R Graphics

Deepayan Sarkar

```
R Graphics
Deepayan
    Sarkar
introduction
traditiona
graphics
grid
Grid
graphics
lattice
ggplot2
introduction
```


Origins

■ History of the R graphics model goes back to S .
■ The S language was from the very beginning designed to be interactive.

- Graphics was naturally an essential component of the system.

■ The model adopted was the GRZ model (already in use at Bell Labs).
■ May be described as a "painter's model":
■ a graphic was built out of a small set of primitives such as line segments, polygons, text, etc., and

- later elements are drawn on top of earlier ones.
- no provision for deleting an element once it was drawn
- except to start a completely new graphic.

GRZ model

■ both input and output could be abstracted.
■ Graphics functions that were meant for users would internally call these the target "device", which could be

- Postscript or PDF files for printing,
- hardware devices such as pen plotters,
- on-screen devices for interactive viewing.
- The device-specific implementations of the primitives are known as device drivers

■ new drivers can be written to support new kinds of output formats.
■ See ?Devices for more details.

Traditional graphics model

- The painter's model naturally led to a mental approach that viewed a plot
- This attitude pervades much of the graphics functionality written for S in its early days, and is still popular due to its simplicity, familiarity, and the availability of a large variety of graphic designs implemented using this model.

■ We will loosely refer to this model of graphics as the traditional graphics model.

Trellis graphics

■ In the 1990s S introduced a new approach to graphics, which was called Trellis graphics, meant to substitute the traditional graphics tools rather than to complement it.

- The most prominent feature of Trellis graphics was the notion of conditioning (also known as "small multiples" or "faceting") which allowed subsets of data to be intelligently visualized so as to enable effective comparison between those subsets.
- The way this was done necessitated a departure from the "work-in-progress" model, and required the user to completely specify the details of the plot in one go. This was not really a departure from the painter's model in terms of implementation, but rather a change in the mental approach to plotting.

Grid graphics

Deepayan
■ R followed S in implementing the traditional graphics model first.

- When it came to Trellis graphics, it took a slightly different approach that had important repurcussions.
- Instead of implementing Trellis graphics using the tools provided by the traditional model, as S had done, the R developers first introduced a layer of abstraction called Grid graphics.
■ Grid was designed to be a low-level tool, which provided graphical elements as objects that could be manipulated to a considerable extent, and sophisticated viewport and layout capabilities to use these elements to construct complicated plots.
- Grid was used to implement two important general high-level graphics packages, as well as many other specialized packages.
- One was lattice, which implemented the functionality of Trellis graphics in R.
- The other was ggplot2, which adapted ideas from to provide another alternative graphics system.

■ We will discuss both systems

Principles of data graphics

- A discussion of why graphics are important in statistical analysis and what makes good graphics good is beyond the scope of this chapter, and we refer the reader to for an excellent introduction and further references.
- If there is one single underlying principle, it is that good graphics should enable comparison. Starting from this principle, performed a series of perceptual experiments that indicated, for instance, that the human eye can judge the difference in positions along a common axis better than it can judge differences in lengths of line segments, and that it is worse than either in judging quantitative differences based on a color scale.

■ Based on such experiments, discusses principles that when used systematically should yield effective visualizations, and these principles played an important role in the evolution of S graphics.

- The same principle of enabling comparison is also the basis of Trellis graphics, which grew out of ideas in .
■ Overall, the work of Cleveland, and before him, , has been extremely influential in shaping the direction and visual feel of traditional S and R graphics. Sarkar

traditional graphics

Traditional graphics

- The core of the traditional R graphics system is the suite of functions available in the graphics package,
- with various add-on packages providing further functionality.
- The full list of functions can be seen using
library(help = graphics)
- The listed functions can be roughly categorized into two groups:
- High-level functions are those that are intended to produce a complete plot by themselves.
- Low-level functions are those that are intended to add elements to existing plots.

■ Of course, high-level functions are themselves built up from low-level functions.

Example: Anscombe's data

■ Let us look at an example. The simplest and most common type of statistical plot is the scatterplot, which depicts bivariate numeric data as points in a Cartesian coordinate system.

- The high-level function that produces scatterplots is plot() (although that is not all plot() does).
■ We use R's built-in dataset, anscombe, for illustration.
- The dataset contains Anscombe's well-known quartet of bivariate datasets that are quite different from each other, yet have the same traditional statistical summaries (mean, variance, correlation, least squares regression line, etc.).
- The first dataset can be plotted as follows:
> plot($\mathrm{x}=$ anscombe\$x1, $\mathrm{y}=$ anscombe\$y1)

Example: Anscombe's data

Details

■ What low-level functions could have created this plot?

- The plot consists of
- the points,
- the box surrounding the plot,
- the axes,
- the axis labels.
- All these elements can be suppressed by plot() as follows.
> plot (x = anscombe\$x1, $\mathrm{y}=$ anscombe\$y1,
$+\quad$ type $=$ "n", axes = FALSE, xlab = "", ylab = "")
- This produces a completely blank page

■ but performs one important task: it sets up the coordinate system for subsequent low-level calls.

