LINEAR MODELS AND GLM: ASSIGNMENT 1

Exercise 1. (2 points) Linear models are called "linear" because they are linear in the parameters $\boldsymbol{\beta}$, or more technically, the expected value $E(\boldsymbol{y} \mid \boldsymbol{\beta})$ as a function of $\boldsymbol{\beta}$ is linear in $\boldsymbol{\beta}$. Make this statement more precise and prove it.
A model $\left\{P_{\boldsymbol{\theta}}, \boldsymbol{\theta} \in \Theta\right\}$ is said to be identifiable if for any $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2} \in \Theta, \boldsymbol{\theta}_{1} \neq \boldsymbol{\theta}_{2} \Longrightarrow P_{\boldsymbol{\theta}_{1}} \neq P_{\boldsymbol{\theta}_{2}}$. We have already seen that the one-way model is not identifiable.
Exercise 2. (2 points) Consider the model given by $\mathcal{N}(\theta, 1), \theta \in \mathbb{R}$. Show that the model is identifiable; that is, if $\theta_{1} \neq \theta_{2}$, then the distributions defined by them are different.

Some basic Linear algebra concepts Reviewed

A set of vectors $\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ is linearly dependent if there exist coefficients c_{1}, \ldots, c_{n}, not all zero, such that $\sum_{i} c_{i} \boldsymbol{x}_{\boldsymbol{i}}=\mathbf{0}$. This can be rephrased in matrix notation as follows: the columns of a matrix \boldsymbol{X} are said to be linearly dependent if there exists $\boldsymbol{c} \neq \mathbf{0}$ such that $\boldsymbol{X} \boldsymbol{c}=\mathbf{0}$.
A set of vectors $\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ (the columns of matrix \boldsymbol{X}) is linearly independent if

$$
\sum_{i} c_{i} \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{X} \boldsymbol{c}=\mathbf{0} \Longrightarrow \boldsymbol{c}=\mathbf{0}
$$

In \mathbb{R}^{d}, no more than d vectors can be linearly independent.
Two vectors are orthogonal if their inner product is zero, i.e.,

$$
\boldsymbol{x}^{\prime} \boldsymbol{y}=\boldsymbol{y}^{\prime} \boldsymbol{x}=\sum_{i} x_{i} y_{i}=0
$$

A set of vectors is mutually orthogonal if they are pairwise orthogonal. If the columns of a matrix \boldsymbol{Q} are orthogonal, then $\boldsymbol{Q}^{\prime} \boldsymbol{Q}$ is a diagonal matrix. In addition, if the columns of \boldsymbol{Q} are of unit length $\left(\|\boldsymbol{x}\|=\sqrt{\boldsymbol{x}^{\prime} \boldsymbol{y}}=1\right)$, then $\boldsymbol{Q}^{\prime} \boldsymbol{Q}=\boldsymbol{I}$, and \boldsymbol{Q} is said to be orthonormal.
Exercise 3. (2 points) Show that a set of mutually orthogonal vectors is linearly independent.
A vector space is a set of vectors closed under addition and scalar multiplication.
The span of a set of vectors $\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ is the set of all linear combinations

$$
\operatorname{span}\left\{\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right\}=\left\{\boldsymbol{x} \mid \boldsymbol{x}=\sum_{i} c_{i} \boldsymbol{x}_{\boldsymbol{i}} \text { for some } c_{i}, i=1, \ldots, n\right\}
$$

$\operatorname{span}\left\{\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right\}$ is a vector space, and is said to be generated by $\boldsymbol{x}_{\boldsymbol{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$.
A basis for a vector space \mathcal{V} is a set of linearly independent vectors $\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ that generate \mathcal{V} (i.e., $\left.\mathcal{V}=\operatorname{span}\left\{\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right\}\right)$.
The dimension of a vector space is the number of vectors in a basis for the vector space.
Dimension is unique, although basis is not. The set of elementary vectors $\left\{\boldsymbol{e}_{\boldsymbol{1}}, \ldots, \boldsymbol{e}_{\boldsymbol{n}}\right\}$ is an orthonormal basis for \mathbb{R}^{n}, where $\boldsymbol{e}_{\boldsymbol{i}} \in \mathbb{R}^{n}$ has $i^{\text {th }}$ element 1 and all other elements 0 .
The rank of a matrix \boldsymbol{X}, denoted by $\operatorname{rank}(\boldsymbol{X})$, is the number of linearly independent columns (or rows). \boldsymbol{X} has full column rank if rank equals the number of columns (similarly full row rank).

