Stat-134, Section 02
 Section 02

Problem Set for Extra Credit (Due: Friday, 6th December)
Instructor : Antar Bandyopadhyay

Note : There are 8 problems each with 10 points. Solve as many as you can. Maximum extra credit you can get from this problem set is 8 points for your final grading.

1. Suppose X and Y are i.i.d $N(0,1)$ random variables. Let (R, Θ) be the polar coordinate of the random point $(X, Y) \in \mathbb{R}^{2}$. We have seen in the class that R has a distribution such that $R^{2} \sim$ Exponential(1/2).
(a) Show that $\Theta \sim \operatorname{Unif}(0,2 \pi)$.
[5 points]
(b) Let $Z=(X+Y) / \sqrt{2}$ and $W=(X-Y) / \sqrt{2}$, show that Z and W are independent. Find the marginal distributions of Z and W.
[5 points]
2. Let X be a random variable with a continuous density function f such that $f(x)>0$ for all $-\infty<$ $x<\infty$. Let F be the CDF of X.
(a) Show that F^{-1} exists as a function from $(0,1)$ to \mathbb{R}. [2 points]
(b) Let $U \sim \operatorname{Unif}(0,1)$, find the CDF of $Y=F^{-1}(U)$. [4 points]
(c) Find the distribution of $W=F(X)$. [4 points]
3. Suppose you have a computer routine which can generate i.i.d. $\operatorname{Unif}(0,1)$ variables, as many as you want. $\lambda>0$ is a given number.
(a) Use this routine to generate one Exponential (λ) random variable. [2 points]
(b) Use the same routine to generate one Poisson (λ) random variable.
[8 points]
Note : by "generate" I mean, you have to give a procedure whose end result will have the desired distribution. Such procedures are called simulations. (Hint for (b) : Think of a Poisson arrival process of rate λ.)
4. It is a math fact that if Z is a non-negative random variable and $\mathbf{E}[Z]=0$ then $\mathbf{P}(Z=0)=1$. Use this fact to show that if (X, Y) are two random variables such that

$$
\begin{gathered}
\mathbf{E}[X \mid Y]=Y, \text { and } \\
\mathbf{E}[Y \mid X]=X .
\end{gathered}
$$

Then $\mathbf{P}(X=Y)=1$. (Hint: Take $Z=(X-Y)^{2}$ and compute $\mathbf{E}[Z]$.)
[10 points]
5. Suppose there are n balls labeled $\{1,2, \ldots, n\}$, and n boxes labeled $\{1,2, \ldots, n\}$. Balls are being placed at random in the boxes. Any ball can go into any box, and a box may contain more than one ball. Let X be the number of empty boxes. Find $\operatorname{Var}(X)$ and $\mathbf{E}\left[X^{2}\right]$. (Hint: Use indicators as we did for the midterm problem.)
[$8+2$ points $]$
6. Problem \# 6.3.2 of the text.
[10 points]
7. Problem \# 6.3.4 of the text.
[10 points]
8. Problem \# 6.3.6 of the text.
[10 points]