Details

- The extent of this coordinate system can be obtained using

```
> par("usr")
```

[1] 0101

- This is the range of the data that was supplied to plot(), with a padding of 4% on both sides
> range (anscombe $\$ \mathrm{x} 1$)
[1] 414
> range(anscombe\$y1)
[1] $4.26 \quad 10.84$

Details

- This rectangular region does not occupy the full figure area, only a part of it.
- This is referred to as the plot region
- We can now draw a box around the plot region and add the data points as follows.

Details

Details

- The area outside the plot region is known as the margin, and is used for axis annotation and labels.
- The following low-level calls complete the plot and adds a linear regression line.

```
> axis(side = 1)
> axis(side = 2)
> title(main = "Anscombe's first dataset",
+ xlab = "x1", ylab = "y1")
> abline(lm(y1 ~ x1, anscombe))
```


Details

R Graphics
 Deepayan
 Sarkar

Anscombe's first dataset
introduction
traditional graphics
grid
Grid
graphics
lattice
ggplot2

Why are these details important?

■ Is this relevant for routine use? Consider this code:
> plot (anscombe\$x2, anscombe\$y2,

+ type = "n", axes = FALSE, xlab = "", ylab = "")
> lims <- par("usr")
> rect(lims[1], lims[3], lims[2], lims[4],
$+\quad c o l=$ "grey80", border = NA)
> abline(v = pretty(lims[1:2]), h = pretty(lims[3:4]),
$+\quad$ col = "white", lwd = 2)
> axis(side = 1, col = "grey80", col.axis = "grey20")
> axis(side = 2, col = "grey80", col.axis = "grey20",
$+\quad$ las $=1$)
> points(anscombe\$x2, anscombe\$y2, pch = 16)
> title(main = "Anscombe's second dataset",
$+\quad x l a b=" x 2 ", y l a b=" y 2 ", ~ c o l ~=~ " g r e y 20 ") ~$
> abline(lm(y2 ~ x2, anscombe), col = "grey20")

Why are these details important?

Anscombe's second dataset

Why are these details important?

- This kind of customization is often desirable,
- making use of low-level functions as above is the standard approach with traditional graphics
■ Most other high-level traditional graphics functions follow this structure
■ We will not discuss low-level structure of traditional graphics

Some useful low-level functions

text ()	Add Text to a Plot
lines()	Add Connected Line Segments to a Plot
points()	Add Points to a Plot
polygon()	Polygon Drawing
rect()	Draw One or More Rectangles
segments()	Add Line Segments to a Plot

Some useful low-level functions
abline()
arrows()
axis()
box()
grid()
legend()
title()

Add Straight Lines to a Plot
Add Arrows to a Plot
Add an Axis to a Plot
Draw a Box around a Plot
Add Grid to a Plot
Add Legends to Plots
Plot Annotation

The plot() function I

- The plot() function is actually a generic function that can deal with the task of plotting several types of R objects.

■ The most common method is the default method plot. default(), which can be used to plot

- paired numeric data
- univariate numeric data, plotted against serial number

■ See ?plot and ?plot.default for details, including

- logarithmic scales using the log argument
- the type argument for controlling display

The plot() formula method

- Another common method for bivariate data: use a formula
- Similar to various statistical modeling functions
- Allows cleaner specification of the plot

■ Leads to better default axis labels

The plot() formula method

Other plot methods

Full list of available methods for the plot() generic can be listed by
> methods("plot")

[1] plot.acf*	plot,ANY-method
[3] plot,color-method	plot.data.frame*

[5] plot.decomposed.ts* plot.default
[7] plot.dendrogram* plot.density*
[9] plot.ecdf
plot.factor*
[11] plot.formula* plot.function
[13] plot.ggplot* plot.gtable*
[15] plot.hclust* plot.histogram*
[17] plot.HoltWinters* plot.isoreg*
[19] plot.lm*
plot.medpolish*
[21] plot.mlm*
plot.ppr*
[23] plot.prcomp*
plot.princomp*
[25] plot.profile.nls*
plot.raster*
[27] plot.shingle*
plot.spec*
[29] plot.stepfun
plot.stl*
[31] plot.table*
plot.trellis*
[33] plot.ts
plot.tskernel*
[35] plot.TukeyHSD*

Other plot methods: "data.frame"

Other plot methods: "data.frame"

■ Actually, the plot() method in this case simply calls pairs(), the function designed to draw scatterplot matrices

- The previous figure could also have been produced by
> pairs(airquality)

Other plot methods: "factor"

Similarly, the "factor" method for plot() may call

- barplot () to show a bar chart of the frequency distibution (if the input is a single "factor" variable)
■ boxplot() to show box-and-whisker plots (if an additional numeric variable is provided)

We discuss these specialized high-level functions next

Specialized functions: histogram

Specialized functions: kernel density estimate

First step: compute density estimate as a "density" object
> d <- density(airquality\$Ozone, na.rm = TRUE)
$>\operatorname{str}(\mathrm{d})$

