Stat-134 (Section 02), Fall 2002

Instructor : Antar Bandyopadhyay
 Solution of Practice Final

1. (a) $|X|$ takes values in $(0, \infty)$. Thus $F_{|X|}(x)=0$ if $x \leq 0$. Fix $x>0$, then

$$
\begin{aligned}
F_{|X|}(x) & =\mathbf{P}(|X| \leq x) \\
& =\int_{-x}^{x} \frac{d t}{\pi\left(1+t^{2}\right)} \\
& =\frac{2}{\pi} \tan ^{-1} x
\end{aligned}
$$

So the CDF of $|X|$ is

$$
F_{|X|}(x)=\left\{\begin{array}{cc}
0 & \text { if } x \leq 0 \\
\frac{2}{\pi} \tan ^{-1} x & \text { if } x>0
\end{array}\right.
$$

(b) X^{2} also takes only positive values, so the density $f_{X^{2}}(y)=0$ if $y \leq 0$. Further, $F_{X^{2}}(y)=$ $\mathbf{P}\left(X^{2} \leq y\right)=\mathbf{P}(|X| \leq \sqrt{y})=\frac{2}{\pi} \tan ^{-1} \sqrt{y}$. So by differentiating we get

$$
f_{X^{2}}(y)=\left\{\begin{array}{cl}
\frac{1}{\pi \sqrt{y}(1+y)} & \text { if } y>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

2. Let $W_{1}, W_{2}, W_{3}, \ldots$, be the inter-arrival times, which are i.i.d. Exponential (λ). From definition $T_{1}=W_{1}$ and $T_{2}=W_{1}+W_{2}$.
Fix $0<t<s<\infty$, then

$$
\begin{aligned}
\mathbf{P}\left(T_{1} \in d t, T_{2} \in d s\right) & =\mathbf{P}(N((0, t])=0, \text { one arrival in }(t, t+d t], N((t, s])=0, \text { one arrival in }(s, s+d s]) \\
& =e^{-\lambda t} \times \lambda d t \times e^{-\lambda(s-t)} \times \lambda d s \\
& =\lambda^{2} e^{-\lambda s} d t d s
\end{aligned}
$$

So the joint density of $\left(T_{1}, T_{2}\right)$ is given by

$$
f(t, s)=\left\{\begin{array}{cl}
\lambda^{2} e^{-\lambda s} & \text { if } 0<t<s<\infty \\
0 & \text { otherwise }
\end{array}\right.
$$

Further we know that $T_{2} \sim \operatorname{Gamma}(2, \lambda)$, so the marginal density of T_{2} is

$$
f_{T_{2}}(s)=\left\{\begin{array}{cc}
\lambda^{2} s e^{-\lambda s} & \text { if } s>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) So the conditional density of T_{1} given $T_{2}=10$ is

$$
f_{T_{1} \mid T_{2}}(t \mid s=10)=\frac{f(t, 10)}{f_{T_{2}}(10)}= \begin{cases}\frac{1}{10} & \text { if } 0<t<10 \\ 0 & \text { otherwise }\end{cases}
$$

Clearly, given $T_{2}=10, T_{1} \sim \operatorname{Unif}(0,10)$, and hence $\mathbf{E}\left[T_{1} \mid T_{2}=10\right]=5$.
(b) We know that $T_{1}=W_{1}$ and $T_{2}=W_{1}+W_{2}$. Hence,

$$
\mathbf{E}\left[T_{1} T_{2}\right]=\mathbf{E}\left[W_{1}\left(W_{1}+W_{2}\right)\right]=\mathbf{E}\left[W_{1}^{2}\right]+\mathbf{E}\left[W_{1} W_{2}\right]=\frac{3}{\lambda^{2}} .
$$

3. In this problem $n:=90$ is the number of trials, and $p:=\mathbf{P}$ (a student gets 2 or more aces) is the success probability of an individual trial. Using Hypergeometric distribution we get that

$$
p=\frac{\binom{4}{2}\binom{48}{11}}{\binom{52}{13}}+\frac{\binom{4}{3}}{\binom{48}{10}}\binom{52}{13} \quad+\frac{\binom{4}{4}\binom{48}{9}}{\binom{52}{13}} \approx 0.2573
$$

Let X be the number of students who got 2 or more aces, then clearly $X \sim \operatorname{Binomial}(n, p)$.
So $\mu=n p \approx 23.2573$ and $\sigma=\sqrt{n p(1-p)} \approx 4.1473$, so using Normal approximation to Binomial probabilities we get that

$$
\mathbf{P}(\text { at least } 50 \text { students get } 2 \text { or more aces }) \approx 1-\Phi\left(\frac{50.5-23.1601}{4.1473}\right) \approx 1-\Phi(6.5922) \approx 0.0000 .
$$

