Indian Statistical Institute, Delhi Centre

Advanced Analysis

Spring 2011

Quiz # 2

Date: April 21, 2011

Total Points: 10

Note:

- Please write your name.
- There are 5 true/false statements each with 2 points. Answer all of them. Write brief reasons supporting your answers in the space provided.
- This is a CLOSE NOTE and CLOSE BOOK examination.
- You have <u>30 minutes</u> to complete the quiz.

Name: _____

1. Suppose $(X_n, \mathcal{F}_n)_{n \ge 0}$ is a (forward) martingale. Let $Y_{-n} := X_n$ for $n \ge 0$. Then $(Y_m, \mathcal{F}_m)_{m \le 0}$ is a *reverse* martingale.

2. A predictable martingale always converges. _____.

3. There is a probability **P** on $([0,1], \mathcal{B}_{[0,1]})$ which is neither absolutely continuous singular with respect to the Lebesgue measure λ .

4. If **P** and **Q** are two probabilities on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ which are absolutely continuous with respect to the Lebesgue measure λ . Then so is the product probability $\mathbf{P} \otimes \mathbf{Q}$ with respect to $\lambda \otimes \lambda$.

5. If (X_n, \mathcal{F}_n) is a non-negative martingale with limit X_∞ . Then $\mathbf{E}[X_n] \longrightarrow \mathbf{E}[X_\infty]$.