List of 7
\$ x : num [1:512] -33.4 -33 -32.5 -32 -31.6...
\$ y : num [1:512] 1.08e-05 1.24e-05 1.41e-05 1.62e-05 1.85e
\$ bw : num 11.5
\$ n : int 116
\$ call : language density.default(x = airquality\$Ozone, na.rm
\$ data.name: chr "airquality\$Ozone"
\$ has.na : logi FALSE

- attr(*, "class")= chr "density"

Common high-level functions for specific displays

Return values of specialized plotting functions

R Graphics

- density() returns object with information about calculations

■ Similarly, hist() return a "histogram" object containing details

```
> h <- hist(airquality$Ozone, plot = FALSE)
> str(h)
```

List of 6
\$ breaks : num [1:10] 020406080100120140160180
\$ counts : int [1:9] 3734141594201
\$ density : num [1:9] $0.015950 .014660 .006030 .006470 .00388 \ldots$
\$ mids : num [1:9] 1030507090110130150170
\$ xname : chr "airquality\$Ozone"
\$ equidist: logi TRUE
- attr(*, "class") = chr "histogram"

■ Such objects can also be plotted using plot ()
■ More useful because it allows customization (examples later)

Quantile-based plots: box plots

R Graphics

Deepayan Sarkar
boxplot() produce comparative box-and-whisker plots
> airquality\$fmonth <- with(airquality,

+ droplevels(factor(Month, levels = 1:12, labels = month.name)))
> boxplot(Ozone ~ fmonth, data = airquality)

As with hist() and density(), these functions also have useful return values.

Quantile-based plots: Q-Q plots

Displaying tabular data

■ Common visualizations: bar plots and dot plots

- Bar plots are produced by barplot()
- Dot plots by the dotchart () function.
- Example using dataset on death rates in different population subgroups in the US state of Virginia in 1940
> barplot(VADeaths, beside=TRUE, horiz=TRUE,
$+\quad$ legend.text=TRUE, xlim $=c(0,100))$
> dotchart(VADeaths)

■ Note use of xlim to fit legend

Displaying tabular data

```
R Graphics
Deepayan
    Sarkar
introduction
traditional
graphics
grid
Grid
graphics
lattice
ggplot2
```


Displaying tabular data: mosaic plots

- Less common visualization

■ Useful for tabular higher dimensional tables
■ Example: Simpson's paradox in Berkeley admissions data:

- aggregate number of applicants to at Berkeley in 1973
- six largest departments (labeled A-F)
- classified by gender and whether they were admitted.

UCB Admissions, 1973

UCB Admissions, 1973

Displaying tabular data: mosaic plots

- The plots are produced by the following calls

■ Uses aperm() to rearrange the dimensions of the UCBAdmissions array to achieve the desired hierarchy of groups.

```
> mosaicplot(aperm(UCBAdmissions, c(2, 1, 3)),
+ main = "UCB Admissions, 1973")
> mosaicplot(aperm(UCBAdmissions, c(3, 1, 2)),
+ main = "UCB Admissions, 1973")
```


Visualizations for time series data

■ R comes with many specialized graphical designs

- Those used for time series data deserve special mention because of their ubiquity.
- Time series data are typically represented in R as objects of class "ts".
- Corresponding plot() method produces a standard time series plot, which is essentially a scatterplot with points joined by lines.

Typical plot of time series data

R Graphics
 A time series plot of the AirPassengers data
 > plot(AirPassengers)

Time series data: ACF plot

Time series data: ACF plot

Time series decompositions I

- In addition to these basic plots, R provides functions for various time series decompositions that can be plotted.
- For example, an STL decompositionof the AirPassengers data is produced by
> plot(stl(log(AirPassengers), "periodic"))

Time series decompositions II

- Other decomposition methods are implemented in the decompose() and StructTS() functions.

Time series decompositions III

- A number of contributed R packages substantially enhance the time series analysis capabilities of R; see
http://cran.r-project.org/web/views/TimeSeries.html

Customizing plots using low-level functions

■ High-level graphics functions produce basic versions of common statistical graphs
■ Often we want to fine-tune them in different ways to get something more relevant to our purposes.
■ We have seen a somewhat extreme example before (Anscombe's data), starting from a blank plot

- More common to start with a complete high-level plot

■ Incrementally add components to customize it

Customizing plots using low-level functions

R Graphics

- Common use: add representation of some model fit

■ Example: side-by-side scatterplots of Anscombe's first two datasets, with the least squares fits from a linear and quadratic model.

```
> lims <- with(anscombe, list(x = range(x1, x2),
+ y = range(y1, y2)))
> par(mfrow = c(1, 2))
> plot(y1 ~ x1, data = anscombe,
+ xlim = lims$x, ylim = lims$y)
> abline(lm(y1 ~ x1, data = anscombe))
> f1 <- function(x) predict(lm(y1 ~ poly(x1, 2), data = anscombe),
+ newdata = list (x1 = x))
> curve(f1, add = TRUE)
> plot(y2 ~ x2, data = anscombe,
+ xlim = lims$x, ylim = lims$y)
> abline(lm(y2 ~ x2, data = anscombe))
> f2 <- function(x) predict(lm(y2 ~ poly(x2, 2), data = anscombe),
+ newdata = list (x2 = x))
```

$>$ curve (f2, add $=$ TRUE)

Customizing plots using low-level functions

- Linear fit easily added using abline()
- Quadratic fit needs more general curve() function.
- Second approach works for any other modeling function that has a suitable predict() method.
■ The par(mfrow=) construct is used to enable a "multiple figure" layout (see ?par).