4. Let X be the number of times I have to toss my coin before getting a head, and Y be the number of times you have to toss your coin before getting a head. So X and Y are i.i.d. Geometric $\left(\frac{1}{2}\right)$ variables.
(a)

$$
\begin{aligned}
\mathbf{P} \text { (we stop simultaneously) } & =\mathbf{P}(X=Y) \\
& =\sum_{k=1}^{\infty} \mathbf{P}(X=k, Y=k) \\
& =\sum_{k=1}^{\infty} \mathbf{P}(X=k) \mathbf{P}(Y=k) \\
& =\sum_{k=1}^{\infty} \frac{1}{4^{k}}=\frac{1}{3} .
\end{aligned}
$$

(b) Notice that given the event $[X=Y]$ the number of coin tosses is well defined and it is X (or Y). So for any $k \geq 1$,

$$
\mathbf{P}(X=k \mid X=Y)=\frac{\mathbf{P}(X=k, Y=k)}{\mathbf{P}(X=Y)}=\frac{1 / 4^{k}}{1 / 3}=\frac{3}{4}\left(\frac{1}{4}\right)^{k-1} .
$$

Thus given $[X=Y]$, the number of tosses follows Geometric $\left(\frac{3}{4}\right)$ distribution.
5. (a) Clearly, X only takes values in $(-1,1)$. So $f_{X}(x)=0$ if $|x| \geq 1$. Let $-1<x<1$,

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{-(1-|x|)}^{(1-|x|)} \frac{d y}{2}=1-|x| .
$$

(b) The conditional density of Y given $X=\frac{1}{2}$ is then given by

$$
f_{Y \mid X}\left(y \left\lvert\, x=\frac{1}{2}\right.\right)=\frac{f\left(\frac{1}{2}, y\right)}{f_{X}\left(\frac{1}{2}\right)}= \begin{cases}1 & \text { if }-\frac{1}{2}<y<\frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

Thus given $\left[Y=\frac{1}{2}\right], Y$ follows Unif $\left(-\frac{1}{2}, \frac{1}{2}\right)$.
6. First of of all from definition we note that the marginal distributions of X and Y are same, and it is Binomial $\left(10, \frac{1}{3}\right)$.
Let I_{i} be the indicator of the event that in $i^{\text {th }}$ draw we got a green ball, and J_{j} be the event that in $j^{\text {th }}$ draw we got a black ball. Trivially, I_{i} and J_{j} are independent if $1 \leq i \neq j \leq 10$, and $I_{i} \times J_{i}=0$ for all $1 \leq i \leq 10$. Also $X=I_{1}+I_{2}+\cdot+I_{10}$ and $Y=J_{1}+J_{2}+\cdots+J_{10}$.
(a) $X Y=\sum_{1 \leq i \neq j \leq 10} \sum_{i} \times J_{j}$. Hence $\mathbf{E}[X Y]=10 \times(10-1) \times \frac{1}{3} \times \frac{1}{3}=10$.
(b) $\mathbf{E}[X]=\mathbf{E}[Y]=\frac{10}{3}$. So $\mathbf{E}[X Y] \neq \mathbf{E}[X] \mathbf{E}[Y]$, thus X and Y are not independent.
7. Suppose that Julia plans to arrive at the air-port at time t (in the standard unit of hours and minutes). Let X be the time when she actually arrives, so $X \sim \operatorname{Unif}(t, t+15$ minutes $)$. Also let Y be the time when the flight actually be leaving the air-port. Thus $Y \sim \operatorname{Unif}(10: 30 \mathrm{AM}, 10: 45 \mathrm{AM})$. We will assume that X and Y are independent.

$$
\begin{aligned}
\mathbf{P}(\text { Julia will not be able to catch the flight }) & =\mathbf{P}(X>Y) \\
& =\frac{1}{2}(t+15-10: 30 \mathrm{AM})^{2} \times \frac{1}{15^{2}}
\end{aligned}
$$

