The R Environment

A high-level overview

Deepayan Sarkar

Indian Statistical Institute, Delhi

6 October 2010

An article in the New York Times

From the article

R is [...] a popular programming language used by a growing number of data analysts inside corporations and academia.

Companies as diverse as Google, Pfizer, Merck, Bank of America, the InterContinental Hotels Group and Shell use it.

What exactly is R?

- R is a language and environment for statistical computing and graphics.
- It is a Free Software project which is similar to the S language and environment which was developed at Bell Laboratories by John Chambers and colleagues.
- R can be considered as a different implementation of S.

What exactly is R?

- R is a language and environment for statistical computing and graphics.
- It is a Free Software project which is similar to the S language and environment which was developed at Bell Laboratories by John Chambers and colleagues.
- R can be considered as a different implementation of S.

The origins of S

- Developed at Bell Labs (statistics research department)
- Primary goals
 - Interactivity: Exploratory Data Analysis vs batch mode
 - Flexibility: Novel vs routine methodology
 - Practical: For actual use, not (just) academic research

The evolution of S

- 1970s Initial implementation (Fortran, mostly internal use) 1980s UNIX version, wider distribution in academia
- "New S" (major redesign)
- 1990s "Statistical modeling language". Licensing (S-PLUS).

 Addition of formal object-oriented programming

ACM Software System Award

```
1983 UNIX
```

1986 TeX

1989 PostScript

1995 World-Wide Web

1995 NCSA Mosaid

1998 To John Chambers

"For The S system, which has forever altered how people analyze, visualize, and manipulate data."

```
1999 Apache
```

2002 Java

ACM Software System Award

```
1983 UNIX
1986 TeX
1989 PostScript
1995 World-Wide Web
1995 NCSA Mosaic
1998 To John Chambers
              "For The S system, which has forever altered how
              people analyze, visualize, and manipulate data."
1999 Apache
```

2002 Java

R

pprox1993 Started as teaching tool by Robert Gentleman & Ross Ihaka at the Univesity of Auckland

... because S didn't run on the Apple computers they had

1995 Convinced by Martin Mächler to release as Free Software

2000 Version 1.0 released

- pprox1993 Started as teaching tool by Robert Gentleman & Ross Ihaka at the Univesity of Auckland
 - ... because S didn't run on the Apple computers they had
 - 1995 Convinced by Martin Mächler to release as Free Software
 - 2000 Version 1.0 released

- pprox1993 Started as teaching tool by Robert Gentleman & Ross Ihaka at the Univesity of Auckland
 - ... because S didn't run on the Apple computers they had
 - 1995 Convinced by Martin Mächler to release as Free Software
 - 2000 Version 1.0 released

R

 Not really that different from S, but the Free Software/Open Source development model has made it a larger success

Why the success?

- Rapid prototyping
- Interfaces to external software
- Easy dissemination of research (through packages)
- Reproducible research

Why the success?

- Rapid prototyping
- Interfaces to external software
- Easy dissemination of research (through packages)
- Reproducible research

Why the success?

- Rapid prototyping
- Interfaces to external software
- Easy dissemination of research (through packages)
- Reproducible research

Rapid prototyping

S is a programming language and environment for all kinds of computing involving data. It has a simple goal:

To turn ideas into software, quickly and faithfully

—John Chambers Programming with Data

S is a programming language

```
> fibonacci = function(n) {
      if (n < 2)
         x = seq(length = n) - 1
      else {
         x = c(0, 1)
          while (length(x) < n) {
             x = c(x, sum(tail(x, 2)))
      x
> fib10 = fibonacci(10)
> fib10
 [1] 0 1 1 2 3 5 8 13 21 34
```

Easy to call C for efficiency

```
File fib.c:
```

```
#include <Rdefines.h>
SEXP do_fibonacci(SEXP nr)
{
    int i, n = INTEGER_VALUE(nr);
    SEXP ans = PROTECT(NEW_INTEGER(n));
    int *x = INTEGER_POINTER(ans);
    x[0] = 0; x[1] = 1;
    for (i = 2; i < n; i++) x[i] = x[i-1] + x[i-2];
    UNPROTECT(1);
    return ans;
```

Easy to call C for efficiency

```
$ R CMD SHLIB fib.c
gcc -std=gnu99 -shared -L/usr/local/lib64 -o fib.so fib.o -
make[1]: Leaving directory `/home/deepayan/tmp/ROverview'
> dyn.load("fib.so")
> cfib10 = .Call("do_fibonacci", as.integer(10))
> cfib10
```

