R̄
)
→ P

(
R̄
)

is defined as

MZ(η) = dist

(
max
j

{
ξj +Xj

})
,

where {Xj}j≥1 are i.i.d. η ∈ P
(
R̄
)

and are independent of the point process Z.

We denote Mn
Z(η) as the n-th iterate of MZ(η). Suppose we add i.i.d. displacements

from η to each of the particles at the n-th generation, where the added displacements

are also independent of the BRW. Then as illustrated in Figure 2.1, the distribution of

the new maximum will be Mn
Z(η).

ξ1
ξ2

ξ11 ξ12
ξ21 ξ22

X11 X12 X21 X22

Figure 2.1: Illustration of the maximum operator

Proposition 2.2.1. For any n ∈ N,

Mn
Z(η) = dist

(
max
|v|=n

{
S(v) +Xv

})
,

where {Xv}|v|=n are i.i.d. η ∈ P
(
R̄
)

and are independent of the BRW.

Proof. It follows from the definition that

{
S(v) : |v| = 1

} d
==
{
ξj : j ≥ 1

}
. (2.1)
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So, the proposition holds trivially for n=1. Suppose the proposition holds for n = k− 1

for some k ∈ N. Observe that

max
|v|=k

{
S(v) +Xv

}
= max
|u|=1

{
max

|v|=k,u<v

{
S(v) +Xv

}}

= max
|u|=1

{
S(u) + max

|v|=k,u<v

{
S(v)− S(u) +Xv

}}
. (2.2)

Here u < v means v is a descendant of u. Now, for |u| = 1, we have

{
S(v)− S(u) : |v| = k, u < v

} d
==
{
S(v) : |v| = k − 1

}
. (2.3)

Thus

Tu := max
|v|=k,u<v

{
S(v)− S(u) +Xv

}
∼Mk−1

Z (η).

Also, note that Tu’s are i.i.d. and are independent of
{
S(u) : |u| = 1

}
. Therefore

by (2.2),

max
|v|=k

{
S(v) +Xv

}
= max
|u|=1

{
S(u) + Tu

}
∼MZ ◦Mk−1

Z (η) = Mk
Z(η).

Hence, by induction, the proposition holds for any n ∈ N.

Remark 2.2.1: Note that if we take η = δ0, we get that Rn ∼ Mn
Z(δ0), and R∗n ∼

Mn
Z (η) if η is the distribution of 1

θ log(Y/E), where Y ∼ µ, E ∼ Exponential (1), and

they are independent of each other. Also, note that in the expression of MZ , if we

replace the maximum by sum and the addition by multiplication (one way of doing that

is exponentiation), we will get the operator discussed next.

2.2.2 Smoothing Operator

Definition 2.2.2. The smoothing operator LZ : P(R̄+)→ P(R̄+) is defined by

LZ(µ) = dist

∑
j≥1

eξjYj

 ,

where {Yj}j≥1 are i.i.d. µ ∈ P(R̄+) and are independent of the point process Z.
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If we denote LnZ(µ) as the n-th iterate of LZ(µ), then we have the following.

Proposition 2.2.2. For any n ∈ N,

LnZ(µ) = dist

∑
|v|=n

eS(v)Yv

 ,

where {Yv}|v|=n are i.i.d. µ ∈ P(R̄+) and are independent of the BRW.

Proof. Note that by (2.1), the proposition holds trivially for n=1. Suppose it holds for

n = k − 1 for some k ∈ N. Observe that

∑
|v|=k

eS(v)Yv =
∑
|u|=1

∑
|v|=k,u<v

eS(v)Yv =
∑
|u|=1

eS(u)

 ∑
|v|=k,u<v

eS(v)−S(u)Yv

 . (2.4)

Also, by (2.3),

T′u :=
∑

|v|=k,u<v

eS(v)−S(u)Yv ∼ Lk−1
Z (µ).

Note that T′u’s are i.i.d. and are independent of
{
S(u) : |u| = 1

}
. Therefore by (2.4),

∑
|v|=n

eS(v)Yv =
∑
|u|=1

eS(u)T′u ∼ LZ ◦ Lk−1
Z (µ) = LkZ(µ).

Hence, by induction, the proposition holds for any n ∈ N.

2.2.3 Link Operator

Definition 2.2.3. The link operator E : P(R̄+)→ P(R̄) is defined by

E(µ) = dist

(
log

Y

E

)
,

where E ∼ Exponential (1) and Y ∼ µ ∈ P(R̄+) and they are independent.
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2.2.4 Scaling and Centering Operator

Definition 2.2.4. For a ≥ 0 and b ∈ R, the operator Ξa,b on the set of all point processes

is defined by

Ξa,b(Z) =
∑
j≥1

δaζj−b,

where Z =
∑

j≥1 δζj . Sometimes we may denote Ξa,0 by Ξa for notational simplicity.

2.3 Transforming Relationship

The following result is one of the most important observations, and it links the operators

defined above.

Theorem 2.3.1 (Transforming Relationship). For all k ∈ N,

Mk
Z ◦ E = E ◦ LkZ .

Remark 2.3.1: The above theorem is a formalization of the intuitive idea that under

the link operator E , a (Max,+)-type algebra on general random variables gets rightly

converted to the usual (+, ·)-type algebra on non-negative random variables.

Proof. Let Z =
∑

j≥1 δξj , {Ej}j≥1 are i.i.d. Exponential (1), {Yj}j≥1 are i.i.d. µ, and

they are independent of each other. Now,

MZ ◦ E(µ) = dist

max
j

(
ξj + log

Yj
Ej

)

= dist

max
j

(
log

eξjYj
Ej

) = dist

− log

(
min
j

Ej

eξjYj

) . (2.5)

Let A be the σ-algebra generated by Z and
{
Yj
}
j≥1

. So, given A,

{
Ej

eξjYj

}
j≥1

are

conditionally independent and

Ej

eξjYj

∣∣∣∣∣ A ∼ Exponential
(
eξjYj

)
.
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This implies

min
j

Ej

eξjYj

∣∣∣∣∣ A ∼ Exponential

∑
j≥1

eξjYj

 .

We also have

E1∑
j≥1 e

ξjYj

∣∣∣∣∣ A ∼ Exponential

∑
j≥1

eξjYj

 .

Therefore

min
j

Ej

eξjYj

d
==

E1∑
j≥1 e

ξjYj
. (2.6)

Applying this to (2.5), we get

MZ ◦ E(µ) = dist

− log

(
min
j

Ej

eξjYj

)

= dist

− log

(
E1∑

j≥1 e
ξjYj

) = E ◦ LZ(µ). (2.7)

Therefore, by induction, for all k ∈ N,

Mk
Z ◦ E(µ) = E ◦ LkZ(µ).

Remark 2.3.2: An alternative proof of Theorem 2.3.1 is as follows. Let {πi}i≥1 be an

i.i.d. sequence of Poisson point processes with intensity e−x dx. Now, we consider the

superposition

X =
∑
j≥1

Tξj+log Yj

(
πj
)
, (2.8)

where Tx is translation by x. In equation (2.8), {ξj}j≥1 are as earlier, {Yj}j≥1 are

i.i.d. µ, and these two sequences are independent of each other and also independent of{
πj
}
j≥1

. Note that maxπ1 is Gumbel-distributed, i.e., distributed as − logE1. Hence,

maxX
d

== max
j

(
ξj + log Yj − logEj

)
. (2.9)
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On the other hand, each Tξj+log Yj

(
πj
)

is a Poisson point process with intensity eξj−xYj dx,

and thus, X is a Poisson point process with intensity
(∑

j≥1 e
ξjYj

)
e−x dx. Therefore,

maxX
d

== log

∑
j≥1

eξjYj

+ maxπ1
d

== log

∑
j≥1

eξjYj

− logE1. (2.10)

Now by combining (2.9) and (2.10) and then using induction we get the required result.

This alternative proof was indicated by an anonymous referee.

As an immediate corollary of the above theorem, we get a very useful coupling be-

tween the LPM-BRW and the linear statistic associated with the linear operator.

Theorem 2.3.2. Let θ > 0 and µ ∈ P(R̄+). Then for any n ≥ 1,

θR∗n (θ, µ)
d

== log Y µ
n (θ)− logE,

where Y µ
n (θ) :=

∑
|v|=n e

θS(v)Yv, {Yv}|v|=n are i.i.d. µ, E ∼ Exponential (1), and

{Yv}|v|=n and E are independent of each other and also of the BRW.

Proof. From (1.1) together with Proposition 2.2.1, it follows that

θR∗n(θ, µ) = max
|v|=n

{
θS(v) + log(Yv/Ev)

}
∼Mn

Ξθ(Z) ◦ E(µ). (2.11)

Therefore, by applying Theorem 2.3.1 and Proposition 2.2.2, we get

dist
(
θR∗n (θ, µ)

)
= Mn

Ξθ(Z) ◦ E(µ)

= E ◦ LnΞθ(Z)(µ) = dist (log Y µ
n − logE) .





Chapter 3

Asymptotics of the Right-most

Position 1

3.1 Introduction

In this chapter, we first present and prove some asymptotic results about the associated

linear statistic, which we later use together with the coupling technique mentioned in

Chapter 2 to obtain the asymptotics of R∗n.

3.2 Assumptions

Before we state our assumptions, we introduce the following important quantity. For a

point process Z =
∑N

j=1 δξj , we will write

m(t) := E
[∫

R
etx Z(dx)

]
= E

 N∑
j=1

etξj

 ,
where t ∈ R, whenever the expectation exists. Naturally, m is the moment-generating

function of the point process Z.

1This chapter is based on Sections 2.1, 2.2, 4, 5.1, 5.2, 5.3 and 5.4 of the paper entitled “Right-most
position of a last progeny modified branching random walk” [7].

21
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We now state our main assumptions. Throughout this work, we will assume the

following three conditions hold:

(A1) m(t) is finite for all t ∈ (−ϑ,∞) for some ϑ > 0.

(A2) The point process Z is non-trivial, and the extinction probability of the underly-

ing branching process is 0. In other words, P(N = 1) < 1, P(Z({a}) = N) < 1

for any a ∈ R, and P(N ≥ 1) = 1.

(A3) N has finite (1 + p)-th moment for some p > 0.

Remark 3.2.1: (A1) implies that m is infinitely differentiable on (−ϑ,∞). Together

with (A3), it also implies that there exists q > 0 such that for all t ∈ [0,∞)

E

[(∫
R
etx Z(dx)

)1+q
]
<∞. (3.1)

To see this, observe that ∫
R
etx Z(dx) ≤ NemaxNj=1 tξj . (3.2)

This, together with Hölder’s inequality, implies

E

[(∫
R
etx Z(dx)

)1+q
]
≤ E

[
N1+q · e(1+q)

(
maxNj=1 tξj

)]

≤
(
E
[
N (1+q)2

]) 1
1+q

·

E

[
e

(1+q)2

q

(
maxNj=1 tξj

)]
q

1+q

≤
(
E
[
N (1+q)2

]) 1
1+q

·

E

[∫
R
e

(1+q)2

q
tx
Z(dx)

]
q

1+q

=

(
E
[
N (1+q)2

]) 1
1+q

·
(
m
(
t(1 + q)2/q

)) q
1+q

.

Then, by choosing q such that (1 + q)2 ≤ 1 + p, one gets (3.1).
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3.3 A Specific Scaling Constant θ0

We define

ν(t) ≡ νZ(t) := log
(
m(t)

)
= logE

[∫
R
etx Z(dx)

]
for t ∈ R, whenever m (t) is defined. Note that under assumptions (A1) and (A2), ν is

strictly convex in (−ϑ,∞). Although this is a well-known fact, we are unable to find an

exact reference to it. So we give a proof of this.

Proposition 3.3.1. ν(t) is strictly convex in (−ϑ,∞).

Proof. From assumption (A1), we know that

m(t) = E
[∫

R
etx Z(dx)

]
<∞,

for all t ∈ (−ϑ,∞). Therefore using the dominated convergence theorem, we have for

all t ∈ (−ϑ,∞),

m′(t) = E
[∫

R
xetx Z(dx)

]
<∞,

and

m′′(t) = E
[∫

R
x2etx Z(dx)

]
<∞.

From assumption (A2), we have that P(Z({a}) = N) < 1 for all a ∈ R. Therefore for

all a ∈ R,

E
[∫

R
(x− a)2etx Z(dx)

]
> 0

⇒ E
[∫

R
x2etx Z(dx)

]
− 2aE

[∫
R
xetx Z(dx)

]
+ a2E

[∫
R
etx Z(dx)

]
> 0

⇒ E
[∫

R
x2etx Z(dx)

]
· E
[∫

R
etx Z(dx)

]
>

(
E
[∫

R
xetx Z(dx)

])2

⇒ m′′(t) ·m(t) >
(
m′(t)

)2
.



24 Chapter 3: Asymptotics of the Right-most Position

Hence for all t ∈ (−ϑ,∞),

ν ′′(t) =
m′′(t) ·m(t)−

(
m′(t)

)2(
m(t)

)2 > 0.

This proves the proposition.

We now define a constant related to the underlying driving point process Z, which

we denote by θ0. Let

θ0 := inf

{
θ > 0 :

ν(θ)

θ
= ν ′(θ)

}
. (3.3)

The fact that ν(θ) is strictly convex ensures that the above set is at most singleton. If

it is a singleton, then as illustrated in Figure 3.1, θ0 is the unique point in (0,∞) such

that a tangent from the origin to the graph of ν(θ) touches the graph at θ = θ0. And if

it is empty, then by definition θ0 takes value ∞, and there does not exist any tangent

from the origin to the graph of ν(θ) on the right half-plane.

x
x = θ0

y
=
ν(
θ0
)

θ0

x

y

y
=
ν(
x)

O

Figure 3.1: Construction of the quantity θ0

Remark 3.3.1: It is worth noting that ν(θ)/θ is strictly decreasing for θ ∈ (0, θ0) and

strictly increasing for θ ∈ (θ0,∞). Therefore, as shown in Figure 3.2, when θ0 is finite,

it is the unique point of minimum for ν(θ)/θ.
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x
x = θ0

y

O

y =
ν(x)

x

Figure 3.2: Graph of y = ν(x)/x

Remark 3.3.2: Note that

ν(θ)

θ
= lim

n→∞

1

nθ
logE

[
Wn(θ)

]
,

where Wn(θ) = Wn(θ, 0) is as defined in (3.5). ν(θ)/θ is often referred as the “annealed

free energy”. Further, using Jensen’s inequality, it is easy to see that, the so-called

“quenched free energy”, say F (θ), defined below satisfies the following inequality

F (θ) := lim
n→∞

1

nθ
E
[
logWn(θ)

]
≤ ν(θ)

θ
.

Whether θ0 is finite or infinite can be characterized by the following proposition.

Proposition 3.3.2. θ0 <∞ iff

lim
θ→∞

ν(θ)− θ
(

lim
x→∞

ν ′(x)

)
< 0.