Customizing plots: histogram

■ As noted before, many high-level graphics functions (e.g., hist(), boxplot(), barplot()) return objects containing intermediate computations.

- These are useful for customizations.

■ Example: annotates a density histogram of Ozone concentration (the airquality data) with the bin frequencies, and adds a kernel density estimate for comparison.
> h <- hist(airquality ${ }^{\text {O }}$ zone, plot = FALSE)
> d <- density(airquality\$Ozone, na.rm = TRUE)
$>\operatorname{plot}(h, f r e q=F A L S E, y l i m=c(0,1.1 * \max (h \$ d e n s i t y)))$
$>$ box()
$>$ text(h\$mids, h\$density, labels = h\$counts, pos = 3)
> lines(d)
Note the need to increase the y-axis range slightly to accommodate the label for the highest bin.

Customizing plots: histogram

Histogram of airquality\$Ozone

introduction

 traditional graphics

Customizing plots: bar plots

■ barplot() returns coordinates of the bar midpoints, allows similar annotation to be added to bar charts.
■ Example: age groups in the VADeaths data are indicated using text labels rather than a legend
> b <- barplot(VADeaths, beside = TRUE, col = "grey90")
> text(b, 0, labels = rownames(VADeaths), srt = 90, adj = -0.1, cex

Customizing plots: bar plots

Limitations of traditional graphics

■ Traditional graphics model is considerably limited by its design.

- Basic Assumption: a single plot area in the center, and margins will be used for axis annotation and labels.
- Not all graphical designs fit this paradigm.

■ One important class of such examples: "small multiples" or "conditioned plots", where one page contains multiple plots grouped by some categorical variable.

Limitations of traditional graphics

Example using traditional graphics:
> lims <- with(anscombe, list(x = range(x1, x2, x3, x4),
$+\quad y=r a n g e(y 1, y 2, y 3, y 4)))$
$>\operatorname{par}(m f r o w=c(2,2), \operatorname{mar}=c(2,2,1,0))$
> plot(y1 ~ x1, data = anscombe, pch = 16, xlim = lims\$x, ylim = li
> abline(lm(y1 ~ x1, data = anscombe), col = "grey50")
> plot(y2 ~ x2, data = anscombe, pch = 16, xlim = lims\$x, ylim = li
> abline(lm(y2 ~ x2, data = anscombe), col = "grey50")
> plot(y3 ~ x3, data = anscombe, pch = 16, xlim = lims\$x, ylim = li
> abline(lm(y3 ~ x3, data = anscombe), col = "grey50")
> plot(y4 ~ x4, data = anscombe, pch = 16, xlim = lims\$x, ylim = li
> abline(lm(y4 ~ x4, data = anscombe), col = "grey50")

More realistic example: airquality data

■ Compare the distributions of Ozone across months
■ With density plots or histograms

- Density estimates can be superposed in the same plot, with a little work to ensure adequate axis limits.

More realistic example: airquality data

R Graphics

> s <- with(airquality, split(Ozone, fmonth))
$>\operatorname{str}(\mathrm{s})$
List of 5
\$ May : int [1:31] 41361218 NA 2823198 NA...
\$ June : int $[1: 30]$ NA NA NA NA NA NA 29 NA $7139 \ldots$
\$ July : int [1:31] 1354932 NA $644077979785 \ldots$
\$ August : int [1:31] 3991678356612289110 NA ...
\$ September: int [1:30] 96787391473220232124 ...

Next, we call density() on each component using lapply().

```
> dlist <- lapply(s, density, na.rm = TRUE)
```


More realistic example: airquality data

Each component of dlist now contains a "density" object with components x and y giving the estimated density function. We can compute the range needed to contain all the densities as follows.
> dxrng <- range(unlist(lapply(dlist, function(d) d\$x)))
> dyrng <- range(unlist(lapply(dlist, function(d) d\$y)))

More realistic example: airquality data
> plot(dxrng, dyrng, xlab = "Ozone concentration", ylab = "Density"
> for (i in seq_along(dlist)) lines(dlist[[i]], col = i)
> legend("topright", legend = names(dlist),
$+\quad$ lty $=1$, col $=$ seq_along(dlist))

More realistic example: comparative histogram

Histograms are not easily amenable to superposition, but they can be juxtaposed.
Using similar tricks along with the multiple figure approach we obtain
$>\operatorname{par}($ mfrow $=c(2,3))$
> hlist <- lapply(s, hist, plot = FALSE)
> hxrng <- range(unlist(lapply(hlist, function(h) h\$breaks)))
> hyrng <- range(unlist(lapply(hlist, function(h) h\$density)))
> invisible(lapply(names(s),
$+\quad$ function(nm) \{
$+$
$+$
$+\quad\})$)

More realistic example: comparative histogram

Limitations

- It is precisely the need to deal with these kinds of graphic designs that Trellis graphics as implemented in the lattice package, and more recently the ggplot2 package, was developed.
- Before we move on to these, we will briefly discuss the low-level system these packages are based on, namely, Grid graphics.