[1] 0 1 1 2 3 5 8 13 21 34

Vectorized computation

The Fibonacci series has a closed-form expression as well.

$$F(n) = \frac{\phi^n - (1-\phi)^n}{\sqrt{5}}, \quad \text{where} \quad \phi = \frac{1+\sqrt{5}}{2}$$

```
> phi <- (1 + sqrt(5)) / 2
> n <- 0:9
> n

[1] 0 1 2 3 4 5 6 7 8 9
> (phi^n - (1 - phi)^n) / sqrt(5)
```

[1] 0 1 1 2 3 5 8 13 21 34

S is a programming language

- ...designed for interactive use
- ...with a focus on data analysis
 - Basic data structures are vectors
 - Large collection of statistical functions
 - Advanced statistical graphics capabilities

S is a programming language

- ...designed for interactive use
- ...with a focus on data analysis
 - Basic data structures are vectors
 - Large collection of statistical functions
 - Advanced statistical graphics capabilities

The barley data

	yield	variety	year	site	
1	27.00	Manchuria	1931	University Farm	
2	48.87	Manchuria	1931	Waseca	
3	27.43	Manchuria	1931	Morris	
4	39.93	Manchuria	1931	Crookston	
5	32.97	Manchuria	1931	Grand Rapids	
6	28.97	Manchuria	1931	Duluth	
7	43.07	Glabron	1931	University Farm	
8	55.20	Glabron	1931	Waseca	
9	28.77	Glabron	1931	Morris	
10	38.13	Glabron	1931	Crookston	
11	29.13	Glabron	1931	Grand Rapids	
12	29.67	Glabron	1931	Duluth	
13	35.13	Svansota	1931	University Farm	
14	47.33	Svansota	1931 Waseca		
15	25.77	Svansota	1931	31 Morris	
		Deepayan Sarkar	The R Environment		

The "SAS approach"

data/barley_models.txt

The barley data

```
> barleyYield = read.csv("data/barley.csv", header = TRUE)
> barleyYield
```

	yield	variety	year	site)
1	27.00000	Manchuria	1931	University Farm	1
2	48.86667	Manchuria	1931	Waseca	L
3	27.43334	Manchuria	1931	Morris	}
4	39.93333	Manchuria	1931	Crookston	l
5	32.96667	Manchuria	1931	Grand Rapids	}
6	28.96667	Manchuria	1931	Duluth	L
7	43.06666	Glabron	1931	University Farm	1
8	55.20000	Glabron	1931	Waseca	L
9	28.76667	Glabron	1931	Morris	}
10	38.13333	Glabron	1931	Crookston	L
11	29.13333	Glabron	1931	Grand Rapids	}
12	29.66667	Glabron	1931	Duluth	L
13	35.13333	Svansota	1931	University Farm	1
14	47.33333	Svansota	1931	Waseca	L
15	25.76667	Svansota		Morris	,
		Deepayan Sarkar	The R Environment		

The barley data

> str(barleyYield)

```
'data.frame': 120 obs. of 4 variables:

$ yield : num 27 48.9 27.4 39.9 33 ...

$ variety: Factor w/ 10 levels "Glabron", "Manchuria",..: 2 2 2

$ year : Factor w/ 2 levels "1931", "1932": 1 1 1 1 1 1 1 1 1

$ site : Factor w/ 6 levels "Crookston", "Duluth",..: 5 6 4 1
```


Fitting models

All two-factor interactions:

Main effects only:

Hypothesis testing

```
> anova(fm2, fm1)
Analysis of Variance Table

Model 1: yield ~ variety + site + year
Model 2: yield ~ (variety + site + year)^2
  Res.Df  RSS Df Sum of Sq  F  Pr(>F)
1  104 4176.2
2  45 658.5 59  3517.8 4.0747 1.523e-06
```

Sequential ANOVA

> anova(fm1)

Analysis of Variance Table

```
Response: yield
```

```
Df Sum Sq Mean Sq F value Pr(>F)
variety 9 1052.6 116.95 7.9927 6.052e-07
site 5 6633.9 1326.77 90.6736 < 2.2e-16
year 1 847.3 847.30 57.9058 1.283e-09
variety:site 45 1205.8 26.79 1.8312 0.02259
variety:year 9 209.8 23.31 1.5929 0.14646
site:year 5 2102.2 420.44 28.7337 5.821e-13
Residuals 45 658.5 14.63
```