Proof. Let f : (0,∞)→ R be a function defined as

f(θ) = ν(θ)− θ
(

lim
x→∞

ν ′(x)

)
.



26 Chapter 3: Asymptotics of the Right-most Position

Since ν is strictly convex,

f ′(θ) = ν ′(θ)−
(

lim
x→∞

ν ′(x)

)
< 0,

for all θ ∈ (0,∞). Therefore f is strictly decreasing in (0,∞), and hence limθ→∞ f(θ)

exists.

(Only if part). If limθ→∞ f(θ) ≥ 0, then for all θ ∈ (0,∞),

ν(θ)− θν ′(θ) > ν(θ)− θ
(

lim
x→∞

ν ′(x)

)
> 0,

which implies θ0 =∞.

(If part). Now, suppose θ0 = ∞, i.e., there does not exist θ ∈ (0,∞) satisfying

ν(θ) = θν ′(θ). Since ν and ν ′ are continuous and by assumption (A2), ν(0) > 0 · ν ′(0),

we have ν(θ) > θν ′(θ) for all θ ∈ (0,∞). Let Tx be the tangent to the graph of ν at the

point x for some x ∈ (0,∞), i.e.,

Tx(θ) = (θ − x)ν ′(x) + ν(x).

Since ν is convex, we have

ν(θ) ≥ Tx(θ) = θν ′(x) + ν(x)− xν ′(x) > θν′(x),

for all θ ∈ (0,∞). Therefore letting x→∞, we obtain

ν(θ) ≥ θ
(

lim
x→∞

ν ′(x)

)
,

for all θ ∈ (0,∞), which implies limθ→∞ f(θ) ≥ 0. This completes the proof.

Remark 3.3.3: An alternative proof for the “if part” is as follows. If limθ→∞ f(θ) < 0,

then there exists θ ∈ (0,∞) such that f(θ) < 0, which implies

ν(θ)

θ
< lim

x→∞
ν ′(x) = lim

x→∞

ν(x)

x
.
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Therefore, by Remark 3.3.1, θ0 <∞.

Remark 3.3.4: It is to be noted that θ0 is always finite if limx→∞ ν
′(x) =∞.

3.4 Few Auxiliary Results on the Linear Statistic

In this section, we provide a few convergence results related to the linear operator, LnZ ,

as defined in the Section 2.2.2 and associated linear statistic, which is defined in the

sequel (see equation (3.5)).

We start by observing that if we consider the point process Ξθ,νZ(θ)(Z), then

νΞθ,νZ (θ)(Z)(α) = logE
[∫

R
eαθx−ανZ(θ) Z(dx)

]
= νZ(αθ)− ανZ(θ).

Differentiating this with respect to α, we get

ν ′Ξθ,νZ (θ)(Z)(α) = θν ′Z(αθ)− νZ(θ).

So, by taking α = 1, we obtain νΞθ,νZ (θ)(Z)(1) = 0, and

ν ′Ξθ,νZ (θ)(Z)(1) = θν ′Z(θ)− νZ(θ)


> 0 if θ0 < θ <∞;

= 0 if θ = θ0 <∞;

< 0 if θ < θ0 ≤ ∞.

Therefore, using Theorem 1.6 of Liu [28], we get

LnΞθ,νZ (θ)(Z)(µ)
w−→

 δ0 if θ = θ0 <∞;

µ∞θ if θ < θ0 ≤ ∞,
(3.4)

where for all θ < θ0, µ∞θ 6= δ0 is a fixed point of LΞθ,νZ (θ)(Z) and have same mean as µ.

Note that as µ∞θ is a fixed point of LΞθ,νZ (θ)(Z), we have

µ∞θ ({0}) = E
[
µ∞θ ({0})N

]
.
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Together with assumption (A2), this implies for all θ < θ0, µ∞θ ({0}) ∈ {0, 1}, and hence

µ∞θ ({0}) = 0.

We now define the linear statistic associated with the linear operator LnZ .

Wn(a, b) :=
∑
|v|=n

eaS(v)−nb. (3.5)

To simplify the notations, sometimes we may write Wn(a, 0) as Wn(a). From Proposi-

tion 2.2.2, we get that

LnΞa,b(Z)(δ1) = dist
(
Wn(a, b)

)
.

Since {Wn(θ, νZ(θ))}n≥1 is a non-negative martingale, it converges a.s. Therefore (3.4)

implies that almost surely,

Wn(θ, νZ(θ))→

 0 if θ = θ0 <∞;

D∞θ if θ < θ0 ≤ ∞,
(3.6)

for some positive random variable D∞θ with E[D∞θ ] = 1, and the distribution of D∞θ is

a solution to the following linear recursive distributional equation (RDE)

∆
d

==
∑
|v|=1

eθS(v)−ν(θ)∆v, (3.7)

where ∆v are i.i.d. and have the same distribution as that of ∆. Biggins and Kypri-

anou [12] have shown that under the assumptions in Section 3.2, the solutions to the

linear RDE are unique up to a scale factor whenever they exist. Therefore D∞θ is the

unique solution to the linear RDE (3.7) with mean 1.

The following proposition provides convergence results of Wn(a, b) for various values

of a and b.
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Proposition 3.4.1. For any a > 0 and b ∈ R, almost surely

Wn(a, b)→



0 if a < θ0, b > ν(a); (i)

D∞a if a < θ0, b = ν(a); (ii)

∞ if a < θ0, b < ν(a); (iii)

0 if θ0 <∞, a ≥ θ0, b ≥ aν(θ0)/θ0; (iv)

∞ if θ0 <∞, a ≥ θ0, b < aν(θ0)/θ0. (v)

To prove this proposition, we use the following elementary result. We provide the

proof for the sake of completeness.

Lemma 3.4.1. Let f : [0,∞)→ R be a continuously differentiable convex function and

S be a convex subset of [0,∞)× R satisfying

• (x, y) ∈ S for all 0 < x < x0 and y > f(x) and

• (x, y) /∈ S for all 0 < x < x0 and y < f(x),

for some x0 > 0. Then

S ⊆
{

(x, y) : y ≥ Tx0(x)
}
,

where Tx0(·) denotes the tangent to f at x0.

Proof. We define a function g : [0,∞)→ R̄ as

g(x) = inf
{
y : (x, y) ∈ S

}
.

We first show that g is convex. Take any x1, x2 such that g(x1), g(x2) < ∞. By

definition of g, for every ε > 0, there exist y1 < g(x1) + ε and y2 < g(x2) + ε such that

(x1, y1), (x2, y2) ∈ S. So for any α ∈ (0, 1), (αx1 + (1 − α)x2, αy1 + (1 − α)y2) ∈ S.

Therefore

g(αx1 + (1− α)x2) ≤ αy1 + (1− α)y2 < αg(x1) + (1− α)g(x2) + ε.
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As ε > 0 is arbitrary, we have

g(αx1 + (1− α)x2) ≤ αg(x1) + (1− α)g(x2),

and this is true for all α ∈ (0, 1). Therefore g is convex.

Let Tx(.) be the tangent to f at x. As f is continuously differentiable, Tx converges

pointwise to Tx0 as x→ x0. Note that g = f in (0, x0). Therefore for all x ∈ (0, x0), Tx

is also tangent to g at x. As g is convex, g ≥ Tx for all x ∈ (0, x0). Hence g ≥ Tx0 . This

completes the proof.

Proof of Proposition 3.4.1. Proof of (i),(ii) and (iii). Noting that

Wn(a, b) = Wn(a, ν(a)) · en(ν(a)−b)

(i), (ii) and (iii) follow from (3.6).

Proof of (iv). For a ≥ θ0, we have

Wn(a, b) =
∑
|v|=n

eaS(v)−nb

≤

∑
|v|=n

e(aS(v)−nb)θ0/a

a/θ0

= Wn

(
θ0, bθ0/a

)a/θ0
=
(
Wn

(
θ0, ν(θ0)

)
· en(ν(θ0)−bθ0/a)

)a/θ0
Since Wn(a, b) is non-negative, using (3.6), we get that for a ≥ θ0 and bθ0/a ≥ ν(θ0),

Wn(a, b)→ 0 a.s.
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Proof of (v). Using (i) and (iii), we know that there exists N ⊂ Ω with P(N ) = 0

such that for all ω /∈ N and (a, b) ∈ [(0, θ0)× R] ∩Q2,

Wn(a, b)(ω)→

 0 if b > ν(a);

∞ if b < ν(a).

For any ω /∈ N and any subsequence {nk}, we define

S
(
{nk}, ω

)
=

{
(c, d) : lim sup

k→∞
Wnk(c, d)(ω) <∞

}
.

Now, suppose (c1, d1), (c2, d2) ∈ S
(
{nk}, ω

)
. Then for any α ∈ (0, 1),

lim sup
k→∞

Wnk

(
αc1 + (1− α)c2, αd1 + (1− α)d2

)
(ω)

= lim sup
k→∞

∑
|v|=nk

exp
(
α
[
c1S(v)(ω)− nkd1

]
+ (1− α)

[
c2S(v)(ω)− nkd2

])

≤ α

lim sup
k→∞

∑
|v|=nk

exp
(
c1S(v)(ω)− nkd1

)

+ (1− α)

lim sup
k→∞

∑
|v|=nk

exp
(
c2S(v)(ω)− nkd2

)
= α

[
lim sup
k→∞

Wnk(c1, d1)(ω)

]
+ (1− α)

[
lim sup
k→∞

Wnk(c2, d2)(ω)

]
<∞.

Therefore S
(
{nk}, ω

)
is convex. As Q2 is dense in R2, the conditions in Lemma 3.4.1

hold for the convex function ν, the convex set S
(
{nk}, ω

)
, and the point θ0. Thus for

any a ≥ θ0 and any b < aν(θ0)/θ0, we have (a, b) /∈ S
(
{nk}, ω

)
, which implies

lim sup
k→∞

Wnk(a, b)(ω) =∞.

This holds for all subsequences {nk} and all ω /∈ N . Hence for all a ≥ θ0 and all

b < aν(θ0)/θ0, we have

Wn(a, b)→∞ a.s.
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The following corollary is a simple consequence of Proposition 3.4.1.

Corollary 3.4.1. Almost surely

logWn(θ)

nθ
→


ν(θ)
θ if θ < θ0 ≤ ∞;

ν(θ0)
θ0

if θ0 ≤ θ <∞.

Proof. From the definition of Wn in (3.5), it follows that

logWn(θ, b) = logWn(θ)− nb. (3.8)

Therefore, by applying Proposition 3.4.1, we get that for θ < θ0 ≤ ∞, almost surely

logWn(θ)− nb→

 −∞ if b > ν(θ);

∞ if b < ν(θ);
(3.9)

and similarly for θ0 ≤ θ <∞, almost surely

logWn(θ)− nb→

 −∞ if b > θν(θ0)/θ0;

∞ if b > θν(θ0)/θ0.
(3.10)

Combining (3.9) and (3.10) proves the corollary.

Remark 3.4.1: To understand why the limit in Corollary 3.4.1 becomes constant for

θ ≥ θ0, let us consider

F(θ) = lim
n→∞

logWn(θ)

nθ
.

Since
[
Wn(θ)

]1/θ
is non-increasing in θ, so is F(θ). Now by the Cauchy–Schwarz in-

equality, we get that for any θ1, θ2 > 0,

(
Wn(θ1 + θ2)

)2 ≤Wn(2θ1) ·Wn(2θ2).

Since dyadic rational numbers are dense in the real numbers, this gives us that

Wn(αθ1 + (1− α)θ2) ≤Wn(θ1)α ·Wn(θ2)1−α,
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which means that logWn(θ) is convex in θ, and therefore so is θF(θ). Now, for θ < θ0,

F(θ) = ν(θ)/θ. So by Remark 3.3.1, the left-derivative of F is 0 at θ0. Hence the right-

derivative is greater than or equal to 0 at θ0, by convexity of the function θ 7→ θF(θ).

Using again this convexity, it is now easy to show that F′(θ) ≥ 0 for all θ ≥ θ0, hence

F(θ) ≥ F(θ0) for all θ ≥ θ0. But since F is non-increasing, it has to be constant for

θ ≥ θ0.

Our next result gives a relation between Wn(θ) and Y µ
n (θ), where Y µ

n (θ) is as in

Theorem 2.3.2.

Proposition 3.4.2. For any θ ∈ (0, θ0) and also for θ = θ0 <∞,

Y µ
n (θ)

Wn(θ)

p−→ 〈µ〉,

where 〈µ〉 is the mean of µ.

Proof. Before proving this proposition, we first quote a result of Biggins and Kypri-

anou [10], which is a particular case of Lemma 2.2 in Kurtz [26].

Lemma 3.4.2. Suppose {ci} is a sequence of nonnegative constants satisfying
∑

i ci = 1,

with a = maxi ci. Suppose {Yi} are independent identically distributed copies of a random

variable Y with E[|Y |] <∞ and E[Y ] = 0. Then, for ε < 1/2,

P

∣∣∣∣∣∣
∑
i=1

ciYi

∣∣∣∣∣∣ > ε

 ≤ 2

ε2

(∫ 1/a

0
at · P(|Y | > t) dt+

∫ ∞
1/a

P(|Y | > t) dt

)
.

Now, observe that

Y µ
n (θ)

Wn(θ)
− 〈µ〉 =

∑
|v|=n

(
eθS(v)∑
|u|=n e

θS(u)

)(
Yv − 〈µ〉

)
. (3.11)

We define

Mn(θ) := max
|v|=n

eθS(v)∑
|u|=n e

θS(u)
=

eθRn

Wn(θ)
.
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For θ ∈ (0, θ0), we choose any θ1 ∈ (θ, θ0). Then we get

Mn(θ) ≤
[
Wn(θ1)

]θ/θ1
Wn(θ)

≤
[
Wn(θ1, ν(θ1))

]θ/θ1 · e−nθ( ν(θ)θ − ν(θ1)θ1

)
Wn(θ, ν(θ))

(3.12)

Since ν is strictly convex, ν(θ)/θ is strictly decreasing for θ ∈ (0, θ0). Therefore using

Proposition 3.4.1, we get

Mn(θ)→ 0 a.s. (3.13)

For θ = θ0 <∞, by choosing θ2 ∈ (θ0,∞), we obtain

Mn(θ0) ≤
[
Wn (θ2)

]θ0/θ2
Wn(θ0)

=

[
nθ2/θ0Wn

(
θ2, θ2ν(θ0)/θ0

)]θ0/θ2
nWn(θ0, ν(θ0))

. (3.14)

Aı̈dékon and Shi [3] showed that when θ0 <∞, under the assumptions in Section 3.2,

there exists a positive random variable D∞θ0 such that

√
nWn(θ0, ν(θ0))

p−→
(

2

πσ2

)1/2

D∞θ0 . (3.15)

The details of the random variable D∞θ0 and the constant σ2 have been discussed in

Remark 3.4.2. Hu and Shi [24] proved that if θ0 <∞, then for any θ ∈ (θ0,∞),

1

log n
logWn

(
θ,
θν(θ0)

θ0

)
p−→ − 3θ

2θ0
, (3.16)

under the assumptions in Section 3.2 .