Viewports I

Viewports are a central concept in Grid graphics. They are essentially rectangular subregions of the plotting area. They can be nested within other viewports, forming a tree of viewports. The initial blank graphics area is the ROOT viewport. New viewports can be defined relative to parent either by position, or in terms of a layout. Viewports are created by the viewport () function, and made active by pushViewport(). The upViewport() function is used to navigate to the parent of the current viewport. Viewports support several coordinate systems that can be used to specify locations within the viewport. Of these, the most useful is the native coordinate system, which is determined by specifying x-axis and y-axis extents when creating the viewport using the arguments xscale and yscale.

Coordinate systems in grid

"native"	Native coordinates
"npc"	Normalized Parent Coordinates
"snpc"	'Square' NPC
"inches", "cm", "points", etc.	absolute lengths
"char"	Character size
"lines"	Height of a lines of text
"strwidth", "strheight"	Width or height of a string
"grobwidth", "grobheight"	Width or height of a 'grid object' (details later)

Units and primitives

■ Another fundamental concept is that of units of length

- Grid can specify lengths in various ways
- The basic low-level primitive functions in traditional graphics have analogs in grid.
- There are two versions of each function, one that produces output, and one that produces an object without actually plotting it.
■ These objects can eventually be plotted, but they can also be queried to determine their height and width, so that appropriate space can be allocated for them.

Common primitive objects in grid

Type	Function producing output	Function producing object
Points	grid.points	pointsGrob
Lines	grid.lines	linesGrob
Text	grid.text	textGrob
Rectangles	grid.rect	rectGrob
Circles	grid.circle	circleGrob
Polygons	grid.polygon	polygonGrob
Segments	grid.segments	segmentsGrob
X-axis	grid.xaxis	xaxisGrob
Y-axis	grid.yaxis	yaxisGrob
Arrows	grid.arrows	arrowsGrob

Simple attempt I

The data we will use for our example is the faithful dataset, which contains eruption times and inter-eruption intervals lengths for the famous Old Faithful geyser in Yellowstone national park. We first compute some summaries that will be required to set up the plot.

```
> str(faithful)
```

```
'data.frame': 272 obs. of 2 variables:
    $ eruptions: num 3.6 1.8 3.33 2.28 4.53 ...
    $ waiting : num 79 54 74 62 85 55 88 85 51 85 ...
```


Simple attempt II

> x <- faithful\$eruptions
> y <- jitter(faithful\$waiting)
> xrng <- range (x)
> yrng <- range (y)
> xlim <- extendrange(xrng, f = 0.1)
> ylim <- extendrange(yrng, $f=0.1$)
> xdens <- density(x)
> ydens <- density (y)
> xdens.max <- max (xdens\$y)
> ydens.max <- max (ydens\$y)
We can now use these to take a shot at our desired plot. First we create a viewport for the central plot area with a suitable native coordinate system that covers the range of the data. The location of the viewport itself is specified in terms of the parent (root) viewport. By default, the coordinate system used to specify the location of a viewport is the normalized parent coordinate (NPC) system, which assigns the range $[0,1]$ to both coordinate axes.

Simple attempt III

> library (grid)
> pushViewport(viewport ($\mathrm{x}=0.45, \mathrm{y}=0.45$, width $=0.7$, height $=0$

```
+
xscale = xlim, yscale = ylim))
```

Next we add the data points using the native coordinate system and add the x and y -axes.
> grid.points(x, y, default.units = "native")
> grid.xaxis()
> grid.yaxis()
For the rugs, we use line segments whose locations along the axes are specified using the native coordinate system, but whose lengths are specified using the NPC system to be exactly 3% of the range of the corresponding axis.

```
> grid.segments(x0 = unit(x, "native"), y0 = unit(0, "npc"),
+ x1 = unit(x, "native"), y1 = unit(0.03, "npc"))
> grid.segments(x0 = unit(0, "npc"), y0 = unit(y, "native"),
+ x1 = unit(0.03, "npc"), y1 = unit(y, "native"))
```


