Indian Statistical Institute, Delhi Centre

Advanced Analysis

Spring 2011
Quiz \# 2

Date: April 21, 2011
Total Points: 10

Note:

- Please write your name.
- There are 5 true/false statements each with 2 points. Answer all of them. Write brief reasons supporting your answers in the space provided.
- This is a CLOSE NOTE and CLOSE BOOK examination.
- You have $\mathbf{3 0}$ minutes to complete the quiz.

Name:

\qquad

1. Suppose $\left(X_{n}, \mathcal{F}_{n}\right)_{n \geq 0}$ is a (forward) martingale. Let $Y_{-n}:=X_{n}$ for $n \geq 0$. Then $\left(Y_{m}, \mathcal{F}_{m}\right)_{m \leq 0}$ is a reverse martingale. \qquad -
2. A predictable martingale always converges. \qquad .
3. There is a probability \mathbf{P} on $\left([0,1], \mathcal{B}_{[0,1]}\right)$ which is neither absolutely continuous singular with respect to the Lebesgue measure λ. \qquad .
4. If \mathbf{P} and \mathbf{Q} are two probabilities on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ which are absolutely continuous with respect to the Lebesgue measure λ. Then so is the product probability $\mathbf{P} \otimes \mathbf{Q}$ with respect to $\lambda \otimes \lambda$.
5. If $\left(X_{n}, \mathcal{F}_{n}\right)$ is a non-negative martingale with limit X_{∞}. Then $\mathbf{E}\left[X_{n}\right] \longrightarrow \mathbf{E}\left[X_{\infty}\right]$. \qquad .