So for Julia to have 90% chance of catching the flight, we need to make the above probability exactly 10%, that is we need $t=10: 30 \mathrm{AM}-15+15 \times \sqrt{0.2}$ minutes $\approx 10: 22 \mathrm{AM}$.
8. (a) $Z=\min (X, Y)$, so Z takes values in \mathbb{R}. Fix $-\infty<z<\infty$, then

$$
\begin{aligned}
F_{Z}(z) & =\mathbf{P}(Z \leq z) \\
& =1-\mathbf{P}(\min (X, Y)>z) \\
& =1-\mathbf{P}(X>z, Y>z) \\
& =1-\mathbf{P}(X>z) \mathbf{P}(Y>z) \\
& =1-(1-\Phi(z-\mu))(1-\Phi(z))
\end{aligned}
$$

So the density of Z is given by

$$
f_{Z}(z)=(1-\Phi(z-\mu)) \phi(z)+(1-\Phi(z)) \phi(z-\mu)
$$

(b) Consider the following two cases

Case-1 : $t \leq 0$, then $\mathbf{P}(\max (X, Y)-\min (X, Y)>t)=1$.
Case-2 : $t>0$, then

$$
\begin{aligned}
\mathbf{P}(\max (X, Y)-\min (X, Y)>t) & =\mathbf{P}(|X-Y|>t) \\
& =1-\Phi\left(\frac{t-\mu}{\sqrt{2}}\right)+\Phi\left(\frac{-t-\mu}{\sqrt{2}}\right)
\end{aligned}
$$

Note that $X-Y \sim \operatorname{Normal}(\mu, 2)$.
9. Let A_{i} be the event that there is a match at $i^{\text {th }}$ position, so $\mathbf{P}\left(A_{i}\right)=\frac{(n-1)!}{n!}=\frac{1}{n}$. From definition $X=I_{A_{1}}+I_{A_{2}}+\cdots+I_{A_{n}}$. Hence $\mathbf{E}[X]=n \times \frac{1}{n}=1$. Now,

$$
\begin{aligned}
X^{2} & =\sum_{i=1}^{n} I_{A_{i}}^{2}+\sum_{1 \leq i \neq j \leq n} \sum_{A_{i}} I_{A_{j}} \\
& =\sum_{i=1}^{n} I_{A_{i}}+\sum_{1 \leq i \neq j \leq n} \sum_{A_{i} \cap A_{j}}
\end{aligned}
$$

Further, $\mathbf{P}\left(A_{i} \cap A_{j}\right)=\frac{(n-2)!}{n!}=\frac{1}{n(n-1)}$ for $1 \leq i \neq j \leq n$. So we get that,

$$
\mathbf{E}\left[X^{2}\right]=n \times \frac{1}{n}+n(n-1) \times \frac{1}{n(n-1)}=2
$$

Finally, $\operatorname{Var}(X)=2-1^{2}=1$.
10. The joint density of (X, Y) is given by

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{\alpha-1}{y^{\alpha+1}} & \text { if } 0<x<y, y>1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Observe that X only takes positive values, thus $f_{X}(x)=0$ if $x \leq 0$. Fix $x>0$, then

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{\max (x, 1)}^{\infty} \frac{\alpha-1}{y^{\alpha+1}} d y=\frac{\alpha-1}{\alpha(\max (x, 1))^{\alpha}}
$$

So the marginal density of X is

$$
f_{X}(x)=\left\{\begin{array}{cl}
0 & \text { if } x \leq 0 \\
\frac{\alpha-1}{\alpha} & \text { if } 0<x<1 \\
\frac{\alpha-1}{\alpha x^{\alpha}} & \text { if } x \geq 1
\end{array}\right.
$$

(b) So the conditional density of Y given $X=x$ is well defined when $x>0$.

Case-1 : $0<x<1$,

$$
f_{Y \mid X}(y \mid x)=\left\{\begin{array}{cl}
\frac{\alpha}{y^{\alpha+1}} & \text { if } y>1 \\
0 & \text { otherwise }
\end{array}\right.
$$

So $\mathbf{E}[Y \mid X=x]=\int_{1}^{\infty} \frac{y \alpha}{y^{\alpha+1}} d y=\alpha \int_{1}^{\infty} \frac{d y}{y^{\alpha}}=\frac{\alpha}{\alpha-1}$.
Case-2 : $x \geq 1$,

$$
f_{Y \mid X}(y \mid x)=\left\{\begin{array}{cl}
\frac{\alpha x^{\alpha}}{y^{\alpha+1}} & \text { if } y>x \\
0 & \text { otherwise }
\end{array}\right.
$$

So $\mathbf{E}[Y \mid X=x]=\int_{x}^{\infty} \frac{y \alpha x^{\alpha}}{y^{\alpha+1}} d y=\alpha x^{\alpha} \int_{x}^{\infty} \frac{d y}{y^{\alpha}}=\frac{\alpha x}{\alpha-1}$.