By applying (3.15) and (3.16) to (3.14), we get that for θ0 <∞,

Mn(θ0)
p−→ 0. (3.17)

Thus, by combining (3.13) and (3.17) we obtain that for any θ ∈ (0, θ0) and also for

θ = θ0 <∞,

Mn(θ)
p−→ 0. (3.18)
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Now, let F be the σ-algebra generated by the BRW. By Lemma 3.4.2, for every

ε ∈ (0, 1/2), we have

P

∣∣∣∣∣ Y µ
n (θ)

Wn(θ)
− 〈µ〉

∣∣∣∣∣ > ε

∣∣∣∣∣∣F


≤ 2

ε2

∫ 1
Mn(θ)

0
Mn(θ)t · P

(∣∣Y − 〈µ〉∣∣ > t
)
dt+

∫ ∞
1

Mn(θ)

P
(∣∣Y − 〈µ〉∣∣ > t

)
dt

 ,

which by (3.18) and the dominated convergence theorem, converges to 0 in probability

as n → ∞. Then by taking expectation and using the dominated convergence theorem

again, we get

lim
n→∞

P

(∣∣∣∣∣ Y µ
n (θ)

Wn(θ)
− 〈µ〉

∣∣∣∣∣ > ε

)
= 0.

This completes the proof.

Remark 3.4.2: The constant σ2 in Equation 3.15 is defined as

σ2 := E

∑
|v|=1

(
θ0S(v)− ν(θ0)

)2
eθ0S(v)−ν(θ0)

 .
The random variable D∞θ0 is the almost sure limit of a derivative martingale defined by

Dn := −
∑
|v|=n

(θ0S(v)− ν(θ0)n)eθ0S(v)−ν(θ0)n.

The same derivative martingale also appears in Biggins and Kyprianou [11]. D∞θ0 > 0

a.s. under the assumptions in Section 3.2 and is a solution to a linear RDE given by

∆
d

==
∑
|v|=1

eθ0S(v)−ν(θ0)∆v, (3.19)

where ∆v are i.i.d. and have the same distribution as that of ∆.
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3.5 Convergence Results

We classify our model in three different classes depending on whether the (scale) pa-

rameter θ is below, equal or above the quantity θ0. We term these as below the boundary

case, the boundary case, and above the boundary case, respectively.

3.5.1 Almost Sure Asymptotic Limit

The following result is a strong law of large number -type result, which is similar to

Theorem 1.4.3.

Theorem 3.5.1. For every non-negatively supported probability µ 6= δ0 that admits a

finite mean, almost surely

R∗n(θ, µ)

n
→


ν(θ)
θ if θ < θ0 ≤ ∞;

ν(θ0)
θ0

if θ0 ≤ θ <∞.
(3.20)

Remark 3.5.1: Note that the almost sure limit remains same as ν(θ0)
θ0

for the boundary

case and also in above the boundary case.

Proof. (Upper bound). We denote β = min(θ, θ0). Using Markov’s inequality, we have

that for every ε > 0,

P
(
R∗n(θ, µ)

n
− ν(β)

β
> ε

)
≤ e−n(βε+ν(β))/2 · E

[
eβR

∗
n(θ,µ)/2

]
.

Now, using Theorem 2.3.2, we have

E
[
eβR

∗
n(θ,µ)/2

]
= E


∑
|v|=n

eθS(v)Yv

β/(2θ)
 · E [E−β/(2θ)] ,
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where E ∼ Exponential (1). Using a subadditive inequality and then using Jensen’s

inequality, we get that

E
[
eβR

∗
n(θ,µ)/2

]
≤ E

√∑
|v|=n

eβS(v)Y
β/θ
v

 · Γ(1− β

2θ

)

≤

√√√√√E

∑
|v|=n

eβS(v)Y
β/θ
v

 · Γ(1− β

2θ

)
=
√
enν(β) · 〈µ〉β/θ · Γ

(
1− β

2θ

)
,

where 〈µ〉β/θ is the (β/θ)-th moment of µ. So for every ε > 0, we have

P
(
R∗n(θ, µ)

n
− ν(β)

β
> ε

)
≤
√
〈µ〉β/θ · Γ

(
1

2

)
· e−nβε/2,

which implies
∞∑
n=1

P
(
R∗n(θ, µ)

n
− ν(β)

β
> ε

)
<∞. (3.21)

Since ε > 0 is arbitrary, using the Borel–Cantelli lemma, we obtain for all θ > 0, almost

surely

lim sup
n→∞

R∗n(θ, µ)

n
≤


ν(θ)
θ if θ < θ0 ≤ ∞;

ν(θ0)
θ0

if θ0 ≤ θ <∞.
(3.22)

(Lower bound). For u such that |u| = m ≤ n, we define

R
∗(u)
n−m ≡ R

∗(u)
n−m(θ, µ) := max

|v|=n,u<v

{
S(v) +

1

θ
log(Yv/Ev)

}
− S(u). (3.23)

Here u < v means v is a descendant of u. Note that {R∗(u)
n−m}|u|=m are i.i.d. copies of

R∗n−m and are independent of the BRW up to generation m. Now, the definition of R∗n

in (1.1) implies that

R∗n(θ, µ) = max
|u|=m

{
max

|v|=n,u<v

{
S(v) +

1

θ
log(Yv/Ev)

}}

= max
|u|=m

{
S(u) +R

∗(u)
n−m(θ, µ)

}
≥ S(ũm) + max

|u|=m
R
∗(u)
n−m(θ, µ), (3.24)
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where ũm ≡ ũm(θ, µ) := arg max|u|=mR
∗(u)
n−m(θ, µ).

The boundary and below the boundary case (θ < θ0 ≤ ∞ or θ = θ0 < ∞). For any

ε ∈ (0, 1) and for θ < θ0 ≤ ∞ or θ = θ0 < ∞, using (3.24) together with Markov’s

inequality, we get

P
(
R∗n(θ, µ)

n
− ν(θ)

θ
< −ε

)

≤ P

(
S(ũb

√
nc) + max

|u|=b
√
nc
R
∗(u)

n−b
√
nc(θ, µ) < n

(
ν(θ)

θ
− ε
))

≤ P

(
max
|u|=b

√
nc
R
∗(u)

n−b
√
nc(θ, µ) < n

(
ν(θ)

θ
− ε

2

))
+ P

(
S(ũb

√
nc) < −

nε

2

)

≤ E

P(R∗n−b√nc(θ, µ) < n

(
ν(θ)

θ
− ε

2

))Nb√nc+ e−nεϑ/4 · E
[
e−ϑS(ũb

√
nc)/2

]
. (3.25)

Here bxc denotes the greatest integer less than or equal to x, Nk represents the total

number of particles at generation k, and ϑ is as in assumption (A1). The combination of

Theorem 2.3.2, Proposition 3.4.2, and Corollary 3.4.1 gives us that for any θ < θ0 ≤ ∞

and also for θ = θ0 <∞,

R∗n(θ, µ)

n

p−−→ ν(θ)

θ
. (3.26)

Therefore for all large enough n,

P

(
R∗n−[

√
n](θ, µ) < n

(
ν(θ)

θ
− ε

2

))
< ε. (3.27)

Since P(N = 0) = 0, Nb
√
nc < n implies that at least b

√
nc − dlog2 ne many particles

have given birth to a single offspring, and therefore

P
(
N[
√
n] < n

)
≤
(
P(N = 1)

)[√n]−dlog2 ne . (3.28)

For the second term on the right-hand side of (3.25), we have

E
[
e−ϑS(ũ[

√
n])/2

]
≤ E

[
W[
√
n](−ϑ/2)

]
= e[

√
n]ν(−ϑ/2). (3.29)
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By combining (3.25), (3.27), (3.28), and (3.29), we have for all large enough n,

P
(
R∗n(θ, µ)

n
− ν(θ)

θ
< −ε

)
≤ εn +

(
P(N = 1)

)[√n]−dlog2 ne + e−nεϑ/4+[
√
n]ν(−ϑ/2),

which implies for all ε ∈ (0, 1),

∞∑
n=1

P
(
R∗n(θ, µ)

n
− ν(θ)

θ
< −ε

)
<∞. (3.30)

So by using the Borel–Cantelli lemma, we obtain that for θ < θ0 ≤ ∞ or θ = θ0 <∞,

lim inf
n→∞

R∗n(θ, µ)

n
≥ ν(θ)

θ
a.s. (3.31)

Above the boundary case (θ0 < θ <∞). To get the lower bound for θ0 < θ <∞, we

need the following result, the proof of this is given at the end of this proof.

Proposition 3.5.1. For every non-negatively supported probability µ 6= δ0 that admits

a finite mean, almost surely

log Y µ
n (θ)

nθ
→


ν(θ)
θ if θ < θ0 ≤ ∞;

ν(θ0)
θ0

if θ0 ≤ θ <∞.

Now observe that,

θR∗n(θ, µ) = max
|v|=n

{
θS(v) + log Yv − logEv

}
≥ max
|v|=n

{
θS(v) + log Yv

}
− logEvn , (3.32)

where vn ≡ vn(θ, µ) := arg max|v|=n
{
θS(v) + log Yv

}
. Also, observe

Y µ
n (θ + θ0) =

∑
|v|=n

e(θ+θ0)S(v)Yv ≤Wn(θ0) · emax|v|=n{θS(v)+log Yv}. (3.33)
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Therefore we have

θR∗n(θ, µ)

n
≥ log Y µ

n (θ + θ0)

n
− logWn(θ0)

n
− logEvn

n
. (3.34)

Since E
[
| logEvn |

]
is finite, the Borel–Cantelli lemma implies that the last terms on the

right-hand side of (3.34) converges to 0 almost surely. By Corollary 3.4.1 and Propo-

sition 3.5.1, the first and the second terms almost surely converges to (θ + θ0)ν(θ0)/θ0

and ν(θ0), respectively. Thus, we obtain that for θ0 < θ <∞,

lim inf
n→∞

R∗n(θ, µ)

n
≥ ν(θ0)

θ0
a.s. (3.35)

Combining (3.22), (3.31), and (3.35) completes the proof.

Proof of Proposition 3.5.1. Notice that Proposition 3.5.1 is only required to prove the

lower bound of Theorem 3.5.1 above the boundary case. We can therefore use the results

proved in the proof of the remaining cases to prove this proposition.

Now, Theorem 2.3.2 says that

θR∗n(θ, µ)
d

== log Y µ
n (θ)− logE.

Since E
[
| logE|

]
<∞, (3.21) and (3.30), together with the Borel-Cantelli lemma, imply

that for θ < θ0 ≤ ∞ and also for θ = θ0 <∞,

log Y µ
n (θ)

nθ
→ ν(θ)

θ
a.s., (3.36)

and for θ0 < θ <∞,

lim sup
n→∞

log Y µ
n (θ)

nθ
≤ ν(θ0)

θ0
a.s. (3.37)

So for any a > 0 and b ∈ R, we have almost surely

Y µ
n (a) · e−nb →


0 if a < θ0, b > ν(a);

∞ if a < θ0, b < ν(a);

0 if θ0 <∞, a ≥ θ0, b > aν(θ0)/θ0.

(3.38)
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Now, the exact similar argument as in the proof of Proposition 3.4.1 (v) suggests that

for θ0 <∞, a ≥ θ0 and b < aν(θ0)/θ0,

Y µ
n (a) · e−nb →∞ a.s. (3.39)

This, together with (3.38), implies that for θ0 < θ <∞,

log Y µ
n (θ)

nθ
→ ν(θ0)

θ0
a.s. (3.40)

Therefore, combining (3.36) and (3.40) proves the proposition.

It is worth mentioning that Corollary 3.4.1 gives an alternative proof of the following

well-known result of Biggins [9].

Theorem 3.5.2. Almost surely

Rn
n
→

 ν ′(θ0) if θ0 <∞;

limθ→∞ ν
′(θ) if θ0 =∞.

An alternative proof. From the definition, it follows that

Wn(θ) =
∑
|v|=n

eθS(v) ≥ eθRn .

Also,

Wn(2θ) =
∑
|v|=n

e2θS(v) ≤
∑
|v|=n

eθRn+θS(v)

= eθRn

∑
|v|=n

eθS(v)

 = eθRn ·Wn(θ).

Therefore we have for any θ > 0,

Wn(2θ)

Wn(θ)
≤ eθRn ≤Wn(θ). (3.41)

This implies

logWn(2θ)

nθ
− logWn(θ)

nθ
≤ Rn

n
≤ logWn(θ)

nθ
. (3.42)
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If θ0 <∞, then for any θ ∈ (θ0,∞), letting n→∞ and using Corollary 3.4.1, we get

2

(
ν(θ0)

θ0

)
− ν(θ0)

θ0
≤ lim inf

n→∞

Rn
n
≤ lim sup

n→∞

Rn
n
≤ ν(θ0)

θ0
a.s.,

which implies almost surely

Rn
n
→ ν(θ0)

θ0
= ν ′(θ0). (3.43)

Now, suppose θ0 = ∞. By Corollary 3.4.1, letting n → ∞ and then letting θ → ∞,

we obtain

lim
θ→∞

ν(2θ)

θ
− ν(θ)

θ
≤ lim inf

n→∞

Rn
n
≤ lim sup

n→∞

Rn
n
≤ lim

θ→∞

ν(θ)

θ
a.s.

Since ν is convex, we know that

lim
θ→∞

ν(θ)

θ
= lim

θ→∞
ν ′(θ), and also lim

θ→∞

ν(2θ)− ν(θ)

θ
= lim

θ→∞
ν ′(θ).

Therefore, almost surely

Rn
n
→ lim

θ→∞
ν ′(θ). (3.44)

Combining (3.43) and (3.44) completes the proof.

Remark 3.5.2: As pointed out by an anonymous referee, this alternative proof has

a direct relation with the proof by Kingman [25], where Kingman used the fact that

F′(θ0) = 0, where F is as in Remark 3.4.1. As explained in Remark 3.4.1, Corollary 3.4.1

relies on the fact that F′(θ0) = 0, which we have also used in the alternative proof.

3.5.2 Centered Asymptotic Limits

The centered asymptotic limits vary in the three different cases depending on the value

of the parameter θ as described above. We thus state the results separately for the three

cases.
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The Boundary case (θ = θ0 <∞)

Theorem 3.5.3. Assume that µ admits a finite mean, then there exists a random vari-

able H∞θ0 , which may depend on θ0, such that,

R∗n −
ν (θ0)

θ0
n+

1

2θ0
log n

d−→ H∞θ0 +
1

θ0
log〈µ〉. (3.45)

Remark 3.5.3: Notice that the coefficient for the linear term is exactly the same as

that of the centering of Rn as proved by Aı̈dékon [2]. However, the coefficient for the

logarithmic term is 1/3-rd of that of the centering of Rn as proved by Aı̈dékon [2]. The

limiting distribution is also similar to that obtained by Aı̈dékon [2], which is a randomly

shifted Gumbel distribution.