Simple attempt IV

Finally, we can add axis labels, and then the densities by creating two new viewports and plotting the densities inside.

```
upViewport(1)
> grid.text("Eruption times (minutes)", x = 0.45, y = 0,
+ just = c("centre", "bottom"))
> grid.text("Time to next eruption (minutes)", x = 0, y = 0.45,
+ rot = 90, just = c("centre", "top"))
> pushViewport(viewport(x = 0.45, y = 0.85, width = 0.7, height = 0
+ xscale = xlim, yscale = c(0, xdens.max),
+ clip = "on"))
grid.polygon(x = xdens$x, y = xdens$y, default.units = "native",
+ gp = gpar(fill = "lightgrey", col = "transparent"))
upViewport(1)
> pushViewport(viewport(x = 0.85, y = 0.45, width = 0.1, height = 0
+ xscale = c(0, ydens.max), yscale = ylim,
+ clip = "on"))
> grid.polygon(x = ydens$y, y = ydens$x, default.units = "native",
+ gp = gpar(fill = "lightgrey", col = "transparent"))
> upViewport(1)
```


Simple attempt V

We finish by adding a main label on top.
> pushViewport(viewport($\mathrm{x}=0.5$, $\mathrm{y}=0.95$, width $=1$, height $=0.1$)
> grid.text("Old faithful eruptions", $x=0.5$, $y=0.5$)

Simple attempt VI

R Graphics
Deepayan
Sarkar

introduction

traditional

 graphicsgrid
Grid graphics

lattice

ggplot2

Further improvements

- This approach can be easily generalized to work with other datasets

■ Several improvements could be desirable:

- space for the axes, main title, etc., are proportions of the total figure area
- instead, could want to use only as much space as necessary
- can be done by specifying viewports are using "layouts"
- Will not go into that approach

■ Such advanced features of grid are used by the lattice and ggplot2 packages (discussed next)

lattice

- lattice: add-on package that implements Trellis graphics in R.

■ Powerful high-level data visualization system with an emphasis on multivariate data.

- Typical usage: revisit histograms for the ozone concentration data

■ Function used: histogram()
> library(lattice)
> histogram(~ Ozone, data = airquality)

Histogram (without conditioning)

- Note that Ozone is specified in a formula.
- All high-level functions in lattice support formulas

■ The formula language allows us to elegantly express conditioning variables that are used to subdivide the data into subgroups that are plotted in "panels" juxtaposed to enable comparison.

- To see the distribution of Ozone across different months, we can simply use
> histogram(~ Ozone | fmonth, data = airquality)

Histogram (with conditioning)

Features

```
R Graphics
```

- Panels share the same data ranges

■ Axes are labeled only along the boundaries of the whole plot
■ Optimal use of available space while making comparison easier

Kernel density plots (with conditioning)

Kernel density plots (with grouping)

Features

```
R Graphics
```

- Conditioning gives juxtaposition with common axes

■ Even better comparison by superposition (grouping)

- plot.points and auto.key control further details

General overview

```
R Graphics
```

■ High-level system for statistical graphics
■ Independent of traditional R graphics

- Modeled on the Trellis suite in S

General overview

■ High-level system for statistical graphics
■ Independent of traditional R graphics

- Modeled on the Trellis suite in S

■ Displays defined by type of graphic and role different variables play in it
■ Function name indicates type of graphic: histogram, densityplot

- Typical roles are:
- primary variables define the main display (e.g., Ozone)
- conditioning variables divide data into subgroups displayed in different panels
- grouping variables divide data into subgroups contrasted within panels

Function	Default Display
histogram()	Histogram
densityplot()	Kernel density plot
qqmath()	Theoretical quantile plot
qq()	Two-sample quantile plot
stripplot()	Stripchart (comparative 1-D scatterplots)
bwplot()	Comparative box-and-whisker plot
dotplot()	Cleveland dot plot
barchart()	Bar plot
xyplot()	Scatterplot and time-series plot
splom()	Scatterplot matrix
contourplot()	Contour plot of surfaces
levelplot()	False-color level plot of surfaces
wireframe()	Three-dimensional perspective plot of surfaces
cloud()	Three-dimensional scatterplot
parallelplot()	Parallel coordinates plot

Design features

■ Overall goal: make comparison easier
■ Use as much of the available space as possible

- Force direct comparsion by superposition (grouping) when possible

■ Encourage comparison when juxtaposing (conditioning): use common axes, add common reference objects such as grids.

Design features: implications

■ Avoid empty space: no space for labels/legends if they are absent
■ To implement this, all details need to be known when plotting begins
■ Implication: incremental approach common in traditional R doesn't work
■ Lattice approach:

- plots are R objects (of class "trellis")
- incremental updates are performed by modifying and re-plotting

Extensions / customizations

- Within overall structure, components can be customized
- The main components are
- the primary (panel) display
- axis annotation
- strip annotation (describing the conditioning process)
- legends (typically describing the grouping process)

■ Most common: customized panel display

Common high-level displays: Q-Q plots

> qqmath(~ Ozone | fmonth, data = airquality, grid = TRUE, layout $=c(5,1))$

Common high-level displays: Comparative box-and-whisker plots

```
R Graphics
Deepayan
    Sarkar
> bwplot(fmonth ~ Ozone, data = airquality)
introduction
traditional
graphics
grid
Grid
graphics
lattice
ggplot2
```


