Homework \# 6

3.1.12 a) If we think of N_{i} as just counting the number of times we get category i in n trials, we don't care what happens when we don't get this category. We get category i with probability p_{i}, and don't get it with probability $1-p_{i}$, so the distribution of N_{i} is just binomial $\left(n, p_{i}\right)$.
b) Similarly, $N_{i}+N_{j}$ counts the number of times we get either category i or j, which happens with probability $p_{i}+p_{j}$, so the distribution of $N_{i}+N_{j}$ is binomial $\left(n, p_{i}+\right.$ p_{j}).
c) Now we just consider the three categories i, j, and everything else, which gives a joint distribution which is multinomial $\left(n, p_{i}, p_{j}, 1-p_{i}-p_{j}\right)$.
3.1.24 a) Let $p_{i}=P(X=i \bmod 2), i=0,1$. Then $p_{0}+p_{1}=1$,

$$
P(X+Y \text { is even })=p_{0}^{2}+p_{1}^{2}=1-2 p_{0}\left(1-p_{0}\right) \geq 1-2 \cdot \frac{1}{4}
$$

b) Let $p_{i}=P(X=i \bmod 3), i=0,1,2$. Then $p_{0}+p_{1}+p_{2}=1$,

$$
P(\mathrm{X}+\mathrm{Y}+\mathrm{Z} \text { is a multiple of } 3)=p_{0}^{3}+p_{1}^{3}+p_{2}^{3}+6 p_{0} p_{1} p_{2}
$$

Now write simply p, q, r for p_{0}, p_{1}, p_{2}. So

$$
p+q+r=1,0 \leq p, q, r \leq 1
$$

To show: $p^{3}+q^{3}+r^{3}+6 p q r \geq \frac{1}{4}$. Consider

$$
1=(p+q+r)^{3}=p^{3}+q^{3}+r^{3}+6 p q r+3\left[p^{2} q+p^{2} r+q^{2} p+q^{2} r+r^{2} p+r^{2} q\right] .
$$

Notice that $p(q+r)=p q+p r \leq 1 / 4, q(p+r)=q p+q r \leq 1 / 4$, and $r(p+q)=$ $r p+r q \leq 1 / 4$. The probability in question is thus

$$
\begin{aligned}
& 1-3[p[p q+p r]+q[q p+q r]+r[r p+r q]] \\
& \geq 1-3[(p+q+r) \cdot 1 / 4] \geq 1-3 / 4=1 / 4
\end{aligned}
$$

3.2.14 We want $E(N)$, where N is the number of floors at which the elevator makes a stop to let out one or more of the people. N is a counting variable, so write $N=\sum_{j=1}^{10} I_{j}$ where I_{j} is the indicator of the event that at least one person gets off at floor j. By additivity,

$$
E(N)=\sum_{j=1}^{10} E\left(I_{j}\right)=\sum_{j=1}^{10} P(\text { at least one person chooses floor } j)
$$

Now for each j
$P($ at least one person chooses floor $j)=1-P($ nobody chooses floor $j)=1-(9 / 10)^{12}$ by the independence of the people's choices. Hence

$$
E(N)=10 \times\left[1-(9 / 10)^{12}\right] \approx 7.18
$$

3.2 .16 a) $P\left(X_{i}=k\right)=P\left(X_{1}=k\right)=P($ first k cards are non-aces, next is ace $)=\frac{(48)_{k} \cdot 4}{(52)_{k+1}}$.
b) $X_{1}+X_{2}+X_{3}+X_{4}+X_{5}+4=52 \Longrightarrow 5 E\left(X_{1}\right)=48 \Longrightarrow E\left(X_{i}\right)=E\left(X_{1}\right)=9.6$.
c) No. For instance, $P\left(X_{1}=30, X_{2}=30\right)=0$, but $P\left(X_{1}=30\right)=P\left(X_{2}=30\right)>0$.
3.2.22 a) Let $I_{3, i}$ be the indicator of a run of length 3 starting at the i th trial. Let $P(3, i)=E\left(I_{3, i}\right)$ be the probability of this event. Then for $n>3$

$$
\begin{aligned}
E\left(R_{3, n}\right) & =E\left(\sum_{i=1}^{n-2} I_{3, i}\right)=\sum_{i=1}^{n-2} E\left(I_{3, i}\right)=\sum_{i=1}^{n-2} P(3, i) \\
& =P(3,1)+\sum_{i=2}^{n-3} P(3, i)+P(3, n-2) \\
& =p^{3}(1-p)+(n-4)(1-p)\left(p^{3}\right)(1-p)+(1-p) p^{3} \\
& =2 p^{3}(1-p)+(n-4)\left(p^{3}\right)(1-p)^{2}
\end{aligned}
$$

b) Similarly, let $I_{m, i}$ be the indicator of a run of length 3 starting at the i th trial. The for $m<n$

$$
\begin{aligned}
E\left(R_{m, n}\right) & =\sum_{i=1}^{n-m+1} P(m, i) \\
& =2 p^{m}(1-p)+(n-m-1)\left(p^{m}\right)(1-p)^{2}
\end{aligned}
$$

For $m=n, E\left(R_{n, n}\right)=p^{n}$.
c)

$$
R_{n}=\sum_{m=1}^{n} R_{m, n}
$$

so

$$
\begin{aligned}
E\left(R_{n}\right) & =\sum_{m=1}^{n} E\left(R_{m, n}\right) \\
& =p^{n}+\sum_{m=1}^{n-1} 2 p^{m}(1-p)+(n-m-1)\left(p^{m}\right)(1-p)^{2} \\
& =p^{n}+2\left(p-p^{n}\right)+(n-1)(1-p)^{2} \sum_{m=1}^{n-1}\left(p^{m}\right)-(1-p)^{2} \sum_{m=1}^{n-1} m p^{m} \\
& =2 p-p^{n}+\sum_{m=1}^{n-1}(n-m-1)\left(p^{m}\right)(1-p)^{2}
\end{aligned}
$$

Let $\Sigma_{1}=\sum_{m=1}^{n-1}(n-m-1)\left(p^{m}\right)(1-p)^{2}$. Then
$\Sigma_{1}-p \Sigma_{1}=(n-1) p(1-p)^{2}-\sum_{m=1}^{n-1} p^{m}(1-p)^{2}=(n-1) p(1-p)^{2}-\left(p-p^{n}\right)(1-p)$
so

$$
\Sigma_{1}=(n-1) p(1-p)-\left(p-p^{n}\right)
$$

and finally

$$
E\left(R_{n}\right)=2 p-p^{n}+\Sigma_{1}=p+(n-1) p(1-p)
$$

d) Let I_{j} be the indicator that a run of some length starts on the j th trial. Then $R_{n}=\sum_{j=1}^{n} I_{j}$ and if we let $P(j)$ be the probability that a run of some length starts on the j th trial, we have

$$
E\left(R_{n}\right)=E\left(\sum_{j=1}^{n} I_{j}\right)=\sum_{j=1}^{n} E\left(I_{j}\right)=\sum_{j=1}^{n} P(j)
$$

where $P(1)=p$ and $P(j)=(1-p) p$ for $j>1$. Thus

$$
E\left(R_{n}\right)=p+(n-1) p(1-p)
$$

