Statistics 134 (Lecture - 2), Fall 2002
 Practice Midterm (Time : 50 minutes)

Instructor : Antar Bandyopadhyay

NOTE : There are three problems total of 30 points. Show your work and write explanation when needed.

1. Suppose a box contains 70 red balls and 30 green balls. You do sampling with replacement of 100 balls. Let X be the number of green balls in the first 40 draws, and Y be the number of green balls in the next 60 draws. Let $T=X+Y$ be the total number of green balls in the sample.
(a) What are the distributions of X, Y and T ? [2 points]
(b) Are X and Y independent ? [1 points]
(c) Fix $0 \leq t \leq 100$, find $\mathbf{P}(X=k \mid T=t)$ for $0 \leq k \leq t$. [5 points]
(d) Are X and T independent? Why ? [2 points]
2. Cards are dealt one after the other from a well shuffled deck of 52 cards until the first King appears. Find a formula for $p(n):=$ probability that exactly n cards are dealt. [5 points]
3. There are n balls labeled $1,2,3, \ldots, n$, and n boxes also labeled $1,2,3, \ldots, n$. Balls are being placed in the boxes at random so that, any ball can go into any box, and a box may contain more than one ball.
(a) Find \mathbf{P} (none of the n boxes are empty). [2 points]
(b) Say that $i^{\text {th }}$ ball is correctly placed if it goes to the $i^{\text {th }}$ box. Let A_{i} be the event that $i^{\text {th }}$ ball is correctly placed. Find $\mathbf{P}\left(A_{i}\right)$ for $1 \leq i \leq n$. [2 points]
(c) Let X be the total number of correct placement of balls, find the distribution of X. [5 points]
(d) Find $\mathbf{E}[X]$ and $\operatorname{Var}(X)$. [2 points]
(e) If $n=10,000$ calculate approximately $\mathbf{P}(X<2), \mathbf{P}(X=2)$ and $\mathbf{P}(X>2)$. [4 points]