Common high-level displays: different scales

R Graphics

```
> bwplot(fmonth ~ Ozone + Solar.R, data = airquality,
\(+\quad\) outer \(=\) TRUE, scales \(=\) list( \(x=\) "free"), xlab = NULL)
```

introduction
traditional
graphics
grid
Grid
graphics
lattice
ggplot2

Bar charts and dot plots for tabular data

- We will use the VADeaths dataset again
- VADeaths is a matrix, but need a data frame to use the formula interface
> VADeathsDF <-
$+\quad$ as.data.frame.table(VADeaths, responseName = "Rate")
> str (VADeathsDF)

```
'data.frame': 20 obs. of 3 variables:
    $ Var1: Factor w/ 5 levels "50-54","55-59",..: 1 2 3 4 5 1 2 3 4 5
    $ Var2: Factor w/ 4 levels "Rural Male","Rural Female",..: 1 1 1 1
    $ Rate: num 11.7 18.1 26.9 41 66 8.7 11.7 20.3 30.9 54.3 ...
```


Bar charts and dot plots for tabular data

- We will use the VADeaths dataset again
- VADeaths is a matrix, but need a data frame to use the formula interface
> VADeathsDF <-
$+\quad$ as.data.frame.table(VADeaths, responseName = "Rate")
> str(VADeathsDF)

■ TO produce a bar chart:
> barchart(Rate ~ Var1 | Var2, VADeathsDF, layout = c(4, 1),
$+\quad$ scales $=$ list $(\mathrm{x}=$ list $($ rot $=45))$)

Bar charts

Potentially misleading, because

- strong visual comparison: areas of the shaded bars
- areas do not mean anything here

■ can be addressed by making the bars start at 0 .
> barchart(Rate ~ Var1 | Var2, VADeathsDF, layout = c(4, 1),
$+$ origin $=0$,
$+\quad$ scales $=$ list $(\mathrm{x}=$ list $($ rot $=45))$)

Dot plots: compare only location

R Graphics
Deepayan
Sarkar
> dotplot(Rate ~ Var1 | Var2, VADeathsDF, layout = c(4, 1),
$+\quad$ scales $=$ list $(x=1 i s t(r o t=45))$)

Dot plots (grouped)

R Graphics
> dotplot(Rate ~ Var1, VADeathsDF, groups = Var2, type = "०",
$+\quad$ auto.key $=$ list (columns $=2$, points $=$ TRUE, lines $=$ TRUE))
introduction
traditional
graphics
grid
Grid
graphics
lattice
ggplot2

Rural Male ○
Rural Female o
Urban Male ○
Urban Female \circ _

Methods

■ High-level lattice functions are actually generic

- Specific methods do the actual work

■ Examples seen so far are "formula" methods
■ barchart() and dotplot() also have "table" methods
> dotplot(VADeaths, type = "○", ylab = "Rate", horizontal = FALSE,

+ auto.key = list(columns = 2, points = TRUE, lines = TRUE)

Scatter plots

Scatter plots

R Graphics

Deepayan
Sarkar

introduction

traditional

 graphicsgrid
Grid graphics
lattice
ggplot2
To show all four datasets, need to rearrange data
> anscombe.long <-
$+\quad$ with(anscombe, data.frame(x $=c(x 1, x 2, x 3, x 4)$,
$+\quad y=c(y 1, y 2, y 3, y 4)$,
$+$
which = gl(4, nrow(anscombe))))

Scatter plots

Customization

■ Suppose we want to add linear and quadratic regression lines

- Similar idea: fit models, add lines or curves representing the fits

■ However, this cannot be done after the basic plot is already drawn
■ Solution:

- provide a function that implements procedure to display data
- executed once for every panel (data subset)
- known as the panel function
- supplied as the panel argument to high-level calls

Customization

Such a function might look like:

```
> panel.lq <- function(x, y, ...)
+ {
+ panel.grid()
+ panel.xyplot(x, y, ...)
+ fm1 <- lm(y ~ x)
+ panel.abline(fm1)
+ try({
+ fm2 <- lm(y ~ poly(x, 2))
+ f <- function(x) predict(fm2, newdata = list(x = x))
+ panel.curve(f)
+ }, silent = TRUE)
+ }
```

■ Uses lattice analogues of functions such as abline() and curve()

- The panel.xyplot() function represents the default panel function
- The quadratic model fit is wrapped inside try () because the fit fails for the fourth dataset which has only two unique values

Customization

> xyplot(y ~ x | which, data = anscombe.long, pch = 16, $+\quad$ as.table $=$ TRUE, panel $=$ panel.lq)

introduction

traditional graphics

grid

Grid graphics

lattice

Three-dimensional plots

■ Three-dimensional scatterplots supported by the cloud() function
■ Example: scatter plot of latitude, longitude, and depth of earthquake epicenters

```
> cloud(depth ~ lat * long, data = quakes,
+ zlim = rev(range(quakes$depth)),
+ screen = list(z = 105, x = -70), panel.aspect = 0.75,
+ xlab = "Longitude", ylab = "Latitude", zlab = "Depth")
```


