Indian Statistical Institute, Delhi Centre

Linear Models and GLM

Spring 2008

Answers to the Quiz # 1

Date: February 8, 2008 (Friday)

Total Points: $2 \times 5 = 10$

- 1. Consider the following models:
 - (a) $y_i = \alpha + \beta x_i^2 + \varepsilon_i^2, \ 1 \le i \le n.$
 - (b) $y_i^2 = \theta + \varepsilon_i, \ 1 \le i \le n.$
 - (c) $\log \hat{p}_{i,j} = \mu + \alpha_i + \beta_j + \gamma_{i,j} + \varepsilon_{i,j}, \ 1 \le i, j \le N.$
 - (d) $y_{i,j} = \mu + \alpha_i + \beta_j + \alpha_i \beta_j + \varepsilon_{i,j}, \ 1 \le i, j \le N.$

In all of above the errors are i.i.d. Normal (0, 1) random variables.

State which of the above can be described as a *Linear Model* and which can not be.

Ans.	(a) <u>A Linear Model</u>	(b) <u>A Linear Model</u>
	(c) <u>A Linear MOdel</u>	(d) <u>Not a Linear Model</u>

	Symmetric Matrix	Is it p.d./p.s.d./n.d./n.s.d./indefinite?
	$\left(\begin{array}{rrr}1&2\\2&1\end{array}\right)$	Indefinite
	$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$	Indefinite
2. Fill in the following table:	$\left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$	p.s.d.
	$\left(\begin{array}{rrrr} 1 & 1/2 & 1/4 \\ 1/2 & 1 & 1/2 \\ 1/4 & 1/2 & 1 \end{array}\right)$	p.d.

3. Suppose $A_{n \times n}$ be a real matrix and consider its Singular Value Decomposition given by:

$$A = P \left(\begin{array}{cc} \Delta & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right) Q,$$

where P and Q are two orthogonal matrices and Δ is a diagonal matrix with strictly positive diagonal entries.

Indicate if the following statements are **True** or **False**:

- (a) Δ has all the non-zero eigen-values of A. <u>False</u>
- (b) If $A = A^T$ then Δ has all the non-zero eigen-values of A. <u>False</u>
- (c) PQ = QP. <u>False</u>
- (d) \exists an orthogonal matrix $B_{n \times n}$ such that P = BQ. <u>True</u>
- 4. Consider the following model:

$$y_i = \mu_i + \varepsilon_i, \ 1 \le i \le n,$$

where $\{\varepsilon_i\}_{i\geq 1}$ are i.i.d. with Normal (0, 1) random variables. Indicate if the following statements are **True** or **False**:

- (a) This is not a *Linear Model*. False
- (b) For each $1 \leq i \leq n$ the parameter μ_i is *estimable*. <u>True</u>
- (c) $R_0^2 > 0.$ <u>False</u>
- (d) We can test $H_0: \mu_1 = \mu_2 = \cdots = \mu_n$. <u>True</u>
- 5. Consider the following the linear model:

$$y_{1,j} = \mu + \nu + \varepsilon_{1,j} \text{ for } 1 \le j \le n_1$$
$$y_{2,j} = \mu + \varepsilon_{2,j} \text{ for } 1 \le j \le n_2,$$

where $\mu, \nu \in \mathbb{R}$ are unknown parameters, and $\left\{ \varepsilon_{i,j} \mid 1 \leq i \leq 2, 1 \leq j \leq n_i \right\}$ are i.i.d. Normal $(0, \sigma^2)$, where σ^2 is not know.

Indicate if the following statements are **True** or **False**:

- (a) The MLE of μ^2 is $\left(\frac{1}{n_2}\sum_{j=1}^{n_2}y_{2,j}\right)^2$. <u>True</u>
- (b) The MLE of ν is not unique. False
- (c) The MLE of σ^2 exists no matter what n_1 and n_2 are. <u>False</u>
- (d) Under a hypothesis $H_0: \mu = 0$ a MLE of σ^2 exists no matter what n_1 and n_2 are. <u>True</u>