Indian Statistical Institute, Delhi Centre
 Linear Models and GLM

Spring 2008
Quiz \# 1

Date: February 8, 2008 (Friday)
Total Points: $2 \times 5=10$

Note:

- Please write your name.
- There are 5 problems carrying 2 points each. Answer all of them.
- For each problem credit will be given only if you have answered all the parts correctly. There will be NO partial credit.
- Write the answers in the space provided. You can use the back of this page for rough calculations.
- You have 15 minutes to complete the quiz.

Name:

1. Consider the following models:
(a) $y_{i}=\alpha+\beta x_{i}^{2}+\varepsilon_{i}^{2}, 1 \leq i \leq n$.
(b) $y_{i}^{2}=\theta+\varepsilon_{i}, 1 \leq i \leq n$.
(c) $\log \hat{p_{i, j}}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i, j}+\varepsilon_{i, j}, 1 \leq i, j \leq N$.
(d) $y_{i, j}=\mu+\alpha_{i}+\beta_{j}+\alpha_{i} \beta_{j}+\varepsilon_{i, j}, 1 \leq i, j \leq N$.

In all of above the errors are i.i.d. Normal $(0,1)$ random variables.
State which of the above can be described as a Linear Model and which can not be.
Ans. (a) \qquad (b) \qquad
(c) \qquad (d) \qquad
2. Fill in the following table:

Symmetric Matrix	Is it p.d./p.s.d./n.d./n.s.d./indefinite ?
$\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$	
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	
$\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$	
$\left(\begin{array}{ccc}1 & 1 / 2 & 1 / 4 \\ 1 / 2 & 1 & 1 / 2 \\ 1 / 4 & 1 / 2 & 1\end{array}\right)$	

3. Suppose $A_{n \times n}$ be a real matrix and consider its Singular Value Decomposition given by:

$$
A=P\left(\begin{array}{cc}
\Delta & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right) Q
$$

where P and Q are two orthogonal matrices and Δ is a diagonal matrix with strictly positive diagonal entries.
Indicate if the following statements are True or False:
(a) Δ has all the non-zero eigen-values of A. \qquad
(b) If $A=A^{T}$ then Δ has all the non-zero eigen-values of A.
(c) $P Q=Q P$.
(d) \exists an orthogonal matrix $B_{n \times n}$ such that $P=B Q$. \qquad
4. Consider the following model:

$$
y_{i}=\mu_{i}+\varepsilon_{i}, \quad 1 \leq i \leq n
$$

where $\left\{\varepsilon_{i}\right\}_{i \geq 1}$ are i.i.d. with $\operatorname{Normal}(0,1)$ random variables.
Indicate if the following statements are True or False:
(a) This is not a Linear Model. \qquad
(b) For each $1 \leq i \leq n$ the parameter μ_{i} is estimable.
(c) $R_{0}^{2}>0$. \qquad
(d) We can test $H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{n}$. \qquad
5. Consider the following the linear model:

$$
\begin{gathered}
y_{1, j}=\mu+\nu+\varepsilon_{1, j} \text { for } 1 \leq j \leq n_{1} \\
y_{2, j}=\mu+\varepsilon_{2, j} \text { for } 1 \leq j \leq n_{2},
\end{gathered}
$$

where $\mu, \nu \in \mathbb{R}$ are unknown parameters, and $\left\{\varepsilon_{i, j} \mid 1 \leq i \leq 2,1 \leq j \leq n_{i}\right\}$ are i.i.d. $\operatorname{Normal}\left(0, \sigma^{2}\right)$, where σ^{2} is not know.

Indicate if the following statements are True or False:
(a) The MLE of μ^{2} is $\left(\frac{1}{n_{2}} \sum_{j=1}^{n_{2}} y_{2, j}\right)^{2}$.
(b) The MLE of ν is not unique.
(c) The MLE of σ^{2} exists no matter what n_{1} and n_{2} are. \qquad
(d) Under a hypothesis $H_{0}: \mu=0$ a MLE of σ^{2} exists no matter what n_{1} and n_{2} are.

Good Luck

