UNIVERSITY OF CALIFORNIA, BERKELEY
 DEPARTMENT OF STATISTICS

STAT 134: Concepts of Probability
Spring 2014
Instructor: Antar Bandyopadhyay
Practice Final Examination (I)

Date Given: April 25, 2014 Duration: 180 minutes Total Points: 100

Note: There are ten problems with a total of 100 points. Show all your works.

1. State whether the following statements are true or false. Write brief explanations supporting your answers.
(a) If $A \subseteq B$ then $\mathbf{P}(A \mid B) \geq \mathbf{P}(A)$.
(b) Suppose X and Y are i.i.d. $\operatorname{Normal}(0,1)$ then $\mathbf{P}(|X-Y|>2)>\frac{1}{2}$.
(c) If X and Y are independent random variables with finite expectations then $\mathbf{E}\left[\frac{X}{Y}\right]=\frac{\mathbf{E}[X]}{\mathbf{E}[Y]}$.
(d) If X is a random variable then $\mathbf{E}\left[X^{2}\right] \geq(\mathbf{E}[X])^{2}$.
(e) If X and Y are independent continuous random variables with density f_{X} and f_{Y} then $\mathbf{P}(X=Y)=$ 0.
2. Find the density of the random variable Y, if $X=\log Y \sim \operatorname{Normal}(0,1)$.
3. A Geiger counter is recording background radiation as a Poisson arrival process of 3 hits per minute.
(a) Find the chance that the $3^{\text {rd }}$ particle arrives after 3 minutes.
(b) Find the probability that the $6^{\text {th }}$ particle arrives within 2 minutes of the $3^{\text {rd }}$ particle.
4. Suppose $X \sim \operatorname{Normal}(0,1)$. Given $[X=x]$ the conditional distribution of Y is $\operatorname{Normal}(x, 1)$.
(a) Find the marginal distribution of Y.
(b) Calculate $\mathbf{E}[X \mid Y=y]$.
5. A box contains 15 red, 15 green and 20 white balls. You are doing sampling with replacement. Every time you draw a green ball you receive $\$ 2$, and every time you draw a red ball you have to pay back $\$ 1$. If you get a white ball then you gain or lose nothing. Suppose you start with $\$ 0$ and you are allowed to borrow as much as you need throughout the sampling. Find the chance that after 100 draws you will at least have a profit of $\$ 45$.
[10]
6. Suppose the joint density of (X, Y) is given by

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{1}{5}\left(3 x^{2}+4 x y+6 y^{2}+2 x\right) & \text { if } 0<x<1,0<y<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Find the marginal density of X.
(b) Calculate $\mathbf{P}(X \leq Y)$.
7. A jar has three coins, two of which are unbiased, and one is biased. Suppose that the probability of getting a head from the bias coin is $\left(\frac{1}{2}+\theta\right)$, where $0<\theta<\frac{1}{2}$. I pick a coin at random from the jar and then toss it independently until I get a head. Let T be the number of tosses.
(a) Find the distribution of T.
(b) Given that $[T=10]$ find the conditional probability that I picked the biased coin.
8. Suppose that $X \sim \operatorname{Exponential(1).~Let~} Y=[X]$, where $[x]$ is the greatest integer less of equal to x , for example $[1.4]=1$, while $[0.99]=0$.
(a) Find the possible values of Y.
(b) For each value k of Y, find $\mathbf{P}(Y=k)$.
(c) Recognize the distribution of Y.
9. Harry and Hermione decided to meet at $12: 00$ noon in the library to study potion. From the past experience Hermione knows that Harry on an average is always 5 minutes late, while if she plans to arrive by 12:00 noon then she on an average reaches 5 minutes earlier. Assume that they arrive independently and their arrival times are Normal random variables with appropriate means and each with standard deviation 3 minutes.
(a) Calculate the chance that Harry actually arrives before Hermione.
(b) Calculate the probability that Hermione has to wait more than 10 minutes for Harry.
10. Suppose that X is a non-negative random variable such that $\mathbf{P}(X>t)=e^{-\lambda t}$, for $t>0$; where $\lambda>0$ is a given number.
(a) For each $n \geq 0$, find $\mathbf{E}\left[X^{n}\right]$.
(b) For $z<\lambda$, compute $\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \mathbf{E}\left[X^{n}\right]$.

