Indian Statistical Institute, Delhi Centre

Advanced Analysis

Spring 2011

Quiz # 1

Date: _____

Total Points: 10

Note:

- Please write your name.
- There are 5 true/false statements each with 2 points. Answer all of them. Write brief reasons supporting your answers in the space provided.
- This is a CLOSE NOTE and CLOSE BOOK examination.
- You have <u>20 minutes</u> to complete the quiz.

Name: _____

1. A metric space is always Hausdorff. _____.

2. A compact topological space is necessarily Hausdorff. _____.

3. Let f be a uniformly continuous function on \mathbb{R} then $f \in C_c(\mathbb{R})$. _____.

4. Suppose (\mathbf{X}, τ) is a *locally compact* Hausdorff space. Fix $a, b, c \in X$ which are distinct. Then there is a continuous function $f : \mathbf{X} \to [0, 1]$ with compact support such that f(a) = 0, f(b) = 1/2 and f(c) = 1.

5. Consider \mathbb{R}^2 as a metric space with metric $\rho(\mathbf{x}, \mathbf{y}) := |x_1 - y_1| + |x_2 - y_2|$. Let \mathcal{B} be the σ -algebra generated by the open sets and let \mathbf{P} be a probability measure defined on it. Then \mathbf{P} is *regular*.