Proof. As mentioned in (3.15), for θ0 <∞, Aı̈dékon and Shi [3] have shown that under

the assumptions in Section 3.2,

√
nWn(θ0) · e−nν(θ0) =

√
nWn(θ0, ν(θ0))

p−→
(

2

πσ2

)1/2

D∞θ0 .

This, together with Proposition 3.4.2, implies that

√
nY µ

n (θ0) · e−nν(θ0) p−→
(

2

πσ2

)1/2

·D∞θ0 · 〈µ〉. (3.46)

Therefore, taking the logarithm of both sides and then applying Theorem 2.3.2, we

obtain the result in (3.45) with

H∞θ0 =
1

θ0

[
logD∞θ0 +

1

2
log

(
2

πσ2

)
− logE

]
, (3.47)

where E ∼ Exponential (1) and is independent of the BRW.

As we have seen in the proof of the above theorem, we have a slightly stronger result,

which is as follows:
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Theorem 3.5.4. Assume that µ admits a finite mean. Let

Ĥ∞θ0 =
1

θ0

[
logD∞θ0 +

1

2
log

(
2

πσ2

)]
, (3.48)

where

D∞θ0
a.s.
=== lim

n→∞
− 1

m (θ0)n
∑
|v|=n

(
θ0S(v)− nν (θ0)

)
eθ0S(v), (3.49)

σ2 := E

 1

m (θ0)

∑
|v|=1

(
θ0S(v)− ν (θ0)

)2
eθ0S(v)

 . (3.50)

Then

R∗n −
ν (θ0)

θ0
n+

1

2θ0
log n− Ĥ∞θ0

d−→ 1

θ0

[
log〈µ〉 − logE

]
, (3.51)

where E ∼ Exponential (1).

Remark 3.5.4: We note here that the H∞θ0 in Theorem 3.5.3 has the same distribution

as Ĥ∞θ0 −
1
θ0

logE, where E ∼ Exponential (1) and is independent of Ĥ∞θ0 .

Remark 3.5.5: One advantage of the above result is that we have been able to identify

the exact constant for the limit, which turns out to be 1
2 log

(
2
πσ2

)
, where σ2 is given

in the equation (3.50). As far as we know, this was not discovered in any of the earlier

works.

Proof. Observe that for any θ > 0,

θR∗n(θ, µ)− log Y µ
n (θ) = max

|v|=n

(
θS(v) + log Yv − logEv

)
− log

∑
|u|=n

eθS(u)Yu



= − log

min
|v|=n

Ev

(
eθS(v)Yv∑
|u|=n e

θS(u)Yu

)−1
 (3.52)

Let A be the σ-algebra generated by the BRW and {Yv}|v|=n. So, given A, the random

variables Ev
(

eθS(v)Yv∑
|u|=n e

θS(u)Yu

)−1

|v|=n



3.5 Convergence Results 45

are conditionally independent and

Ev

(
eθS(v)Yv∑
|u|=n e

θS(u)Yu

)−1
∣∣∣∣∣∣ A ∼ Exponential

(
eθS(v)Yv∑
|u|=n e

θS(u)Yu

)
.

Therefore

min
|v|=n

Ev

(
eθS(v)Yv∑
|u|=n e

θS(u)Yu

)−1
∣∣∣∣∣∣ A ∼ Exponential (1),

which is independent of A. Hence, we obtain

min
|v|=n

Ev

(
eθS(v)Yv∑
|u|=n e

θS(u)Yu

)−1

= E, (3.53)

where E ∼ Exponential (1) and is independent of A. By applying the above equation

to (3.52), we get

θR∗n(θ, µ)− log Y µ
n (θ) = − logE. (3.54)

This, together with (3.46), gives us the required result.

Below the Boundary case (θ < θ0 ≤ ∞)

Theorem 3.5.5. Assume that µ admits finite mean, then for θ < θ0 ≤ ∞, there exists

a random variable H∞θ , which may depend on θ, such that,

R∗n −
ν (θ)

θ
n

d−→ H∞θ +
1

θ
log〈µ〉. (3.55)

Remark 3.5.6: We note that in this case the logarithmic correction disappears.

Proof. As mentioned in (3.6), we have for any θ < θ0 ≤ ∞,

Wn(θ) · e−nν(θ) = Wn(θ, ν(θ))→ D∞θ a.s. (3.56)

Together with Proposition 3.4.2, this suggests that

Y µ
n (θ) · e−nν(θ) p−→ D∞θ · 〈µ〉. (3.57)
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Thus, taking the logarithm of both sides and then applying Theorem 2.3.2, we get the

result in (3.55) with

H∞θ =
1

θ

[
logD∞θ − logE

]
, (3.58)

where E ∼ Exponential (1) and is independent of the BRW.

Once again, just like in the boundary case, here too, we have a slightly stronger

result, which is as follows:

Theorem 3.5.6. Assume that µ admits a finite mean. Let

Ĥ∞θ =
1

θ
logD∞θ , (3.59)

where D∞θ is the mean 1 solution of the following linear RDE

∆
d

==
∑
|v|=1

eθS(v)−ν(θ)∆v, (3.60)

where ∆v are i.i.d. and has the same distribution as that of ∆; and E ∼ Exponential (1).

Then

R∗n −
ν (θ)

θ
n− Ĥ∞θ

d−→ 1

θ

[
log〈µ〉 − logE

]
. (3.61)

Remark 3.5.7: It is to be noted that the random variable H∞θ in Theorem 3.5.5 has

the same distribution as Ĥ∞θ −
1
θ logE, where E ∼ Exponential (1) and is independent

of Ĥ∞θ .

Proof. Combining (3.54) and (3.57) completes the proof.

Above the Boundary case (θ0 < θ <∞)

Theorem 3.5.7. Suppose µ = δ1,

R∗n −
ν(θ0)
θ0

n

log n

p−→ − 3

2θ0
. (3.62)

Remark 3.5.8: We would like to point out here that this is not the best result for this

case. For technical reasons, which will be clear from the proof, we have only been able
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to prove it for µ = δ1. Also, the result is unsatisfactory as it is not a centered limit as

in the other two cases. However, we note that we now capture the right constant for the

logarithmic correction.

Proof. Hu and Shi [24] have proved that under the assumptions in Section 3.2, for

θ0 < θ <∞,

1

log n

(
logWn(θ)− ν(θ0)

θ0
θn

)
p−→ − 3θ

2θ0
. (3.63)

Since Wn(θ) = Y δ1
n (θ), using Theorem 2.3.2, we get the required result.

3.6 A Specific Example

We consider the modified version of the i.i.d. Gaussian displacement binary BRW, where

N = 2 with probability one, Z = δξ1 + δξ2 with ξj ’s i.i.d. N(0, 1), and µ = δ1. In that

case,

ν(θ) = logE
[
eθξ1 + eθξ2

]
= log

(
2e

θ2

2

)
= log 2 +

θ2

2
.

Differentiating with respect to θ, we obtain

ν ′(θ) = θ.

From definition in (3.3), it follows that

log 2 +
θ2

0

2
= θ2

0 ⇒ θ0 =
√

2 log 2

Therefore, in view of Theorem 3.5.3, there exists a random variable, say, G∞ with a

randomly shifted Gumbel distribution such that

R∗n(
√

2 log 2, δ1)−
√

2 log 2n+
1

2
√

2 log 2
log n

d−→ G∞.

The corresponding result for Rn derived from Aı̈dékon’s [2] work is as follows.

Rn −
√

2 log 2n+
3

2
√

2 log 2
log n

d−→ G′∞,
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where G′∞ is a randomly shifted Gumbel-distributed random variable.



Chapter 4

Brunet-Derrida Type Results 1

4.1 Introduction

In this chapter, we present results of the type Brunet and Derrida [17] for convergence

of the extremal point processes. Their conjecture for the classical BRW was proved by

Madaule [29]. Here we present similar results for our LPM-BRW. It is to be noted that

the convergence of the point processes mentioned here is under the vague convergence

topology on the set of all counting measures on R.

Throughout this chapter, we will work under the assumptions (A1), (A2) and (A3)

as stated in Section 3.2.

4.2 Few Technical Results on Point Processes

In this section, we prove two technical facts, which we use to prove our main results.

Lemma 4.2.1. Let
{
Ei,n : 1 ≤ i ≤ mn, n ≥ 1

}
be an array of independent random vari-

ables with Ei,n ∼ Exponential (λi,n). Suppose for all n ≥ 1,
∑mn

i=1 λi,n = 1, and

1This chapter is based on Sections 2.3, 5.5 and 5.6 of the paper entitled “Right-most position of a
last progeny modified branching random walk” [7].

49
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limn→∞maxmni=1 λi,n = 0. Then as n→∞, the point process

mn∑
i=1

δEi,n
d−→ N ,

where N is a homogeneous Poisson point process on R+ with intensity 1.

Proof. Since
∑mn

i=1 λi,n = 1, limn→∞maxmni=1 λi,n = 0 means limn→∞mn = ∞. We fix

any k ∈ N. For mn > k, we denote E(1,n), E(2,n), . . . , E(k,n) as the first k order statistics

of {Ei,n : 1 ≤ i ≤ mn}. Then for 0 ≤ x1 ≤ x2 ≤ · · · ≤ xk, the joint density function of

E(1,n), E(2,n), . . . , E(k,n) is given by

fE(1,n),E(2,n),...,E(k,n)
(x1, x2, . . . , xk)

=
∑

(j1,j2,...,jk)

∈S(k,n)

 k∏
i=1

λji,ne
−λji,nxi

 ·


n∏
l=1

l 6=j1,j2,...,jk

e−λl,nxk



=
∑

(j1,j2,...,jk)

∈S(k,n)

 k∏
i=1

λji,n

 · exp

−
k∑
i=1

λji,nxi −
n∑
l=1

l 6=j1,j2,...,jk

λl,nxk

 , (4.1)

where

S(k, n) =
{

(j1, j2, . . . , jk) ∈ {1, 2, . . . ,mn}k : jr 6= jt for all 1 ≤ r < t ≤ k
}
.

Now, we use the following transformation.

Y1,n = E(1,n), Y2,n = E(2,n) − E(1,n), . . . , Yk,n = E(k,n) − E(k−1,n).
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The Jacobian of the above transformation is 1. Therefore for any non-negative real

numbers y1, y2, . . . , yk, the joint density function of Y1,n, Y2,n, . . . Yk,n is given by

fY1,n,Y2,n,...Yk,n(y1, y2, . . . , yk)

=
∑

(j1,j2,...,jk)

∈S(k,n)

 k∏
i=1

λji,n

 · exp

−
k∑
i=1

λji,n

 i∑
r=1

yr

− n∑
l=1

l 6=j1,j2,...,jk

λl,n

 k∑
r=1

yr




= exp

− k∑
r=1

yr

 ·
 ∑

(j1,j2,...,jk)

∈S(k,n)

 k∏
i=1

λji,n

 · exp

 k∑
r=2

r−1∑
i=1

λji,n

 yr


 . (4.2)

Now, observe that

∑
(j1,j2,...,jk)

∈S(k,n)

 k∏
i=1

λji,n

 ≤
mn∑
i=1

λi,n

k

≤
∑

(j1,j2,...,jk)

∈S(k,n)

 k∏
i=1

λji,n

+

(
k

2

)mn∑
i=1

λ2
i,n

mn∑
i=1

λi,n

k−2

.

Note that
∑mn

i=1 λi,n = 1. So, if we write λ∗n = maxmni=1 λi,n, we obtain

∑
(j1,j2,...,jk)

∈S(k,n)

 k∏
i=1

λji,n

 ≤ 1 ≤
∑

(j1,j2,...,jk)

∈S(k,n)

 k∏
i=1

λji,n

+

(
k

2

)
λ∗n.

Therefore we have

lim
n→∞

∑
(j1,j2,...,jk)

∈S(k,n)

 k∏
i=1

λji,n

 = 1. (4.3)

also, observe that

∑
(j1,j2,...,jk)

∈S(k,n)

 k∏
i=1

λji,n

 ≤ ∑
(j1,j2,...,jk)

∈S(k,n)

 k∏
i=1

λji,n

 · exp

 k∑
r=2

r−1∑
i=1

λji,n

 yr



≤
∑

(j1,j2,...,jk)

∈S(k,n)

 k∏
i=1

λji,n

 · exp

 k∑
r=2

(r − 1) yrλ
∗
n

 .
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Thus letting n→∞ and then applying (4.3), we get

lim
n→∞

∑
(j1,j2,...,jk)

∈S(k,n)

 k∏
i=1

λji,n

 · exp

 k∑
r=2

r−1∑
i=1

λji,n

 yr

 = 1 (4.4)

Applying this to (4.2), gives us

lim
n→∞

fY1,n,Y2,n,...Yk,n(y1, y2, . . . , yk) = exp

− k∑
r=1

yr

 . (4.5)

If we write the k-th order statistic of the homogeneous Poisson point process N as Q(k),

then the joint density function of Q(1), Q(2) −Q(1), . . . , Q(k) −Q(k−1) is given by

fQ(1),Q(2)−Q(1),...,Q(k)−Q(k−1)
(y1, y2, . . . , yk) = exp

− k∑
r=1

yr

 .

Therefore by Scheffe’s Theorem, we get

(
Y1,n, Y2,n, . . . Yk,n

) d−→
(
Q(1), Q(2) −Q(1), . . . , Q(k) −Q(k−1)

)
.

Equivalently, for any k ∈ N,

(
E(1,n), E(2,n), . . . , E(k,n)

)
d−→
(
Q(1), Q(2), . . . , Q(k)

)
. (4.6)

Now, take any continuous function f that vanishes outside a bounded set, say, [0,M ].

We fix any ε > 0, and choose k0 large enough so that P
(
N
(
[0,M ]

)
≥ k0

)
< ε. Observe

that for any x ∈ R,

∣∣∣∣∣∣∣P
(∫ ∞

0
f dN ≤ x

)
− P

 k0∑
i=1

f
(
Q(i)

)
≤ x


∣∣∣∣∣∣∣ ≤ P

(
N
(
[0,M ]

)
≥ k0

)
< ε. (4.7)
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By (4.6), we obtain

lim sup
n→∞

∣∣∣∣∣∣∣∣P
∫ ∞

0
f d

mn∑
i=1

δEi,n

 ≤ x
− P

 k0∑
i=1

f
(
E(i,n)

)
≤ x


∣∣∣∣∣∣∣∣

≤ lim
n→∞

P
(
E(k0,n) ≤M

)
= P

(
Q(k0) ≤M

)
< ε. (4.8)

In view of (4.6), we also get that

lim
n→∞

P

 k0∑
i=1

f
(
E(i,n)

)
≤ x

 = P

 k0∑
i=1

f
(
Q(i)

)
≤ x

 . (4.9)

Thus, by combining (4.7), (4.8), and (4.9), and letting ε→ 0, we finally obtain

∫ ∞
0

f d

mn∑
i=1

δEi,n

 d−→
∫ ∞

0
f dN . (4.10)

This, together with Proposition 11.1.VII of Daley and Vere-Jones [18], gives

mn∑
i=1

δEi,n
d−→ N .

