Indian Statistical Institute, Delhi Centre

Linear Models and GLM

Spring 2008
Answer to Quiz \# 2

Date: April 4, 2008 (Friday) Total Points: $2 \times 5=10$

1. Consider the following model:

$$
\mathbf{Y}=\mathbf{X} \beta+\mathbf{C} \gamma+\varepsilon,
$$

where co-ordinates of ε are i.i.d. $\operatorname{Normal}(0,1)$.
Indicate if the following statements are True or False:
(a) If $\mathbf{C}^{T} \mathbf{C}$ invertible and $\mathbf{P}_{\mathbf{X}} C=\mathbf{0}$ then γ is estimable. True
(b) If γ is estimable with LSE $\hat{\gamma}$ then $\hat{\gamma}$ has a multivariate normal distribution which is singular. False
(c) Suppose γ is estimable, put $\mathbf{Z}=\mathbf{Y}-\mathbf{C} \hat{\gamma}$ then $\mathbf{E}[\mathbf{Z}]=\mathbf{X} \beta$. True
(d) Two-way classification model with no interaction and one observation per cell can be written as a special case of the above model. True
2. Consider the following model:

$$
y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\varepsilon_{i j k} 1 \leq k \leq K, 1 \leq j \leq J, 1 \leq i \leq I
$$

where $\varepsilon_{i j k}$'s are i.i.d. $\operatorname{Normal}\left(0, \sigma^{2}\right)$.
Fill in the blanks:
(a) It is called the Three-way classification model with no interaction.
(b) The degrees of freedom for the residual sum of square is $I J K-I-J-K+2$.

(d) The linear parametric functions $\alpha_{i}-\alpha_{i^{\prime}}$ for $1 \leq i \neq i^{\prime} \leq I$ are estimable.
3. Consider the following model:

$$
y_{i j}=\mu+\alpha_{i}+\gamma_{i j}+\varepsilon_{i j} 1 \leq j \leq k_{i}, 1 \leq i \leq I
$$

where $\varepsilon_{i j}$'s are i.i.d. $\operatorname{Normal}(0,1)$.
Indicate if the following statements are True or False:
(a) $\alpha_{1}-\alpha_{2}$ is estimable. False
(b) If we fix an i then the observations indexed by j form an one-way classification model. True
(c) Suppose $k_{1}=10$ then we can do multiple comparison using Tukey's Honest Significant Difference to test for $\gamma_{11}-\gamma_{12}=0$ and $\gamma_{12}-\gamma_{13}=0$. True
(d) For the multiple comparison in (c) above if we use Bonferroni's method then we should do the one-degrees of freedom testing at a level 0.025 to achieve an experimental error rate of 5%. True
4. Indicate if the following statements are True or False:
(a) A log-linear model is a linear model. False
(b) A two-way classification data represented as a $I \times J$ table can be modeled by a log-linear model. False
(c) The estimates obtained in logistic regression are MLEs under appropriate model. True
(d) The following log-linear model is a saturated model False

$$
\log m_{i j k}=u_{0}+u_{1(i)}+u_{2(j)}+u_{3(k)}+u_{12(i j)}+u_{23(j k)}+u_{31(k i)}
$$

5. Fill in the blanks:
(a) For a linear model the residuals are always uncorrelated (independent) of the LSEs.
(b) One-way classification model is a sub-model of two-way classification model.
(c) The degrees of freedom for the residual sum of square from a four-way classification model with no interaction and one observation per cell is $K^{4}-4 K-3$ where each classification has K categories.
(d) Tukey's one degrees of freedom test is a test of non-additivity.