Further inspection

> coef(fm2)

(Intercept)	varietyManchuria
38.9983317	-1.8777758
30.9903317	-1.0111150
varietyNo. 457	varietyNo. 462
2.5055583	2.0361150
varietyNo. 475	varietyPeatland
-1.5805550	0.8388900
varietySvansota	varietyTrebi
-2.9638883	6.0583275
varietyVelvet	varietyWisconsin No. 38
-0.2805567	6.0527800
siteDuluth	siteGrand Rapids
-9.4233315	-12.4883315
siteMorris	siteUniversity Farm
-2.0199980	-4.7533310
siteWaseca	year1932
10.6883330	-5.3144453

Deepayan Sarkar The R Environment

Further inspection

> round(residuals(fm2), digits = 3)

1	2	3	4	5	6	7	8
-5.367	1.058	-7.667	2.813	8.334	1.269	8.822	5.513
9	10	11	12	13	14	15	16
-8.212	-0.865	2.623	0.092	3.852	0.611	-8.248	4.432
17	18	19	20	21	22	23	24
6.121	-0.911	5.936	0.827	-10.564	2.616	-3.196	-2.994
25	26	27	28	29	30	31	32
-3.737	8.088	0.730	1.877	-2.802	-1.700	6.516	5.908
33	34	35	36	37	38	39	40
-10.784	4.163	3.151	1.519	0.319	14.044	-8.648	7.532
41	42	43	44	45	46	47	48
-3.613	-3.511	-2.317	-1.959	-7.951	1.763	7.351	1.586
49	50	51	52	53	54	55	56
-7.998	-1.339	-12.798	6.682	-5.229	5.072	-0.998	3.061
57	58	59	60	61	62	63	64
-13.564	4.816	1.904	-4.028	-0.153	-9.028	4.581	1.161
65	66	67	68	69	70	71	72
Deepayan Sarkar The R Environment							

Residual plot

1931 ° 1932 °

Deepayan Sarkar

The R Environment

A closer look

A revised model

```
> morris = barleyYield$site == "Morris"
> barleyYield$vear[ morris ] =
      ifelse(barleyYield$year[morris] == "1931", "1932", "1931")
> fm1 = lm(yield ~ (variety + site + year)^2,
           data = barlevYield)
> fm2 = lm(yield ~ variety + site + year,
           data = barleyYield)
> anova(fm2, fm1)
Analysis of Variance Table
Model 1: yield ~ variety + site + year
Model 2: yield ~ (variety + site + year)^2
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 104 2378.34
```

2 45 713.74 59 1664.6 1.7788 0.02296

The "S approach" is to work with objects.

- Model fits produce objects, usually stored as variables
- Queried *interactively* for further analysis
 - > anova(fm)
 - > summary(fm)
 - > residuals(fm)

$$y_i = \mu + \alpha_i + \beta_j + b_k + \varepsilon_{ijk}$$

where

 $y_i = ext{yield of barley}$ $\mu = ext{overall mean}$ $\alpha_i = ext{additive effect of } i ext{-th variety}$ $\beta_j = ext{additive effect of } j ext{-th year}$ $b_k \sim \mathcal{N}(0, \tau^2) = ext{effect of } k ext{-th site}$ $\varepsilon_{ijk} \sim \mathcal{N}(0, \sigma^2) = ext{error}$ All b_k, ε_{ijk} independent

- Parameters μ, α_i, β_j and τ^2, σ^2
- Difficult to find MLEs for such models in general
- Functionality provided by two "add-on" packages
 - nlme Stable, widely used (≈ 2000)
 - Ime4 Experimental, active development

- Parameters μ, α_i, β_i and τ^2, σ^2
- Difficult to find MLEs for such models in general
- Functionality provided by two "add-on" packages
 - nlme Stable, widely used (≈ 2000)
 - Ime4 Experimental, active development

A twist

We are testing

$$H_0: \tau^2 = 0$$

- Falls on boundary of parameter space
- \bullet Assumptions for asymptotic χ^2 distribution in LRT violated