This completes the proof.

Remark 4.2.1: An alternative derivation of Lemma 4.2.1 can be obtained using Rényi’s

representation [31] and the generalized version of it by Tikhov (see equation (3) of

Tikhov [33]). The details of such a derivation are similar to the proof presented here.

For the sake of completeness, we have provided our own proof.

Lemma 4.2.2. If N =
∑

j≥1 δzj is a homogeneous Poisson point process on R+ with

intensity 1, then Y =
∑

j≥1 δ− log zj is an inhomogeneous Poisson point process on R

with intensity measure e−x dx.

Proof. For any Borel set B ⊂ R, we have that

Y(B) = N ({e−x : x ∈ B}) ∼ Poisson(ΛB), (4.11)



54 Chapter 4: Brunet-Derrida Type Results

where

ΛB =

∫
{e−x:x∈B}

dx =

∫
B
e−x dx.

Also, note that for any disjoint Borel sets B1, B2, . . . , Bk, the random variables N ({e−x :

x ∈ B1}),N ({e−x : x ∈ B2}), . . . ,N ({e−x : x ∈ Bk}) are independent, which means

Y(B1),Y(B2), . . . ,Y(Bk) are also independent. This, together with (4.11), completes

the proof.

4.3 Convergence Results

For any θ < θ0 ≤ ∞, we define

Zn(θ) :=
∑
|v|=n

δ{θS(v)−logEv−nν(θ)−logD∞θ }, (4.12)

where D∞θ is defined in the Theorem 3.5.6. Also for θ = θ0 <∞, we define

Zn(θ0) :=
∑
|v|=n

δ{
θ0S(v)−logEv−nν(θ0)+ 1

2
logn−logD∞θ0

− 1
2

log
(

2
πσ2

)}, (4.13)

where D∞θ0 and σ2 are as in Theorem 3.5.4.

Our first result is the weak convergence of the point processes
(
Zn (θ)

)
n≥0

.

Theorem 4.3.1. For θ < θ0 ≤ ∞ or θ = θ0 <∞,

Zn(θ)
d−→ Y,

where Y is a Poisson point process on R with intensity measure e−x dx.

Proof. Let F be the σ-algebra generated by the BRW. We know that conditioned on F ,{
EvWn(θ)e−θS(v) : |v| = n, n ≥ 1

}
are independent, and

EvWn(θ)e−θS(v)
∣∣∣F ∼ Exponential

(
eθS(v)

Wn(θ)

)
.
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Note that ∑
|v|=n

eθS(v)

Wn(θ)
= 1,

and by (3.18), we also have that for θ < θ0 ≤ ∞ or θ = θ0 <∞,

max
|v|=n

eθS(v)

Wn(θ)

p−→ 0.

Therefore by Lemma 4.2.1, for any positive integer k, Borel sets B1, B2, . . . , Bk and

non-negative integers t1, t2, . . . , tk, we have

P

∑
|v|=n

δEvWn(θ)e−θS(v)(B1) = t1, . . . ,
∑
|v|=n

δEvWn(θ)e−θS(v)(Bk) = tk

∣∣∣∣∣∣F


p−→ P
(
N (B1) = t1, . . . ,N (Bk) = tk

)
, (4.14)

where N is a homogeneous Poisson point process on R+ with intensity 1. Therefore,

using the dominated convergence theorem, we get

P

∑
|v|=n

δEvWn(θ)e−θS(v)(B1) = t1, . . . ,
∑
|v|=n

δEvWn(θ)e−θS(v)(Bk) = tk


→ P

(
N (B1) = t1, . . . ,N (Bk) = tk

)
. (4.15)

or equivalently (see Theorem 11.1.VII of Daley and Vere-Jones [18]),

∑
|v|=n

δEvWn(θ)e−θS(v)
d−→ N . (4.16)

Since − log(.) is continuous and therefore Borel measurable, (4.16) suggests that

Un(θ) :=
∑
|v|=n

δθS(v)−logEv−logWn(θ)
d−→ Y, (4.17)

where Y is a Poisson point process on R with intensity measure e−x dx. To simplify the

notations, for all θ < θ0 ≤ ∞, we denote

An(θ) := nν(θ) + logD∞θ ,
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and for θ = θ0 <∞, we denote

An(θ0) := nν(θ0)− 1

2
log n+ logD∞θ0 +

1

2
log

(
2

πσ2

)
.

Recall that by (3.6) and (3.15), for θ < θ0 ≤ ∞ or θ = θ0 <∞,

An(θ)− logWn(θ)
p−→ 0. (4.18)

Now, take any positive integer k, non-negative integers {ti}ki=1, and extended real num-

bers {ai}ki=1 and {bi}ki=1 with ai < bi for all i. We choose δ ∈
(

0,minki=1(bi − ai)/2
)

.

Then, we have

P
(
Un(θ)

(
(a1 − δ, b1 + δ)

)
≤ t1, . . . ,Un(θ)

(
(ak − δ, bk + δ)

)
≤ tk

)
− P

(∣∣An(θ)− logWn(θ)
∣∣ > δ

)
≤ P

(
Zn(θ)

(
(a1, b1)

)
≤ t1, . . . , Zn(θ)

(
(ak, bk)

)
≤ tk

)
≤ P

(
Un(θ)

(
(a1 + δ, b1 − δ)

)
≤ t1, . . . ,Un(θ)

(
(ak + δ, bk − δ)

)
≤ tk

)
+ P

(∣∣An(θ)− logWn(θ)
∣∣ > δ

)
. (4.19)

Now, by (4.17), we have Un(θ)
d−→ Y, which by Lemma 4.2.2 is a Poisson point process

with intensity e−x dx and is therefore continuous. Thus, by allowing n → ∞ and then

letting δ → 0, from inequality (4.19) we get that

lim
n→∞

P
(
Zn(θ)

(
(a1, b1)

)
≤ t1, . . . , Zn(θ)

(
(ak, bk)

)
≤ tk

)
= P

(
Y
(
(a1, b1)

)
≤ t1, . . . ,Y

(
(ak, bk)

)
≤ tk

)
,

or equivalently, Zn(θ)
d−→ Y. This, together with Lemma 4.2.2, completes the proof.

Following is a slightly weaker version of the above theorem, which is essentially a

point process convergence of the appropriately centered LPM-BRW model.
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Theorem 4.3.2. For θ < θ0 ≤ ∞,

∑
|v|=n

δ{θS(v)−logEv−nν(θ)}
d−→
∑
j≥1

δζj+logD∞θ
,

and for θ = θ0 <∞,

∑
|v|=n

δ{θ0S(v)−logEv−nν(θ0)+ 1
2

logn}
d−→
∑
j≥1

δ
ζj+logD∞θ0

+ 1
2

log
(

2
πσ2

),

where Y =
∑

j≥1 δζj is a Poisson point process on R with intensity measure e−x dx,

which is independent of the BRW.

Proof. For θ < θ0 ≤ ∞, we define

Ũn(θ) :=
∑
|v|=n

δθS(v)−logEv−logWn(θ)+logD∞θ
.

and for θ = θ0 <∞, we define

Ũn(θ0) :=
∑
|v|=n

δ
θ0S(v)−logEv−logWn(θ0)+logD∞θ0

+ 1
2

log
(

2
πσ2

).

By an argument similar to that of the proof of Theorem 4.3.1, we get that for θ < θ0 ≤ ∞,

Ũn(θ)
d−→
∑
j≥1

δζj+logD∞θ
.

and for θ = θ0 <∞,

Ũn(θ0)
d−→
∑
j≥1

δ
ζj+logD∞θ0

+ 1
2

log
(

2
πσ2

),
where Y =

∑
j≥1 δζj is a Poisson point process on R with intensity measure e−x dx,

which is independent of the BRW. Now, for θ < θ0 ≤ ∞, we write

Z̃n(θ) :=
∑
|v|=n

δ{θS(v)−logEv−nν(θ)},
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and for θ = θ0 <∞, we write

Z̃n(θ0) :=
∑
|v|=n

δ{θ0S(v)−logEv−nν(θ0)+ 1
2

logn}.

Then by replacing Un by Ũn and Zn by Z̃n in inequality (4.19) and then letting n→∞

and δ → 0 gives us the required result.

Now, we denote Ymax as the right-most position of the point process Y, and we write

Y as the point process Y seen from its right-most position, that is,

Y =
∑
j≥1

δζj−Ymax .

Following result is an immediate corollary of the above theorem, which confirms that

the Brunet-Derrida Conjecture holds for our model when θ < θ0 ≤ ∞ or θ = θ0 <∞.

Theorem 4.3.3. For θ < θ0 ≤ ∞ or θ = θ0 <∞,

∑
|v|=n

δ{θS(v)−logEv−θR∗n(θ,δ1)}
d−→ Y.

Remark 4.3.1: As in Theorem 1.4.10, Madaule [29] showed the convergence of the cen-

tered point process obtained in the classical setup to a decorated Poisson point process.

However, unlike in our case, he could not explicitly derive the limiting point process.

Although it is to be noted that in our case the decoration disappears. This is because

for the boundary and below the boundary cases,

max
|v|=n

eθS(v)

Wn(θ)

p−→ 0. (4.20)

However, (4.20) does not hold for above the boundary case. This added complication is

the main reason that the results for above the boundary case remains open.

Remark 4.3.2: The point process Y can be described explicitly in the following way:

Let N =
∑

j≥1 δzj be a homogeneous Poisson point process on R+ with intensity 1 and
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E ∼ Exponential (1) be independent of N . Then

Y d
== δ0 +

∑
j≥1

δ− log(1+(zj/E)).





Chapter 5

Large Deviations 1

5.1 Introduction

In Chapter 3, we have learned that for any θ > 0, R∗n(θ, µ)/n converges almost surely

to a finite constant, as mentioned in (3.20). If we call the limit as c(θ), then we have

lim
n→∞

P
(
R∗n(θ, µ)

n
> x

)
= 0 for x > c(θ); and also

lim
n→∞

P
(
R∗n(θ, µ)

n
< x

)
= 0 for x < c(θ).

This chapter investigates the exponential decay rates of these probabilities, which is in

essence a problem of large deviation principle (LDP). To study them, we need slightly

more solid assumptions about the model, which are as follows.

(A1′) The progeny point process Z consists of N i.i.d. copies of a random variable,

say X, whose moment-generating function is finite everywhere, i.e., for all

λ ∈ R,

mX(λ) = E
[
eλX

]
<∞.

1This chapter is based on the paper entitled “Large deviations for the right-most position of a last
progeny modified branching random walk” [22].
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(A2′) The point process Z is non-trivial, i.e., P(N = 1) < 1 and P(X = t) < 1 for

any t ∈ R. The extinction probability of the underlying branching process is

zero, i.e., P(N = 0) = 0.

(A3′) N has finite (1 + p)-th moment for some p > 0.

(A4′) For all k ∈ Z, ∫ ∞
0

xk dµ(x) <∞.

Note that under assumption (A1′), the moment-generating function of the progeny point

process Z

m(λ) = E

 N∑
i=1

eλXi

 = mX(λ) · E[N ].

So if we denote φ(λ) := logmX(λ), then we have

ν(λ) = φ(λ) + logE[N ]. (5.1)

5.2 The Rate Function

Let {Xn}n≥1 be i.i.d. copies of X. We define Sn :=
∑n

i=1Xi. It follows from Cramér’s

theorem (see Dembo and Zeitouni [19]) that the laws of {Sn/n}n≥1 satisfy the large

deviation principle with the rate function

I(x) := sup
λ∈R

λx− φ(λ). (5.2)

Since ν is strictly convex and differentiable, so is φ. Thus, using Theorem 1 of

Rockafellar [32], we obtain that I(x) is strictly convex and differentiable on the interior

of its effective domain DI := {x ∈ R : I(x) <∞} with I ′(x) = (φ′)−1(x). This implies

I ′
(
E[X]

)
= 0, and lim

x ↓ inf DI
I ′(x) = −∞.

Therefore, whenever ρ := − logP(N = 1) is finite, there exists a unique point aρθ ∈(
inf DI ,E[X]

)
such that a tangent from the point

(
c(θ), 0

)
to the graph of I(x) + ρ
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touches the graph at x = aρθ, i.e., aρθ satisfies

I
(
aρθ
)

+ ρ

aρθ − c(θ)
= I ′

(
aρθ
)
. (5.3)

We denote d(θ) := max
{
c(θ), φ′(θ)

}
. Then we have

Theorem 5.2.1. The laws of {R∗n(θ, µ)/n}n≥1 satisfy the large deviation principle with

the rate function

Ψθ(x) :=



θx− φ(θ)− logE[N ] if x > d(θ); (i)

I(x)− logE[N ] if c(θ) < x ≤ d(θ); (ii)

0 if x = c(θ); (iii)

I ′
(
aρθ
) (
x− c(θ)

)
if aρθ ≤ x < c(θ) and ρ <∞; (iv)

I(x) + ρ if x < aρθ and ρ <∞; (v)

∞ if x < c(θ) and ρ =∞. (vi)

We refer to Figure 5.1 for an illustration of the theorem.

To prove Theorem 5.2.1, we need the following lemma, which provides LDP for each

of the branches of the LPM-BRW.

Lemma 5.2.1. Let Y ∼ µ and E ∼ Exponential (1) be independent of each other and

also independent of the random variables {Xn}n≥1. Then, for any θ > 0, the laws of{
Sn
n + 1

nθ log(Y/E)
}
n≥1

satisfy the large deviation principle with the rate function

Iθ(x) :=

 I(x) if x ≤ φ′(θ);

θx− φ(θ) if x ≥ φ′(θ).
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d(θ)c(θ)

∞

aρθ

(i)(ii)(iii)(iv)(v)

(vi)

θx
−
φ(
θ)
−
lo
g
E[
N
]

I(
x)
−
lo
gE
[N
]

I ′ (
a ρ
θ
) (
x− c(θ) )

I(x) +
ρ

E[X]

Figure 5.1: Illustration of Theorem 5.2.1

Proof. For each θ > 0 and λ ∈ R, we define

Υθ(λ) : = lim
n→∞

1

n
logE

[
eλSn+λ

θ
log(Y/E)

]

= lim
n→∞

1

n
log

(
enφ(λ) · E

[
Y λ/θ

]
· E
[
E−λ/θ

])
=

 φ(λ) if λ < θ;

∞ if λ ≥ θ.

Its Fenchel-Legendre transform is

Υ∗θ(x) := sup
λ∈R

λx−Υθ(λ) = sup
λ<θ

λx− φ(λ) = Iθ(x).

