Statistics - 134 (Lecture - 2), Fall 2002

Solutions of the Final Exam Problems

1. (a) TRUE.

$$
\mathbf{P}(A \mid B)=\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}=\frac{\mathbf{P}(A)}{\mathbf{P}(B)} \geq \mathbf{P}(A)
$$

(b) FALSE. Notice that $\mathbf{E}[X-Y]=0$ and $\operatorname{Var}(X-Y)=2$ so by Chybecyeb inequality we get

$$
\mathbf{P}(|X-Y|>2) \leq \frac{1}{2}
$$

(c) FALSE. Certainly, $\mathbf{E}\left[\frac{X}{Y}\right]=\mathbf{E}[X] \mathbf{E}\left[\frac{1}{Y}\right]$, because X and Y are independent. But in general, $\mathbf{E}\left[\frac{1}{Y}\right] \neq \frac{1}{\mathbf{E}[Y]}$.
(d) TRUE. Observe that $\operatorname{Var}(X)=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2} \geq 0$.
(e) TRUE. By convolution formula, $X-Y$ has a density and hence it is a continuous random variable. So $\mathbf{P}(X=Y)=\mathbf{P}(X-Y=0)=0$.
2. Apply the change of variable formula to get (note that the transformation is $y=e^{x}$, which is one-toone, with differentiable inverse)

$$
f_{Y}(y)=\left\{\begin{array}{cl}
\frac{1}{\sqrt{2 \pi} y} e^{-\frac{1}{2}(\log y)^{2}} & \text { if } y>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

3. (a)

$$
\begin{aligned}
\mathbf{P}\left(T_{3}>3\right) & =\mathbf{P}\left(N_{3} \leq 2\right) \\
& =e^{-9}\left(1+9+\frac{9^{2}}{2!}\right) \\
& \approx 0.0062
\end{aligned}
$$

(b)

$$
\begin{aligned}
\mathbf{P}\left(T_{6}-T_{3} \leq 2\right) & =\mathbf{P}\left(W_{4}+W_{5}+W_{6} \leq 2\right) \\
& =\mathbf{P}\left(T_{3} \leq 2\right) \\
& =\mathbf{P}\left(N_{2} \geq 3\right) \\
& =1-e^{-6}\left(1+6+\frac{6^{2}}{2!}\right) \\
& \approx 0.9380
\end{aligned}
$$

4. (a) The joint density of (X, Y) is given by

$$
f(x, y)=\frac{1}{2 \pi} e^{-\frac{1}{2}\left[x^{2}+(x-y)^{2}\right]} \quad-\infty<x, y<\infty
$$

So to compute the marginal density of Y we need to integrate $f(x, y)$ over x. Now, notice that it is then nothing but a convolution of two $\operatorname{Normal}(0,1)$ variables, and hence $Y \sim \operatorname{Normal}(0,2)$.
(b) Simple calculation will show that given $[Y=y]$ the random variable $X \sim \operatorname{Normal}\left(\frac{y}{2}, \frac{1}{2}\right)$. Thus, $\mathbf{E}[X \mid Y=y]=\frac{y}{2}$.
5. Let Z be the total profit after 100 draws, then $Z=X_{1}+X_{2}+\cdots+X_{100}$, where $X_{1}, X_{2}, \ldots, X_{100}$ are i.i.d. such that $\mathbf{P}\left(X_{1}=2\right)=\mathbf{P}\left(X_{1}=-1\right)=3 / 10, \mathbf{P}\left(X_{1}=0\right)=4 / 10$. Use Normal approximation method to conclude that $\mathbf{P}(Z>45) \approx 0.1038$.
6. (a) Note that X takes values in $(0,1)$. Fix $0<x<1$, then

$$
f_{X}(x)=\int_{0}^{1} f(x, y) d y=\frac{1}{5}\left(3 x^{2}+4 x+2\right)
$$

(b)

$$
\begin{aligned}
\mathbf{P}(X \leq Y) & =\iint_{x \leq y} f(x, y) d x d y \\
& =\frac{1}{5} \int_{0}^{1}\left(\int_{0}^{y}\left(3 x^{2}+4 x y+6 y^{2}+2 x\right) d x\right) d y \\
& =\frac{1}{5} \int_{0}^{1}\left(9 y^{3}+y^{2}\right) d y \\
& =\frac{31}{60}
\end{aligned}
$$

7. (a) The values of T are $\{1,2,3, \ldots$,$\} . Fix k \geq 1$, then

$$
\mathbf{P}(T=k)=\frac{2}{3}\left(\frac{1}{2}\right)^{k}+\frac{1}{3}\left(\frac{1}{2}+\theta\right)\left(\frac{1}{2}-\theta\right)^{k-1}
$$

(b)

$$
\mathbf{P}(\text { I got the biased coin } \mid T=10)=\frac{\frac{1}{3}\left(\frac{1}{2}+\theta\right)\left(\frac{1}{2}-\theta\right)^{9}}{\frac{2}{3}\left(\frac{1}{2}\right)^{10}+\frac{1}{3}\left(\frac{1}{2}+\theta\right)\left(\frac{1}{2}-\theta\right)^{9}}
$$

8. (a) The values of Y are $\{0,1,2, \ldots\}$.
(b) Fix $k \geq 0$, then

$$
\begin{aligned}
\mathbf{P}(Y=k) & =\mathbf{P}(k \leq X<k+1) \\
& =e^{-k}-e^{-(k+1)} \\
& =\left(1-e^{-1}\right) e^{-k}
\end{aligned}
$$

(c) So Y follows Geometric distribution supported on $\{0,1,2, \ldots\}$, and with success probability $\left(1-e^{-1}\right)$.
9. Let X be the time when Hermione arrives and Y be the time when Harry arrives. From the given information we get that X and Y are independent normal random variables with $X-12: 00$ noon \sim $\operatorname{Normal}(-5,9)$ and $Y-12: 00$ noon $\sim \operatorname{Normal}(5,9)$.
(a) $\mathbf{P}(Y<X)=\mathbf{P}(X-Y>0)=1-\Phi\left(\frac{10}{\sqrt{18}}\right) \approx 0.0091$.
(b) $\mathbf{P}(Y-X>10)=0.5$.
10. Notice that $X \sim \operatorname{Exponential}(\lambda)$.
(a) $\mathbf{E}\left[X^{n}\right]$ can now be computed by looking at the form of Gamma $(n+1, \lambda)$ density, and it is $n!/ \lambda^{n}$.
(b) By geometric series formula the required sum is $\lambda /(\lambda-z)$.