[^0]The column space of a matrix \boldsymbol{X}, denoted by $\mathcal{C}(\boldsymbol{X})$, is the span of the columns of \boldsymbol{X}; that is, $\mathcal{C}(\boldsymbol{X})=\{\boldsymbol{z} \mid \boldsymbol{z}=\boldsymbol{X} \boldsymbol{y}$ for some $\boldsymbol{y}\}$.
$\operatorname{dim}(\mathcal{C}(\boldsymbol{X}))=\operatorname{rank}(\boldsymbol{X})$, the number of linearly independent columns.
Exercise 4. (2 points) Show that $\operatorname{rank}(\boldsymbol{A B}) \leq \min (\operatorname{rank}(\boldsymbol{A}), \operatorname{rank}(\boldsymbol{B}))$
Exercise 5. (3 points) Show that $\mathcal{C}(\boldsymbol{A}) \subseteq \mathcal{C}(\boldsymbol{B}) \Longleftrightarrow \boldsymbol{A}=\boldsymbol{B C}$ for some \boldsymbol{C}.
The null space or kernel of a matrix \boldsymbol{A} is $\mathcal{N}(\boldsymbol{A})=\{\boldsymbol{x} \mid \boldsymbol{A x}=\mathbf{0}\}$
Exercise 6. (0 points) Show that if \boldsymbol{A} has full column rank, then $\mathcal{N}(\boldsymbol{A})=\{\mathbf{0}\}$.
Vector spaces $\mathcal{U}, \mathcal{V} \subseteq \mathbb{R}^{n}$ are said to form orthogonal complements if (1) $\mathcal{U} \cap \mathcal{V}=\{\mathbf{0}\}$,
(2) $\operatorname{dim}(\mathcal{U})+\operatorname{dim}(\mathcal{V})=n$, and (3) $\boldsymbol{u} \perp \boldsymbol{v}$ for all $\boldsymbol{u} \in \mathcal{U}, \boldsymbol{v} \in \mathcal{V}$. Then, we write $\mathcal{U} \oplus^{\perp} \mathcal{V}=\mathbb{R}^{n}$.

Exercise 7. (4 points) Show that if $\mathcal{U} \oplus^{\perp} \mathcal{V}=\mathbb{R}^{n}$, then any $\boldsymbol{x} \in \mathbb{R}^{n}$ can be written as $\boldsymbol{x}=\boldsymbol{u}+\boldsymbol{v}$ where $\boldsymbol{u} \in \mathcal{U}, \boldsymbol{v} \in \mathcal{V}$, and the decomposition is unique. Note that for such a decomposition, $\|\boldsymbol{x}\|^{2}=\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2}$.

Exercise 8. (6 points) Prove that for any matrix $\boldsymbol{A}_{m \times n}, \operatorname{dim}(\mathcal{N}(\boldsymbol{A}))+\operatorname{dim}(\mathcal{C}(\boldsymbol{A}))=n$.
Exercise 9. (3 points) Show that for any matrix $\boldsymbol{A}_{m \times n}, \mathcal{C}(\boldsymbol{A})$ and $\mathcal{N}\left(\boldsymbol{A}^{\prime}\right)$ are orthogonal complements in \mathbb{R}^{m}.
Exercise 10. (3 points) Prove the following results:

- \mathcal{U}, \mathcal{V} vector spaces, $\mathcal{U} \subseteq \mathcal{V}, \operatorname{dim}(\mathcal{U})=\operatorname{dim}(\mathcal{V}) \Longrightarrow \mathcal{U}=\mathcal{V}$.
- $\boldsymbol{A x}+\boldsymbol{b}=\mathbf{0} \forall \boldsymbol{x} \in \mathbb{R}^{n} \Longrightarrow \boldsymbol{A}=\mathbf{0}, \boldsymbol{b}=\mathbf{0}$.
- $\boldsymbol{A x}=\boldsymbol{B} \boldsymbol{x} \forall \boldsymbol{x} \Longrightarrow \boldsymbol{A}=\boldsymbol{B}$.
- If \boldsymbol{A} has full column rank, then $\boldsymbol{A B}=\boldsymbol{A} \boldsymbol{C} \Longrightarrow \boldsymbol{B}=\boldsymbol{C}$.

Exercise 11. (3 points) Show that $\mathcal{N}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)=\mathcal{N}(\boldsymbol{X})$, and as a corollary, that $\mathcal{C}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)=\mathcal{C}\left(\boldsymbol{X}^{\prime}\right)$.
Exercise 12. (3 points) The goal of this exercise is to prove the existence of a g-inverse for an arbitrary matrix \boldsymbol{A} by constructing one. Let \boldsymbol{B} and \boldsymbol{C} be nonsingular matrices such that $\boldsymbol{B} \boldsymbol{A} \boldsymbol{C}=\boldsymbol{\Delta}$ is a diagonal matrix (not necessarily square). Find a candidate $\boldsymbol{\Delta}^{-}$. Prove that $\boldsymbol{C} \boldsymbol{\Delta}^{-} \boldsymbol{B}$ is a g-inverse of \boldsymbol{A}.

[^0]: Date: 8 January, 2010.