Since 0 belongs to the interior of the set
{
λ ∈ R : Υθ(λ) <∞

}
, it follows from the

Gärtner-Ellis theorem (see Dembo and Zeitouni [19]) that for any closed set F ,

lim sup
n→∞

1

n
logP

(
Sn
n

+
1

nθ
log(Y/E) ∈ F

)
≤ − inf

x∈F
Iθ(x), (5.4)
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and for any open set G,

lim inf
n→∞

1

n
logP

(
Sn
n

+
1

nθ
log(Y/E) ∈ G

)
≥ − inf

x∈G, x<φ′(θ)
Iθ(x). (5.5)

Note that since Y is a positive random variable, there exists a constant α > 0 such that

P(Y > α) > 0. Now, for any x ≥ φ′(θ), we have

P
(
Sn
n

+
1

nθ
log(Y/E) > x

)
≥ P

(
Sn > nφ′(θ)

)
· P(Y > α) · P

(
E < αe−nθ(x−φ

′(θ))
)
.

Therefore using Cramér’s theorem, we get

lim inf
n→∞

1

n
logP

(
Sn
n

+
1

nθ
log(Y/E) > x

)
≥ −I

(
φ′(θ)

)
− θ

(
x− φ′(θ)

)
= −Iθ(x). (5.6)

Combining (5.5) and (5.6), we obtain that for any open set G,

lim inf
n→∞

1

n
logP

(
Sn
n

+
1

nθ
log(Y/E) ∈ G

)
≥ − inf

x∈G
Iθ(x).

This, together with (5.4), completes the proof.

Now we have all the machinery to prove the theorem.

Proof of Theorem 5.2.1. Proof of Part (vi). Recall that as in (3.24), we have

R∗n(θ, µ) ≥ S(ũm) + max
|u|=m

R
∗(u)
n−m(θ, µ).

Since {S(u)}|u|=m are identically distributed and are independent of {R∗(u)
n−m}|u|=m, we

also have

S(ũm)
d

== Sm. (5.7)

Now, for any x < c(θ) and ε ∈
(
0, c(θ)− x

)
, an argument exactly similar to that

in (3.25) gives us

P(R∗n < nx) ≤ E
[
P
(
R∗n−b

√
nc < n(x+ ε)

)Nb√nc]
+ P

(
Sb
√
nc < −nε

)
. (5.8)
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Here bxc denotes the greatest integer less than or equal to x, and Nk represents the total

number of particles at generation k. Note that Nk is at least 2k since P(N = 1) = 0.

Now since x+ ε < c(θ), which is the almost sure limit of R∗
n−b
√
nc/n, we have

lim sup
n→∞

1

n
logE

[
P
(
R∗n−b

√
nc < n(x+ ε)

)Nb√nc]

≤ lim
n→∞

2b
√
nc

n
logP

(
R∗n−b

√
nc < n(x+ ε)

)
= −∞. (5.9)

Let {tn}n≥1 be a non-negative real sequence increasing to ∞ such that φ(−tn) ≤ log n.

Such a sequence exists since φ(λ) <∞ for all λ ≤ 0. We can construct such a sequence

by the following recursive relation

t1 = 0, and for all n ≥ 2, tn =

 tn−1 + 1 if φ(−tn−1 − 1) ≤ log n;

tn−1 otherwise.

Then using Markov’s inequality we obtain

lim sup
n→∞

1

n
logP

(
Sb
√
nc < −nε

)
≤ lim

n→∞

1

n
log

(
e−ntnε · E

[
e−tnSb

√
nc
])

= lim
n→∞

−tnε+
b
√
ncφ(−tn)

n
= −∞. (5.10)

Therefore, by combining (5.8), (5.9), and (5.10), we get that for ρ =∞ and all x < c(θ),

lim
n→∞

− 1

n
logP(R∗n < nx) =∞. (5.11)

Proof of Parts (iv) & (v). (Lower bound). Take any x < c(θ) and t ∈ (0, 1]. Observe

that for |v| = dtne and ε > 0,

P(R∗n < nx) ≥ P
(
S(v) +R

∗(v)
b(1−t)nc < nx,Ndtne = 1

)
≥ P

(
Ndtne = 1

)
· P
(
R∗b(1−t)nc < n(1− t)(c(θ) + ε)

)
· P
(
Sdtne < nx− n(1− t)(c(θ) + ε)

)
. (5.12)
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Here dxe denotes the smallest integer greater than or equal to x. Also, note that Ndtne,

S(v) and R
∗(v)
b(1−t)nc are independent of each other, which implied the last inequality. For

the first term on the right-hand side, we have

lim
n→∞

1

n
logP

(
Ndtne = 1

)
= lim

n→∞

1

n
logP(N = 1)dtne = −ρt. (5.13)

For t = 1, the second term equals P(Y < E) > 0, and for t ∈ (0, 1), c(θ) is the almost

sure limit of R∗b(1−t)nc/
(
n(1− t)

)
. Therefore for all t ∈ (0, 1], we have

lim
n→∞

1

n
logP

(
R∗b(1−t)nc < n(1− t)(c(θ) + ε)

)
= 0. (5.14)

Finally, for the last term, using Cramér’s theorem, we get

lim
n→∞

1

n
logP

(
Sdtne < nx− n(1− t)(c(θ) + ε)

)
= −tI

(
x− (1− t)(c(θ) + ε)

t

)
, (5.15)

whenever

0 < t ≤ f(x) := min

{
1,

c(θ)− x
c(θ)− E[X]

}
.

So, by combining (5.12), (5.13), (5.14), and (5.15), and allowing ε ↓ 0, we obtain

lim inf
n→∞

1

n
logP(R∗n < nx) ≥ − inf

0<t≤f(x)

{
ρt+ tI

(
x− (1− t)c(θ)

t

)}
.

Since I
((
x− (1− t)c(θ)

)
/t
)

is non-decreasing for t ≥
(
c(θ)− x

)
/
(
c(θ)− E[X]

)
, the

above inequality implies

lim inf
n→∞

1

n
logP(R∗n < nx) ≥ − inf

0<t≤1

{
ρt+ tI

(
x− (1− t)c(θ)

t

)}
. (5.16)

(Upper bound). Now, we fix any k ∈ N and define ni =
⌊
nif(x)/k

⌋
for all i =

0, 1, 2, . . . , k. Since Nn0 = N0 = 1, for any n ≥ 2, we have

P(R∗n < nx) =

k−2∑
i=0

P
(
Nni < n2, Nni+1 ≥ n2

)
· P
(
R∗n < nx

∣∣Nni < n2, Nni+1 ≥ n2
)

+ P
(
Nnk−1

< n2
)
· P
(
R∗n < nx

∣∣Nnk−1
< n2

)
. (5.17)
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Using Theorem 2.5 of Gantert and Höfelsauer [21], we get that for 1 ≤ i ≤ k − 1,

lim
n→∞

1

n
logP(Nni < n2) = − if(x)ρ

k
. (5.18)

On the other hand, using inequality (3.24), we have for all ε > 0 and 0 ≤ i ≤ k − 2,

P
(
R∗n < nx

∣∣Nni < n2, Nni+1 ≥ n2
)

≤ P
(
S(ũni+1) < nx− (n− ni+1)(c(θ)− ε)

∣∣Nni < n2, Nni+1 ≥ n2
)

+ P

(
max
|u|=ni+1

R
∗(u)
n−ni+1

< (n− ni+1)(c(θ)− ε)

∣∣∣∣∣Nni < n2, Nni+1 ≥ n2

)

≤ P
(
Sni+1 < nx− (n− ni+1)(c(θ)− ε)

)
+ P

(
R∗n−ni+1

< (n− ni+1)(c(θ)− ε)
)n2

.

(5.19)

Notice that S(ũni+1) is independent of Nni and Nni+1 , and by (5.7), it has the same

distribution as Sni+1 , which implied the last inequality. Now, we know that c(θ) is the

almost sure limit of R∗n−ni+1
/(n− ni+1). Therefore for any i = 0, 1, 2, . . . , k − 2,

lim
n→∞

1

n
logP

(
R∗n−ni+1

< (n− ni+1)(c(θ)− ε)
)n2

= −∞.

Thus, from (5.19), we get that for any i = 0, 1, 2, . . . , k − 2 and ε > 0 small enough,

lim sup
n→∞

1

n
logP

(
R∗n < nx

∣∣Nni < n2, Nni+1 ≥ n2
)

≤ lim
n→∞

1

n
logP

(
Sni+1 < nx− (n− ni+1)(c(θ)− ε)

)

=− (i+ 1)f(x)

k
· I

x−
(

1− (i+1)f(x)
k

) (
c(θ)− ε

)
(i+1)f(x)

k

 . (5.20)

For the last term of (5.17), if f(x) =
(
c(θ)− x

)
/
(
c(θ)− E[X]

)
, we trivially have

lim sup
n→∞

1

n
logP

(
R∗n < nx

∣∣Nnk−1
< n2

)
≤ 0 = −f(x) · I

(
E[X]

)
.
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and if f(x) = 1, we have x ≤ E[X]. In that case, from Lemma 5.2.1, we have

lim sup
n→∞

1

n
logP

(
R∗n < nx

∣∣Nnk−1
< n2

)
≤ lim sup

n→∞

1

n
logP

(
Sn +

1

θ
log(Y/E) < nx

)
= −I(x).

Combining the above two inequalities, we get

lim sup
n→∞

1

n
logP

(
R∗n < nx

∣∣Nnk−1
< n2

)
≤ −f(x) · I

(
x− (1− f(x))c(θ)

f(x)

)
. (5.21)

Therefore, by combining (5.17), (5.18), (5.20), and (5.21), and then allowing ε ↓ 0 and

k →∞, we obtain

lim sup
n→∞

1

n
logP(R∗n < nx) ≤ − inf

0<t≤1

{
ρt+ tI

(
x− (1− t)c(θ)

t

)}
. (5.22)

This, together with (5.16), implies that for any x < c(θ) and ρ <∞,

lim
n→∞

− 1

n
logP(R∗n < nx) = inf

0<t≤1

{
ρt+ tI

(
x− (1− t)c(θ)

t

)}

= inf
y≤x

{(
ρ+ I(y)

) c(θ)− x
c(θ)− y

}

=
(
c(θ)− x

)(
inf
y≤x

{
ρ+ I(y)

c(θ)− y

})

=


I ′
(
aρθ
) (
x− c(θ)

)
if aρθ ≤ x < c(θ);

I(x) + ρ if x < aρθ.

(5.23)

Proof of Part (iii). This part follows from (3.20).

Proof of Part (ii). Note that c(θ) < d(θ) means d(θ) = φ′(θ) = ν ′(θ). Therefore, c(θ) <

d(θ) occurs iff θ0 <∞ and θ > θ0. So this part is only relevant for this range of θ.
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(Upper bound). Take any x ∈ (c(θ), d(θ)] and observe that

P(R∗n > nx) = E
[
P(R∗n > nx|Nn)

]
≤ E

[
Nn · P

(
Sn +

1

θ
log(Y/E) > nx

)]

=
(
E[N ]

)n · P(Sn +
1

θ
log(Y/E) > nx

)
.

Since φ′(θ) ≥ x > c(θ) > E[X], using Lemma 5.2.1, we get

lim sup
n→∞

1

n
logP(R∗n > nx) ≤ logE[N ]− I(x). (5.24)

(Lower bound). For any α ∈ (0, 1), using inequality (3.24), we obtain

P(R∗n > nx) ≥ P

(
S(ũbαnc) + max

|u|=bαnc
R
∗(u)
d(1−α)ne > nx

)

≥ P
(
S(ũbαnc) > bαncx

)
· P

(
max
|u|=bαnc

R
∗(u)
d(1−α)ne > d(1− α)nex

)

≥ P
(
Sbαnc > bαncx

)
· P
(
Nbαnc >

1

2
· E[N ]bαnc

)

· P

(
max
|u|=bαnc

R
∗(u)
d(1−α)ne > d(1− α)nex

∣∣∣∣∣Nbαnc > 1

2
· E[N ]bαnc

)

≥ P
(
Sbαnc > bαncx

)
· P
(
Nbαnc >

1

2
· E[N ]bαnc

)

·

1−
(

1− P
(
R∗d(1−α)ne > d(1− α)nex

)) 1
2
·E[N ]bαnc

 .

Note that for any a ∈ [0, 1] and t ≥ 2,

1− (1− a)t − at+ a2t2 =

∫ a

0

∫ r

0

(
2t2 − t(t− 1)(1− s)t−2

)
ds dr ≥ 0

⇒ 1− (1− a)t ≥ at(1− at).
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Therefore, for all large enough n, we get

P(R∗n > nx) ≥ P
(
Sbαnc > bαncx

)
· P
(
Nbαnc >

1

2
· E[N ]bαnc

)

· 1

2
· E[N ]bαnc · P

(
R∗d(1−α)ne > d(1− α)nex

)
·
(

1− 1

2
· E[N ]bαnc · P

(
R∗d(1−α)ne > d(1− α)nex

))
. (5.25)

Note that since c(θ) = ν(θ0)/θ0, we have

I(x) = sup
λ∈R

λx− φ(λ) ≥ θ0x− φ(θ0) = θ0

(
x− c(θ)

)
+ logE[N ].

Now, for all x ∈ (c(θ), d(θ)], we choose αx such that

o < αx <
θ0

(
x− c(θ)

)
θ0

(
x− c(θ)

)
+ logE[N ]

,

which ensures (1− αx)I(x) > logE[N ]. Together with (5.24), this implies

lim
n→∞

E[N ]bαxnc · P
(
R∗d(1−αx)ne > d(1− αx)nex

)
= 0.

Therefore, for α = αx, the last term on the right-hand side of (5.25) tends to 1, as n

tends to ∞. Also, assumption (A3′) implies that (see Athreya and Ney [5])

lim
n→∞

P
(
Nbαxnc >

1

2
· E[N ]bαxnc

)
> 0.

Thus inequality (5.25) indicates

lim inf
n→∞

1

n
logP(R∗n > nx) ≥ lim

n→∞

1

n
logP

(
Sbαxnc > bαxncx

)
+ lim
n→∞

1

n
logE[N ]bαxnc

+ lim inf
n→∞

1

n
logP

(
R∗d(1−αx)ne > d(1− αx)nex

)
.
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Together with Cramér’s theorem, this implies

lim inf
n→∞

1

n
logP(R∗n > nx) ≥ αx

(
logE[N ]− I(x)

)
+ (1− αx) lim inf

n→∞

1

n
logP(R∗n > nx).

(5.26)

Since I(x) is finite for x ∈
(
c(θ), d(θ)

]
=
(
φ′(θ0), φ′(θ)

]
, using Lemma 5.2.1, we have

lim inf
n→∞

1

n
logP(R∗n > nx) ≥ lim

n→∞

1

n
logP

(
Sn +

1

θ
log(Y/E) > nx

)
= −I(x) > −∞.

So, from (5.26), we get

lim inf
n→∞

1

n
logP(R∗n > nx) ≥ logE[N ]− I(x). (5.27)

Combining (5.24) and (5.27), we obtain that for all x ∈
(
c(θ), d(θ)

]
,

lim
n→∞

− 1

n
logP

(
R∗n > nx

)
= I(x)− logE[N ]. (5.28)

Proof of Part (i). (Upper bound). Using Markov’s inequality, we obtain that for any

x ∈ R and any λ < θ,

P(R∗n > nx) ≤ e−nλx · E
[
eλR

∗
n

]
≤ e−nλx · E

∑
|v|=n

eλS(v)Y λ/θ
v E−λ/θv


= e−nλx · E[N ]n · enφ(λ) · E

[
Y λ/θ

]
· Γ
(

1− λ

θ

)
.

