Statistics - 134 (Lecture - 2), Fall 2002

Solution of Practice Midterm

1. Since it is sampling with replacement, so each draw is independent success-failure experiment, with probability of success $p=$ proportion of green balls in the box $=30 / 100=0.3$.
(a) $X:=$ number of green balls in the first 40 draws, hence $X \sim \operatorname{Binomial}(40,0.3)$.
$Y:=$ number of green balls in the last 60 draws, hence $Y \sim \operatorname{Binomial}(60,0.3)$.
$T:=$ total number of green balls in 100 draws, hence $T \sim \operatorname{Binomial}(100,0.3)$.
(b) Yes. The first 40 draws are independent of the last 60 draws, since we are doing sampling with replacement. Hence X and Y are independent.
(c) Fix $0 \leq t \leq 100$. Notice that given $[T=t]$ the values of X are $\{0,1,2, \ldots, t\}$. Fix $0 \leq k \leq t$, then

$$
\begin{aligned}
\mathbf{P}(X=k \mid T=t) & =\frac{\mathbf{P}(X=k, T=t)}{\mathbf{P}(T=t)} \\
& =\frac{\mathbf{P}(X=k, Y=t-k)}{\mathbf{P}(T=t)} \\
& =\frac{\mathbf{P}(X=k) \mathbf{P}(Y=t-k)}{\mathbf{P}(T=t)} \\
& =\frac{\binom{40}{k} 0.3^{k} 0.7^{40-k}\binom{60}{t-k} 0.3^{t-k} 0.7^{60-(t-k)}}{\binom{100}{t} 0.3^{t} 0.7^{100-t}} \\
& =\frac{\binom{40}{k}\binom{60}{t-k} .}{\binom{100}{t}} .
\end{aligned}
$$

Note that given $[T=t]$ the distribution of X is Hypergeometric $(n=t ; N=100, G=40)$.
(d) No. Consider $\mathbf{P}(X=0, T=0)=\mathbf{P}(T=0)$ and certainly $\mathbf{P}(X=0) \neq 1$.
2. Let D be the number of cards dealt before getting the first King. Since we are doing sampling without replacement so the values of D are $\{1,2, \ldots, 49\}$. Hence if $n \geq 50$ then $p(n)=0$. Fix $1 \leq n \leq 49$ then,

$$
\begin{aligned}
p(n) & =\mathbf{P}\left(\text { The first }(n-1) \text { cards has no King, but the } n^{\text {th }} \text { card is a King }\right) \\
& =\left(\frac{48}{52} \times \frac{47}{51} \times \frac{46}{50} \times \cdots \times \frac{48-n+2}{52-n+2}\right) \times \frac{4}{52-n+1} \\
& =\frac{\binom{48}{n-1}}{\binom{52}{n-1}} \times \frac{4}{52-n+1} .
\end{aligned}
$$

3. Observe that balls are being placed at random, thus the outcomes are equally likely. Further, the placement of the $i^{\text {th }}$ ball is independent of the placement of the other balls.
(a)

$$
\begin{aligned}
\mathbf{P}(\text { none of the boxes are empty }) & =\frac{\text { Number of placements with no empty boxes }}{\text { Total number of placements }} \\
& =\frac{n!}{n^{n}} .
\end{aligned}
$$

(b) Fix $1 \leq i \leq n$, from definition $\mathbf{P}\left(A_{i}\right)=\frac{n^{n-1}}{n^{n}}=\frac{1}{n}$.
(c) Notice that from definition, $X=\mathbf{I}_{A_{1}}+\mathbf{I}_{A_{2}}+\cdots+\mathbf{I}_{A_{n}}$, where $\mathbf{I}_{A_{i}}$ is the indicator of the event A_{i}. But the events $A_{1}, A_{2}, \ldots, A_{n}$ are independent with $\mathbf{P}\left(A_{i}\right)=\frac{1}{n}$, for all $1 \leq i \leq n$. Thus $X \sim \operatorname{Binomial}\left(n, \frac{1}{n}\right)$.
(d) $\mathbf{E}[X]=n \times \frac{1}{n}=1$, and $\operatorname{Var}(X)=n \times \frac{1}{n} \times\left(1-\frac{1}{n}\right)=1-\frac{1}{n}$.
(e) Note that the mean of X is 1 and the sd of X is $\sqrt{1-\frac{1}{n}}$, so using Poisson approximation to $\operatorname{Binomial}\left(n, \frac{1}{n}\right)$ with $n=10,000$, we get that

$$
\begin{gathered}
\mathbf{P}(X<2) \approx 2 e^{-1} \approx 0.735759 \\
\mathbf{P}(X=2) \approx \frac{1}{2} e^{-1}, \approx 0.183940 \\
\mathbf{P}(X>2) \approx 1-\frac{5}{2} e^{-1} \approx 0.080301
\end{gathered}
$$