Three-dimensional plots

The "trellis" object

- Important feature of lattice:
- high-level functions do not plot anything.
- they return an object of class "trellis"
- must be print()-ed or plot()-ed (not necessary in interactive use due to R's automatic printing rule)
- can be useful to display multiple plots:

```
> dp.wp <- dotplot(WorldPhones/1000, groups = FALSE,
+ layout = c(1, NA),
+ xlab = "Number of telephones (millions)")
> dp.wp.log <-
+ dotplot(WorldPhones/1000, groups = FALSE, layout = c(1, NA),
+ scales = list(x = list(log = TRUE,
+ equispaced.log = FALSE)),
+ xlab = "Number of telephones (millions)")
> plot(dp.wp, split = c(1, 1, 2, 1))
> plot(dp.wp.log, split = c(2, 1, 2, 1), newpage = FALSE)
```


R Graphics

Deepayan
 Sarkar

introduction

Grammar of graphics

Traditional and trellis graphics both have the same basic approach:

- functions are written to implement specific graphical designs

■ usually these designs have already been established as beingu useful
■ customization is achieved through a procedural approach.
The ggplot2 package takes a different approach:
■ defines a "layered grammar" for defining graphical designs

- defines various components of a graphical display
- final display is a composition of various independent components
- grammar is used to specify the composition
- can be used to create novel displays easily
- plots consist of one or more layers (e.g., raw data could be one layer, model fits another)

Grammar of graphics

The main components of the grammar are:

- aesthetic mappings that map data values to some aspect in the displayed graph, such as coordinate positions, color, shape, size, group, etc.

■ geometric types used to render the mapped data, e.g., by points, lines, polygons, or something more complex such as a box-and-whisker plot.

- statistical transformations that are applied to the data beforehand, such as binning for histograms, or computation of kernel density estimates.
■ Scales that give a visual indication of the aesthetic mappings, e.g., axis annotation for position mapping, legends for mapping to color, size, etc.
■ Faceting (conditioning in Trellis terminology) to produce small multiples.

Example: Air quality data

■ Goal: produce histograms and kernel density plots conditioned on fmonth.
■ Common data source and faceting, so capture these aspects first.
> library (ggplot2)
> p <- ggplot(airquality, aes(x = Ozone)) + facet_wrap(~ fmonth)

- aes() specifies the aesthetic mapping: saying in this case that Ozone variable should be mapped to x-coordinates in the plot.

■ p is not yet a valid plot, because it doesn't yet have any layers.
■ To create a scatterplot, we can add a point "geom" (short for geometric type), but to do so, we also need to specify a variable that will map to the y -coordinates.

Example: scatter plot

Example: histogram

■ adding a geom is not enough for histogram
■ we first need to transform the data by binning it
■ we add a new "stat" layer created by stat_bin()
■ we can also specify the geom to be used for rendering the transformed data.

Example: histogram

Example: kernel density plots

Simpler interface

- For these standard graphical designs, the calls above are too verbose
- qplot() offers a simpler interface for common designs
- The previous plots can be produced directly using
> qplot(x = Ozone, $y=$ Solar.R, data = airquality,
facets $=\sim$ fmonth)
> qplot(x = Ozone, data = airquality, facets = ~ fmonth,
$+\quad$ stat $=$ "bin", binwidth = 20)
> qplot(x = Ozone, data = airquality, facets = ~ fmonth,
+ stat = "density", geom = "line", binwidth = 20)

■ Full potential of the layered approach becomes apparent when we need to add more elements to a plot.

- The following call creates a scatterplot of the faithful data with a LOESS fit and rugs on the margin.

```
> qplot(x= jitter(eruptions), \(y=\) jitter(waiting), data= faithful)
+ stat_smooth(method = "loess") + geom_rug()
```

introduction
traditional
graphics
grid
Grid
graphics
lattice
ggplot2

Layers: another example
> anscombe. 123 <- subset (anscombe.long, which != "4")
> qplot ($\mathrm{x}=\mathrm{x}, \mathrm{y}=\mathrm{y}$, data $=$ anscombe. 123, facets $=\sim$ which $)+$

+ stat_smooth(method = "lm", se=FALSE) +
+ stat_smooth(method = "lm", formula = y ~poly(x, 2), se=FALSE)

traditional

 graphicsgrid
Grid
graphics

lattice

ggplot2

References

■ Anscombe, F.J., 1973. Graphs in statistical analysis. The American Statistician 27:1, 17-21. Link
■ Murrell, P., R Graphics (second edition), 2011. Chapman \& Hall/CRC. https://www.stat.auckland.ac.nz/~paul/RG2e/

- Sarkar, D., 2008. Lattice: Multivariate Data Visualization with R. Springer, New York. lmdvr.r-forge.rproject.org
■ Tukey, J.W., 1977. Exploratory Data Analysis. Addison-Wesley, Menlo Park, CA.
■ Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer, New York. http://ggplot2.org/
■ Wilkinson, L., 1999. The Grammar of Graphics. Springer, New York.