Since this inequality holds for all λ < θ, we have

lim sup
n→∞

1

n
logP(R∗n > nx) ≤ lim

λ↑θ
−λx+ φ(λ) + logE[N ]

= −θx+ φ(θ) + logE[N ]. (5.29)
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(Lower bound). For any x > d(θ) and any ε > 0, from Theorem 2.3.2, we get

P
(
R∗n(θ, µ)

n
> x

)
= P

(
log Y µ

n (θ)

nθ
− logE

nθ
> x

)

≥ P

(
log Y µ

n (θ)

nθ
> d(θ)− 2ε

)
· P
(
− logE

nθ
> x− d(θ) + 2ε

)
.

(5.30)

Now, take any θ1 ≥ θ and denote µ1 as the distribution of Y θ1/θ. Then we have

(
Y µ
n (θ)

)1/θ
=

∑
|v|=n

eθS(v)Yv

1/θ

≥

∑
|v|=n

eθ1S(v)Y θ1/θ
v

1/θ1

=
(
Y µ1
n (θ1)

)1/θ1 . (5.31)

From Theorem 2.3.2, we also have

P
(
R∗n(θ1, µ1)

n
> d(θ)− ε

)
= P

(
log Y µ1

n (θ1)

nθ1
− logE

nθ1
> d(θ)− ε

)

≤ P

(
log Y µ1

n (θ1)

nθ1
> d(θ)− 2ε

)
+ P

(
− logE

nθ1
> ε

)
.

(5.32)

Therefore, by combining (5.30), (5.31), and (5.32), we obtain

P
(
R∗n(θ, µ)

n
> x

)
≥

(
P
(
R∗n(θ1, µ1)

n
> d(θ)− ε

)
− P

(
− logE

nθ1
> ε

))

· P
(
− logE

nθ
> x− d(θ) + 2ε

)
. (5.33)

Observe that for any t > 0,

lim
n→∞

1

n
logP(− logE > nt) = lim

n→∞

1

n
log
(

1− e−e−nt
)

= −t. (5.34)

Now, for θ < θ0 ≤ ∞ or θ = θ0 < ∞, we take θ1 = θ. In that case, d(θ) = c(θ), which

implies

lim
n→∞

1

n
logP

(
R∗n(θ1, µ1)

n
> d(θ)− ε

)
= 0.
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As a result, in view of (5.33) and (5.34), we get that for θ < θ0 or θ = θ0 <∞,

lim inf
n→∞

1

n
logP

(
R∗n(θ, µ)

n
> x

)
≥ −θ

(
x− d(θ) + 2ε

)
. (5.35)

For θ0 < θ <∞, we know that c(θ) < d(θ). So choosing ε < d(θ)− c(θ), by part (ii) of

the theorem, we have

lim
n→∞

1

n
logP

(
R∗n(θ1, µ1)

n
> d(θ)− ε

)
= −Ψθ1

(
d(θ)− ε

)
= −Ψθ

(
d(θ)− ε

)
.

Now, we choose θ1 large enough such that θ1ε > Ψθ

(
d(θ)− ε

)
, which ensures

lim
n→∞

1

n
log

(
P
(
R∗n(θ1, µ1)

n
> d(θ)− ε

)
− P

(
− logE

nθ1
> ε

))
= −Ψθ

(
d(θ)− ε

)
.

Together with (5.33) and (5.34), this implies that for θ0 < θ <∞,

lim inf
n→∞

1

n
logP

(
R∗n(θ, µ)

n
> x

)
≥ −Ψθ

(
d(θ)− ε

)
− θ

(
x− d(θ) + 2ε

)
. (5.36)

Since ε > 0 can be chosen arbitrarily small and Ψθ is continuous in [c(θ),∞), by com-

bining (5.35) and (5.36), we get that for any θ > 0,

lim inf
n→∞

1

n
logP

(
R∗n(θ, µ)

n
> x

)
≥ −Ψθ

(
d(θ)

)
− θ

(
x− d(θ)

)
= −Ψθ (x) . (5.37)

Thus, by combining (5.29) and (5.37), we finally obtain that for any x > d(θ),

lim
n→∞

− 1

n
logP

(
R∗n > nx

)
= θx− φ(θ)− logE[N ]. (5.38)

This completes the proof of Theorem 5.2.1.
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5.3 Comparison with Branching Random Walk

While proving the above result, we also observe that we can complete the LDP for

{Rn/n}n≥1, which was proved by Gantert and Höfelsauer [21] but only partially (see

Theorem 1.4.11).

Theorem 5.3.1. The laws of {Rn/n}n≥1 satisfy the large deviation principle with the

rate function

Φ(x) :=



I(x)− logE[N ] if x > c(θ0); (i)

0 if x = c(θ0); (ii)

I ′
(
aρθ0
) (
x− c(θ0)

)
if aρθ0 ≤ x < c(θ0) and ρ <∞; (iii)

I(x) + ρ if x < aρθ0 and ρ <∞; (iv)

∞ if x < c(θ0) and ρ =∞. (v)

Remark 5.3.1: The parts (i), (ii), (iii), and (iv) of Theorem 5.3.1 were proved by

Gantert and Höfelsauer [21] as mentioned in Theorem 1.4.11. Part (v) was unsolved,

which we prove here. Also, parts (iii) and (iv) of Theorem 5.3.1 calculated by Gantert

and Höfelsauer [21] have been simplified here.

Proof. For (iii) and (iv), the expression in Gantert and Höfelsauer [21] can be simplified

as we did in equation (5.23). The proof of (v) is essentially the proof of the part (vi) of

Theorem 5.2.1 verbatim.

Remark 5.3.2: Note that assumption (A3′) was only required for the almost sure con-

vergence of R∗n(θ, µ)/n and therefore is not required to prove part (v) of Theorem 5.3.1.

But we do need E[N logN ] < ∞ for the remaining parts, as shown in Gantert and

Höfelsauer [21].

We observe that for θ0 ≤ θ <∞, the lower large deviations for the laws of {Rn/n}n≥1

and {R∗n(θ, µ)/n}n≥1 coincide.
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For θ0 < θ < ∞, the upper large deviations for the laws of {R∗n(θ, µ)/n}n≥1 agrees

with that of {Rn/n}n≥1 up to φ′(θ).

5.4 Specific Examples

To illustrate Theorem 5.2.1, we consider two specific examples. Our first example is

when N takes value 2 with probability 1, X ∼ N(0, 1), θ = 3, and µ = δ1. Then, as

displayed in Figure 5.2, the large deviation rate function for the laws of {R∗n(3, δ1)/n}n≥1

is

f1(x) =



3x− 9
2 − log 2 if x ≥ 3;

x2

2 − log 2 if
√

2 log 2 ≤ x ≤ 3;

∞ if x <
√

2 log 2.

√
2 log 2 3

x
2

2
−
lo
g 2

3x
−

9
2
−
lo
g
2

∞ ∞

Figure 5.2: Graph of f1

On the other hand, if N takes the value 1 with probability 1/2 and 3 with probability

1/2, and X, θ, and µ are as in the previous example, then, as demonstrated in Figure 5.3,
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√
2 log 2 3−(2−

√
2)
√
log 2

x
2

2
−
lo
g 2

3x
−

9
2
−
lo
g
2

x 2

2 +
log 2

(2− √2)√log 2(√2 log 2− x)

Figure 5.3: Graph of f2

the large deviation rate function for the laws of {R∗n(3, δ1)/n}n≥1 is

f2(x) =



3x− 9
2 − log 2 if x ≥ 3;

x2

2 − log 2 if
√

2 log 2 ≤ x ≤ 3;(
2−
√

2
)√

log 2
(√

2 log 2− x
)

if −
(
2−
√

2
)√

log 2 ≤ x ≤
√

2 log 2;

x2

2 + log 2 if x ≤ −
(
2−
√

2
)√

log 2.

Notice that the upper large deviations coincide because E[N ] remains the same in

both examples. However, since P(N = 1) is different, the lower large deviations do not

match.





Chapter 6

Time Inhomogeneous Setup 1

6.1 Introduction

In this chapter, we consider a modification of time inhomogeneous branching random

walk, where the driving increment distribution changes over time macroscopically and

we give certain i.i.d. displacements to all the particles at the n-th generation. We call

this process last progeny modified time inhomogeneous branching random walk (LPMTI-

BRW).

6.1.1 Model

We fix k ∈ N. For each i = 1, 2, . . . , k, we let Zi be a point process with Ni := Zi(R) <∞

almost surely and qi be a sequence of integers satisfying
∑k

i=1 qi(n) = n, and we write

tm =
∑m

i=1 qi(n). A time inhomogeneous branching random walk (TI-BRW) is a discrete-

time stochastic process that can be described for each n ≥ 1 as follows:

At the 0-th generation, we start with an initial particle at the origin. At time

t ∈ (tm−1, tm], each of the particles at generation (t− 1) gives birth to a random num-

ber of offspring distributed according to Nm. The offspring are then given random

displacements independently and according to a copy of the point process Zm.

1This chapter is based on the paper entitled “Right-most position of a last progeny modified time
inhomogeneous branching random walk” [8].

79
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As earlier, S(v) denotes the position of a particle v, which is the sum of all the

displacements the particle v and its ancestors have received. We shall call the process

{S(v) : |v| = t, 0 ≤ t ≤ n, n ≥ 1} a time inhomogeneous branching random walk (TI-

BRW).

We then modify this process by giving further displacements to all particles of the n-th

generation. The additional displacements are of the form 1
θ (− logEv), where {Ev}|v|=n

are i.i.d. Exponential (1) and are independent of the process {S(v) : |v| ≤ n}. We

call this new process last progeny modified time inhomogeneous branching random walk

(LPMTI-BRW). We denote by R∗n(θ) the maximum position of this LPMTI-BRW.

6.1.2 Assumptions

We first introduce the following important quantities. For each point process Zi with

1 ≤ i ≤ k, we define

νi(a) := logE
[∫

R
eax Zi(dx)

]
, (6.1)

for a ∈ R, whenever the expectations exist. Needless to say that for each i = 1, 2, . . . , k,

νi is the logarithm of the moment-generating function of the point process Zi.

Throughout this chapter, we assume that all the Zi’s satisfy the assumptions in

Section 3.2, i.e., for each i = 1, 2, . . . , k,

(A1′′) νi(a) is finite for all a ∈ (−ϑ,∞) for some ϑ > 0.

(A2′′) The point process Zi is non-trivial, and the extinction probability of the un-

derlying branching process is 0, i.e., P(Ni = 1) < 1, P(Zi({a}) = Ni) < 1 for

any a ∈ R, and P(Ni ≥ 1) = 1.

(A3′′) Ni has finite (1 + p)-th moment for some p > 0.
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6.2 An Auxiliary Result on the Linear Statistic

As done in the homogeneous setup, here too, we introduce some specific quantities. For

each i = 1, 2, . . . , k, we define

θ(i) := inf

{
a > 0 :

νi(a)

a
= ν ′i(a)

}
. (6.2)

We also define the linear statistic

WTI
n (θ)(q1(n), q2(n) . . . , qk(n), Z1, Z2 . . . , Zk) :=

∑
|v|=n

eθS(v), (6.3)

in the TI-BRW, where the underlying progeny point process is Z1 for the first q1(n)

generations, Z2 for the next q2(n) generations, etc., and Zk for the last qk(n) generations.

Then we have

Lemma 6.2.1. Suppose qi(n) −→ ∞ for all 1 ≤ i ≤ k, then for any θ < mini θ(i) ≤ ∞

and also for θ = θ(1) < mini 6=1 θ(i) ≤ ∞,

WTI
n (θ)(q1(n), . . . , qk(n), Z1, . . . , Zk) · e−

∑k
i=1 qi(n)νi(θ)

WTI
q1(n)(θ)(q1(n), Z1) · e−q1(n)ν1(θ)

p−→ 1

Proof. Without loss of generality we can assume that νi(θ) = 0 for all i = 1, 2, . . . , k.

This can be made to satisfy by centering each point process Zi by νi(θ).

We prove the lemma by induction on k. We note that for k = 1, the lemma holds

trivially. We assume that the lemma holds for k = m− 1 for some m ∈ N.

Now, we take k = m. For each v such that |v| = q1(n), we define

W
TI
n,v(θ)(q1(n), q2(n) . . . , qm(n), Z1, Z2 . . . , Zm) =

∑
|u|=n,v<u

eθ(S(u)−S(v)), (6.4)

in the TI-BRW, where the underlying progeny point process is Z1 for the first q1(n)

generations, Z2 for the next q2(n) generations, etc., and Zm for the last qm(n) gener-

ations. Notice that
{
W

TI
n,v(θ)(q1(n), q2(n) . . . , qm(n), Z1, Z2 . . . , Zm)

}
|v|=q1(n)

are i.i.d.
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and have the same distribution as WTI
n−q1(n)(θ)(q2(n) . . . , qm(n), Z2 . . . , Zm). Now, since

θ < mini 6=1 θ(i), by our induction hypothesis,

WTI
n−q1(n)(θ)(q2(n) . . . , qm(n), Z2 . . . , Zm)

WTI
q2(n)(θ)(q2(n), Z2)

p−→ 1. (6.5)

Note that WTI
q2(n)(θ)(q2(n), Z2) is essentially the linear statistic in the homogeneous setup

where the underlying progeny point process is Z2, and so by Proposition 3.4.1 (ii), it

converges almost surely to some D∞θ,(2) which has mean 1. This, together with (6.5),

implies

WTI
n−q1(n)(θ)(q2(n) . . . , qm(n), Z2 . . . , Zm)

p−→ D∞θ,(2).

Since νi(θ) = 0 for all i = 1, 2, . . . ,m, WTI
n−q1(n)(θ)(q2(n) . . . , qm(n), Z2 . . . , Zm) also has

mean 1, and therefore we get

WTI
n−q1(n)(θ)(q2(n) . . . , qm(n), Z2 . . . , Zm)

L1−−→ D∞θ,(2). (6.6)

Now, in the TI-BRW, where the underlying progeny point process is Z1 for the first

q1(n) generations, Z2 for the next q2(n) generations, etc., and Zm for the last qm(n)

generations, we observe that

WTI
n (θ)(q1(n), . . . , qm(n), Z1, . . . , Zm)

WTI
q1(n)(θ)(q1(n), Z1)

− 1

=
∑

|v|=q1(n)

eθS(v)∑
|u|=q1(n) e

θS(u)

(
W

TI
n,v(θ)(q1(n), q2(n) . . . , qm(n), Z1, Z2 . . . , Zm)− 1

)
.

