Stat-134, Section 02 Section 02

Problem Set for Extra Credit (Due : Friday, 6th December)

Instructor : Antar Bandyopadhyay

Note: There are 8 problems each with 10 points. Solve as many as you can. Maximum extra credit you can get from this problem set is 8 points for your final grading.

- 1. Suppose X and Y are **i.i.d** N(0,1) random variables. Let (R,Θ) be the polar coordinate of the random point $(X,Y) \in \mathbb{R}^2$. We have seen in the class that R has a distribution such that $R^2 \sim \text{Exponential}(1/2)$.
 - (a) Show that $\Theta \sim \text{Unif}(0, 2\pi)$. [5 points]
 - (b) Let $Z = (X + Y)/\sqrt{2}$ and $W = (X Y)/\sqrt{2}$, show that Z and W are independent. Find the marginal distributions of Z and W. [5 points]
- 2. Let X be a random variable with a continuous density function f such that f(x) > 0 for all $-\infty < x < \infty$. Let F be the CDF of X.
 - (a) Show that F^{-1} exists as a function from (0, 1) to \mathbb{R} . [2 points]
 - (b) Let $U \sim \text{Unif}(0, 1)$, find the CDF of $Y = F^{-1}(U)$. [4 points]
 - (c) Find the distribution of W = F(X). [4 points]
- 3. Suppose you have a computer routine which can generate i.i.d. Unif(0, 1) variables, as many as you want. $\lambda > 0$ is a given number.
 - (a) Use this routine to generate one Exponential(λ) random variable. [2 points]
 - (b) Use the same routine to generate one $Poisson(\lambda)$ random variable. [8 points]

Note : by "generate" I mean, you have to give a procedure whose end result will have the desired distribution. Such procedures are called *simulations*. (Hint for (b) : Think of a Poisson arrival process of rate λ .)

4. It is a math fact that if Z is a non-negative random variable and $\mathbf{E}[Z] = 0$ then $\mathbf{P}(Z = 0) = 1$. Use this fact to show that if (X, Y) are two random variables such that

$$\mathbf{E} \begin{bmatrix} X \mid Y \end{bmatrix} = Y, \text{ and}$$
$$\mathbf{E} \begin{bmatrix} Y \mid X \end{bmatrix} = X.$$
Then $\mathbf{P} (X = Y) = 1$. (Hint : Take $Z = (X - Y)^2$ and compute $\mathbf{E} [Z]$.) [10 points]

- 5. Suppose there are *n* balls labeled $\{1, 2, ..., n\}$, and *n* boxes labeled $\{1, 2, ..., n\}$. Balls are being placed at random in the boxes. Any ball can go into any box, and a box may contain more than one ball. Let *X* be the number of empty boxes. Find Var(*X*) and $\mathbf{E} [X^2]$. (Hint : Use indicators as we did for the midterm problem.) [8 + 2 points]
- 6. Problem # 6.3.2 of the text. [10 points]
- 7. Problem # 6.3.4 of the text. [10 points]
- 8. Problem # 6.3.6 of the text. [10 points]