LINEAR MODELS AND GLM: ASSIGNMENT 1

Exercise 1. (2 points) Linear models are called "linear" because they are linear in the parameters β , or more technically, the expected value $E(\boldsymbol{y} \mid \beta)$ as a function of β is linear in β . Make this statement more precise and prove it.

A model $\{P_{\theta}, \theta \in \Theta\}$ is said to be *identifiable* if for any $\theta_1, \theta_2 \in \Theta, \theta_1 \neq \theta_2 \implies P_{\theta_1} \neq P_{\theta_2}$. We have already seen that the one-way model is not identifiable.

Exercise 2. (2 points) Consider the model given by $\mathcal{N}(\theta, 1), \theta \in \mathbb{R}$. Show that the model is identifiable; that is, if $\theta_1 \neq \theta_2$, then the distributions defined by them are different.

Some basic linear algebra concepts reviewed

A set of vectors x_1, \ldots, x_n is *linearly dependent* if there exist coefficients c_1, \ldots, c_n , not all zero, such that $\sum_i c_i x_i = \mathbf{0}$. This can be rephrased in matrix notation as follows: the columns of a matrix X are said to be *linearly dependent* if there exists $c \neq \mathbf{0}$ such that $Xc = \mathbf{0}$.

A set of vectors x_1, \ldots, x_n (the columns of matrix X) is *linearly independent* if

$$\sum_i c_i \boldsymbol{x_i} = \boldsymbol{Xc} = \boldsymbol{0} \implies \boldsymbol{c} = \boldsymbol{0}$$

In $\mathbb{R}^d,$ no more than d vectors can be linearly independent.

Two vectors are *orthogonal* if their inner product is zero, i.e.,

$$\boldsymbol{x}'\boldsymbol{y} = \boldsymbol{y}'\boldsymbol{x} = \sum_{i} x_{i}y_{i} = 0$$

A set of vectors is *mutually orthogonal* if they are pairwise orthogonal. If the columns of a matrix Q are orthogonal, then Q'Q is a diagonal matrix. In addition, if the columns of Q are of unit length $(||\boldsymbol{x}|| = \sqrt{\boldsymbol{x}'\boldsymbol{y}} = 1)$, then Q'Q = I, and Q is said to be *orthonormal*.

Exercise 3. (2 points) Show that a set of mutually orthogonal vectors is linearly independent.

A vector space is a set of vectors closed under addition and scalar multiplication. The span of a set of vectors x_1, \ldots, x_n is the set of all linear combinations

$$span\{x_1,\ldots,x_n\} = \left\{ x \mid x = \sum_i c_i x_i \text{ for some } c_i, i = 1,\ldots,n \right\}$$

 $span\{x_1, \ldots, x_n\}$ is a vector space, and is said to be generated by x_1, \ldots, x_n . A basis for a vector space \mathcal{V} is a set of linearly independent vectors x_1, \ldots, x_n that generate \mathcal{V} (i.e., $\mathcal{V} = span\{x_1, \ldots, x_n\}$).

The dimension of a vector space is the number of vectors in a basis for the vector space.

Dimension is unique, although basis is not. The set of elementary vectors $\{e_1, \ldots, e_n\}$ is an orthonormal basis for \mathbb{R}^n , where $e_i \in \mathbb{R}^n$ has i^{th} element 1 and all other elements 0.

The rank of a matrix X, denoted by rank(X), is the number of linearly independent columns (or rows). X has full column rank if rank equals the number of columns (similarly full row rank).

Date: 8 January, 2010.

The column space of a matrix X, denoted by C(X), is the span of the columns of X; that is, $C(X) = \{z \mid z = Xy \text{ for some } y\}.$ dim(C(X)) = rank(X), the number of linearly independent columns.

Exercise 4. (2 points) Show that rank(AB) < min(rank(A), rank(B))

Exercise 5. (3 points) Show that $C(A) \subseteq C(B) \iff A = BC$ for some C.

The null space or kernel of a matrix A is $\mathcal{N}(A) = \{x \mid Ax = 0\}$

Exercise 6. (0 points) Show that if **A** has full column rank, then $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$.

Vector spaces $\mathcal{U}, \mathcal{V} \subseteq \mathbb{R}^n$ are said to form *orthogonal complements* if (1) $\mathcal{U} \cap \mathcal{V} = \{\mathbf{0}\},$ (2) dim (\mathcal{U}) + dim $(\mathcal{V}) = n$, and (3) $\boldsymbol{u} \perp \boldsymbol{v}$ for all $\boldsymbol{u} \in \mathcal{U}, \boldsymbol{v} \in \mathcal{V}$. Then, we write $\mathcal{U} \oplus^{\perp} \mathcal{V} = \mathbb{R}^n$.

Exercise 7. (4 points) Show that if $\mathcal{U} \oplus^{\perp} \mathcal{V} = \mathbb{R}^n$, then any $\mathbf{x} \in \mathbb{R}^n$ can be written as $\mathbf{x} = \mathbf{u} + \mathbf{v}$ where $\mathbf{u} \in \mathcal{U}, \mathbf{v} \in \mathcal{V}$, and the decomposition is unique. Note that for such a decomposition, $\|\mathbf{x}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

Exercise 8. (6 points) Prove that for any matrix $A_{m \times n}$, dim $(\mathcal{N}(A)) + \dim(\mathcal{C}(A)) = n$.

Exercise 9. (3 points) Show that for any matrix $A_{m \times n}$, C(A) and $\mathcal{N}(A')$ are orthogonal complements in \mathbb{R}^m .

Exercise 10. (3 points) Prove the following results:

- \mathcal{U}, \mathcal{V} vector spaces, $\mathcal{U} \subseteq \mathcal{V}, \dim(\mathcal{U}) = \dim(\mathcal{V}) \implies \mathcal{U} = \mathcal{V}.$
- $Ax + b = 0 \forall x \in \mathbb{R}^n \implies A = 0, b = 0.$
- $Ax = Bx \forall x \implies A = B$.
- If A has full column rank, then $AB = AC \implies B = C$.

Exercise 11. (3 points) Show that $\mathcal{N}(\mathbf{X}'\mathbf{X}) = \mathcal{N}(\mathbf{X})$, and as a corollary, that $\mathcal{C}(\mathbf{X}'\mathbf{X}) = \mathcal{C}(\mathbf{X}')$.

Exercise 12. (3 points) The goal of this exercise is to prove the existence of a g-inverse for an arbitrary matrix \mathbf{A} by constructing one. Let \mathbf{B} and \mathbf{C} be nonsingular matrices such that $\mathbf{BAC} = \boldsymbol{\Delta}$ is a diagonal matrix (not necessarily square). Find a candidate $\boldsymbol{\Delta}^-$. Prove that $\mathbf{C}\boldsymbol{\Delta}^-\mathbf{B}$ is a g-inverse of \mathbf{A} .