(6.7)

Since the TI-BRW is homogeneous up to q1(n)-th generation and θ ≤ θ(1), by (3.18), we

get

Mq1(n)(θ) = max
|v|=q1(n)

eθS(v)∑
|u|=q1(n) e

θS(u)

p−→ 0.
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Let Fq1(n) be the σ-field generated by
{
S(v) : |v| ≤ q1(n)

}
. Then by Lemma 3.4.2, for

every ε ∈ (0, 1/2), we have

P


∣∣∣∣∣∣W

TI
n (θ)(q1(n), . . . , qm(n), Z1, . . . , Zm)

WTI
q1(n)(θ)(q1(n), Z1)

− 1

∣∣∣∣∣∣ > ε

∣∣∣∣∣∣∣Fn


≤ 2

ε2

(∫ 1
Mq1(n)

(θ)

0
Mq1(n)(θ)t · P

(∣∣∣WTI
n−q1(n)(θ)(q2(n) . . . , qm(n), Z2 . . . , Zm)− 1

∣∣∣ > t
)
dt

+

∫ ∞
1

Mq1(n)
(θ)

P
(∣∣∣WTI

n−q1(n)(θ)(q2(n) . . . , qm(n), Z2 . . . , Zm)− 1
∣∣∣ > t

)
dt

)

≤ 2

ε2

(∫ ∞
0

P
(∣∣∣WTI

n−q1(n)(θ)(q2(n) . . . , qm(n), Z2 . . . , Zm)−D∞θ,(2)

∣∣∣ > t/2
)
dt

+

∫ 1
Mq1(n)

(θ)

0
Mq1(n)(θ)t · P

(∣∣∣D∞θ,(2) − 1
∣∣∣ > t/2

)
dt

+

∫ ∞
1

Mq1(n)
(θ)

P
(∣∣∣D∞θ,(2) − 1

∣∣∣ > t/2
)
dt

)
(6.8)

By using the dominated convergence theorem, the second and the third term on the

right-hand side of (6.8) converges to 0 as n→∞, and by (6.6), the first term also tends

to 0 as n → ∞. Then by taking expectation and using the dominated convergence

theorem again, we get

lim
n→∞

P

∣∣∣∣∣∣W
TI
n (θ)(q1(n), . . . , qm(n), Z1, . . . , Zm)

WTI
q1(n)(θ)(q1(n), Z1)

− 1

∣∣∣∣∣∣ > ε

 = 0,

which implies

WTI
n (θ)(q1(n), . . . , qm(n), Z1, . . . , Zm)

WTI
q1(n)(θ)(q1(n), Z1)

p−→ 1. (6.9)

So, if the lemma holds for k = m − 1, it also holds for k = m. Therefore, by using

induction we complete the proof.
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6.3 Convergence Results

6.3.1 Asymptotic limits

Our first two results are centered asymptotic limits of the right-most position, which are

similar to Theorems 3.5.3 and 3.5.5 in the homogeneous setup.

Theorem 6.3.1. Suppose qi(n) −→∞ for all 1 ≤ i ≤ k, then for any θ < mini θ(i) ≤ ∞,

there exists a random variable H∞θ,(1) depending only on θ and Z1, such that,

R∗n(θ)−
k∑
i=1

qi(n)νi (θ)

θ

d−→ H∞θ,(1). (6.10)

Theorem 6.3.2. Suppose qi(n) −→ ∞ for all 1 ≤ i ≤ k and θ(1) < mini 6=1 θ(i) ≤ ∞,

then there exists a random variable H∞θ(1),(1) depending only on Z1, such that,

R∗n
(
θ(1)

)
−

k∑
i=1

qi(n)νi
(
θ(1)

)
θ(1)

+
1

2θ(1)
log
(
q1(n)

) d−→ H∞θ(1),(1). (6.11)

Remark 6.3.1: It is very interesting to note that the centered asymptotic limit only

depends on the point process of the first set of displacements. More interestingly, the

result is valid as long as qi(n) −→ ∞ for all 1 ≤ i ≤ k. In particular, the rate of

divergence of q1(n) can be very slow but we will still have the centered asymptotic limit

depending only on the distribution of Z1. Thus our model LPMTI-BRW may be used

as a very efficient “statistical sheave” to filter out the distribution of the first set of

displacements (may be thought as the “signal”) from a number of others which may be

considered as “noise” and of much larger in numbers compared to that of the “signal”.

We thus feel this result may have greater statistical significance.

Proof of Theorems 6.3.1 amd 6.3.2. Notice that an argument similar to that in the proof

of Theorem 2.3.2 gives us

θR∗n
d

== WTI
n (θ)(q1(n), q2(n) . . . , qk(n), Z1, Z2 . . . , Zk)− logE, (6.12)

where E ∼ Exponential (1) and is independent of the TI-BRW.
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Since the TI-BRW is homogeneous up to q1(n)-th generation, Proposition 3.4.1 (ii)

implies that for any θ < mini θ(i) ≤ ∞,

WTI
q1(n)(θ)(q1(n), Z1) · e−q1(n)ν1(θ) p−→ D∞θ,(1). (6.13)

where D∞θ,(1) is a positive random variable with mean 1, whose distribution depends only

on θ and Z1. Similarly, (3.15) suggests that for θ = θ(1) < mini 6=1 θ(i) ≤ ∞,

√
q1(n)WTI

q1(n)(θ)(q1(n), Z1) · e−q1(n)ν1(θ) p−→

(
2

πσ2
1

)1/2

D∞θ(1),(1), (6.14)

where D∞θ(1),(1) is also a positive random variable, whose distribution depends only on

Z1. Here, D∞θ,(1), D
∞
θ(1),(1), and σ2

1 are the quantities exactly similar to D∞θ , D∞θ0 , and σ2,

respectively, discussed in Section 3.4.

Now, by combining (6.12), (6.13), (6.14), and Lemma 6.2.1, we get the required

results with

H∞θ,(1) =
1

θ

[
logD∞θ,(1) − logE

]
, (6.15)

and

H∞θ(1),(1) =
1

θ(1)

logD∞θ(1),(1) +
1

2
log

(
2

πσ2
1

)
− logE

 , (6.16)

where E ∼ Exponential (1) and is independent of the TI-BRW.

Once again, just like in the homogeneous setup, here too, we have a slightly stronger

result. As in Theorem 3.5.6, we let

Ĥ∞θ,(1) =
1

θ
logD∞θ,(1),

where D∞θ,(1) is the unique solution of the following linear recursive distributional equation

with mean 1.

∆
d

===
∑
|v|=1

eθS(v)−ν1(θ)∆v, (6.17)
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where ∆v are i.i.d. and have the same distribution as that of ∆. As in Theorem 3.5.4,

we also let

Ĥ∞θ(1),(1) =
1

θ(1)

logD∞θ(1),(1) +
1

2
log

(
2

πσ2
1

) ,
where

D∞θ(1),(1)
a.s.
=== lim

n→∞
−

∑
|v|=q1(n)

(
θ(1)Sv − q1(n)ν

(
θ(1)

))
eθ(1)Sv−q1(n)ν(θ(1)), (6.18)

σ2
1 := E

∑
|v|=1

(
θ(1)Sv − ν

(
θ(1)

))2
eθ(1)Sv−ν(θ(1))

 . (6.19)

Then we have

Theorem 6.3.3. Suppose qi(n) −→∞ for all 1 ≤ i ≤ k, then for any θ < mini θ(i) ≤ ∞,

R∗n(θ)−
k∑
i=1

qi(n)νi (θ)

θ
− Ĥ∞θ,(1)

d−→ − logE, (6.20)

where E ∼ Exponential (1).

Theorem 6.3.4. Suppose qi(n) −→ ∞ for all 1 ≤ i ≤ k and θ(1) < mini 6=1 θ(i) ≤ ∞,

then

R∗n
(
θ(1)

)
−

k∑
i=1

qi(n)νi
(
θ(1)

)
θ(1)

+
1

2θ(1)
log
(
q1(n)

)
− Ĥ∞θ(1),(1)

d−→ − logE, (6.21)

where E ∼ Exponential (1).

Remark 6.3.2: Note that H∞θ,(1) in Theorem 6.3.1 has the same distribution as Ĥ∞θ,(1)−

logE, where E ∼ Exponential (1) and is independent of Ĥ∞θ,(1). Similarly, H∞θ(1),(1) in

Theorem 6.3.2 has the same distribution as Ĥ∞θ(1),(1)− logE, where E ∼ Exponential (1)

and is independent of Ĥ∞θ(1),(1).

Proof of Theorems 6.3.3 and 6.3.4. An argument exactly similar to that in the proof of

Theorem 3.5.4 yields that for any θ > 0 in the time inhomogeneous setup,

θR∗n − logWTI
n (θ)(q1(n), q2(n) . . . , qk(n), Z1, Z2 . . . , Zk)

d
== logE, (6.22)
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where E ∼ Exponential (1).

Now, by combining Lemma 6.2.1, (6.13), (6.14), and (6.22) we obtain the required

results.

As a corollary of the above results, we obtain that if the centering term converges

after dividing by n, then R∗n/n has a limit in probability. In particular, we have the

following result:

Theorem 6.3.5. If for all 1 ≤ i ≤ k, qi(n) −→∞ satisfying limn→∞ qi(n)/n = αi ≥ 0,

then for any θ < mini θ(i) ≤ ∞ and also for θ = θ(1) < mini 6=1 θ(i) ≤ ∞,

R∗n(θ)

n

p−→
k∑
i=1

αiνi (θ)

θ
. (6.23)

6.3.2 Brunet-Derrida type results

Here we present results of the type Brunet and Derrida [17] for our LPMTI-BRW.

For any θ < mini θ(i) ≤ ∞, we define

Zn(θ) =
∑
|v|=n

δ{
θS(v)−logEv−

∑k
i=1 qi(n)νi(θ)−θĤ∞θ,(1)

}, (6.24)

and for θ(1) < mini 6=1 θ(i) ≤ ∞, we define

Zn
(
θ(1)

)
=
∑
|v|=n

δ{
θ(1)S(v)−logEv−

∑k
i=1 qi(n)νi(θ(1))+

1
2

log(q1(n))−θ(1)Ĥ∞θ(1),(1)

}, (6.25)

where Ĥ∞θ,(1) and Ĥ∞θ(1),(1) are as in Theorems 6.3.3 and 6.3.4. Our first result is the weak

convergence of the point processes
(
Zn (θ)

)
n≥0

, which is similar to Theorem 4.3.1 in the

homogeneous setup.

Theorem 6.3.6. Suppose qi(n) −→∞ for all 1 ≤ i ≤ k, then for any θ < mini θ(i) ≤ ∞

and also for θ = θ(1) < mini 6=1 θ(i) ≤ ∞,

Zn(θ)
d−→ Y,
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where Y is a Poisson point process on R with intensity measure e−x dx.

Remark 6.3.3: Notice that the limiting point process Y in Theorem 6.3.6 and the

limiting point process Y in Theorem 4.3.1 are exactly the same. This tells us that just

like the maximum, the limiting point process also remains unaffected by inhomogeneity.

The following is a slightly weaker version of the above theorem.

Theorem 6.3.7. Suppose qi(n) −→∞ for all 1 ≤ i ≤ k, then for any θ < mini θ(i) ≤ ∞,

∑
|v|=n

δ{
θS(v)−logEv−

∑k
i=1 qi(n)νi(θ)

} d−→
∑
j≥1

δζj+θĤ∞θ,(1)
, (6.26)

and for θ(1) < mini 6=1 θ(i) ≤ ∞,

∑
|v|=n

δ{
θ(1)Sv−logEv−

∑k
i=1 qi(n)νi(θ(1))+

1
2

log(q1(n))
} d−→

∑
j≥1

δζj+θ(1)Ĥ∞θ(1),(1)
, (6.27)

where Y =
∑

j≥1 δζj is a Poisson point process on R with intensity measure e−x dx,

which is independent of the process {S(v) : |v| ≤ n}.

Proof of Theorems 6.3.6 and 6.3.7. A similar argument as in the proof of Theorem 4.3.1

and Theorem 4.3.2, together with (6.13), (6.14) and Lemma 6.2.1, yields Theorems 6.3.6

and 6.3.7.

Let Ymax be the right-most position of the point process Y, and Y be the point

process Y viewed from its right-most position, i.e.,

Y =
∑
j≥1

δζj−Ymax .

Then as a corollary of the above theorem, we get the following result, which confirms

the validity of the Brunet-Derrida Conjecture for LPMTI-BRW for θ < mini θ(i) ≤ ∞

as well as for for θ = θ(1) < mini 6=1 θ(i) ≤ ∞.
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Theorem 6.3.8. Suppose qi(n) −→∞ for all 1 ≤ i ≤ k, then for any θ < mini θ(i) ≤ ∞

and also for θ = θ(1) < mini 6=1 θ(i) ≤ ∞,

∑
|v|=n

δ{θS(v)−logEv−θR∗n(θ)}
d−→ Y.

Remark 6.3.4: Notice again that the limiting point process Y in Theorem 6.3.8 and

the limiting point process Y in Theorem 4.3.3 are exactly the same.

6.4 A Specific Example

In this section, we consider a time inhomogeneous Gaussian displacement binary BRW,

which is a specific example of inhomogeneous BRW introduced by Fang and Zeitouni [20].

Here we shall consider the last progeny modified version of the same example. To be

precise, let Z1 = δξ11 + δξ12 , Z2 = δξ21 + δξ22 , ξ11, ξ12 are i.i.d. N (0, σ2
1), ξ21, ξ22 are i.i.d.

N (0, σ2
2) and q1(n) = q2(n) = n/2. In this case, we have

ν1(t) = log 2 +
σ2

1t
2

2
and ν2(t) = log 2 +

σ2
2t

2

2
,

and

θ1 =

√
2 log 2

σ1
and θ2 =

√
2 log 2

σ2
.

Therefore by the Theorem 6.3.2, we obtain that

Theorem 6.4.1. Assume σ1 > σ2, then the following sequence of random variables

R∗n

(√
2 log 2

σ1

)
− n

(
σ1

√
log 2

2
+

√
2 log 2

4σ1

(
σ2

1 + σ2
2

))
+ log n

(
σ1

2
√

2 log 2

)

converges in distribution to a non-trivial distribution which depends only on σ1.

As a comparison, we note that in Fang and Zeitouni [20], it is shown that for this

example, when σ1 > σ2, the following sequence of random variables

Rn − n

(
(σ1 + σ2)

√
log 2

2

)
+ log n

(
3 (σ1 + σ2)

2
√

2 log 2

)
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is tight.

Thus for our model, we have been able to establish more than Fang and Zeitouni [20]

as we obtain a weak limit for the right-most position of the LMPTI-BRW after an

appropriate centering. However, we only have this for the case when σ1 > σ2. As

mentioned in Theorem 1.4.12, the other case when σ1 < σ2 has also been worked out

by Fang and Zeitouni [20], and the tightness of the right-most position has been proved

with an appropriate centering. Similar results were studied by Bovier and Hartung [13]

for the two-speed BBM, where the initial speed σ1 changes to σ2 after some time.
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