Some exploration

```
> yhat = fitted(fm4, level = 0)
> sigma.hat = sqrt(sum(residuals(fm4)^2) / length(yhat))
> barleyYield$ynew =
     yhat + rnorm(length(yhat),
                  mean = 0, sd = sigma.hat)
> fm5 = lm(ynew ~ variety + year, data = barleyYield)
> fm6 = lme(ynew ~ variety + year, data = barleyYield,
           random = ~ 1 | site, method = "ML")
> anova(fm6. fm5)
   Model df AIC BIC logLik Test L.Ratio
fm6
       1 13 713.6566 749.8940 -343.8283
fm5
       2 12 711.6566 745.1065 -343.8283 1 vs 2 1.234696e-07
   p-value
fm6
fm5 0.9997
```

```
> a <- anova(fm6, fm5)
> str(a)
Classes 'anova.lme' and 'data.frame': 2 obs. of 9 variables:
$ call : Factor w/ 2 levels "lme.formula(fixed = ynew ~ varie
$ Model : int 12
$ df : num 13 12
$ AIC : num 714 712
$ BIC : num 750 745
$ logLik : num -344 -344
$ Test : Factor w/ 2 levels "","1 vs 2": 1 2
$ L.Ratio: num NA 1.23e-07
$ p-value: num NA 1
- attr(*, "rt")= int 2
- attr(*, "verbose")= logi FALSE
> a$logLik
[1] -343.8283 -343.8283
> -2 * diff(a$logLik)
[1] -1.234696e-07
```

```
> replicate(10, LRTstat.sim())
[1] -6.844800e-08   1.161523e-01 -1.267522e-07   1.850964e-01
[5] -8.329323e-08 -1.193092e-07 -9.316761e-08 -1.204604e-07
[9] -7.669269e-08   3.967130e-02
> sim1000 <- replicate(1000, LRTstat.sim())
> table(zapsmall(sim1000) == 0)
FALSE   TRUE
   345   655
```


Deepayan Sarkar

The R Environment

Even graphics is programmable

```
> data(Earthquake, package = "nlme")
> xyplot(accel ~ distance, Earthquake,
         scales = list(log = 2), grid = TRUE)
```



```
> xyplot(accel ~ distance, Earthquake, scales = list(log = 2),
         panel = function(x, y, ...) {
             panel.grid(h = -1, v = -1)
             n \leftarrow length(x)
             for (i in 1:1000) {
                 bs.id <- sample(1:n, replace = TRUE) ## SRSWR
                 panel.loess(x[bs.id], y[bs.id],
                              col = "red", alpha = 0.02)
             panel.points(x, y, ...)
             panel.loess(x, y, col = "black")
         })
```


S indexing

This works using vectorized indexing in S:

```
> a = c(21, 29, 31)
> a[c(1, 2, 2, 1, 1)]
[1] 21 29 29 21 21
```

Another example...

A random walk on the lattice

```
> eps < d[sample(1:4, 15, replace = TRUE), ]
> eps
     х у
  -1 0
3 1 0
4 0 1
2 0 -1
4.1 0 1
2.1 \quad 0 \quad -1
2.2 \quad 0 \quad -1
1.1 -1 0
3.1 1 0
4.2 0 1
2.3 \quad 0 \quad -1
1.2 -1 0
1.3 - 1 0
2.4 \quad 0 \quad -1
4.3 0 1
```

```
> xyplot(y ~ x, data = rw,
         scales = list(draw = FALSE).
         xlab = "", ylab = "", aspect = "iso",
         panel = function(x, y) {
             panel.abline(col = "darkgrey",
                           v = unique(x),
                           h = unique(v)
             n \leftarrow length(x)
             panel.points(x + runif(n, -0.1, 0.1),
                           y + runif(n, -0.1, 0.1),
                           type = "o", pch = 16)
             dup <- duplicated(data.frame(x, y))</pre>
             panel.points(x[dup], y[dup], pch = 16, col = "red")
             panel.points(0, 0, pch = 16, col = "black")
         })
```


Powerful built-in tools
+
Programming language

Flexibility

Interfacing external software

- Not all cool software developed by R community
- Core open source philisophy: code re-use

"don't rediscover the wheel!"

- R facilitates interfacing with external software
- Three examples:
 - C++ Sparse matrix library (Tim Davis, U of Florida)
 - Graphviz (AT&T research)
 - Qt (formerly Trolltech, now Nokia)

Interfacing external software

- Not all cool software developed by R community
- Core open source philisophy: code re-use

"don't rediscover the wheel!"

- R facilitates interfacing with external software
- · Three examples:
 - C++ Sparse matrix library (Tim Davis, U of Florida)
 - Graphviz (AT&T research)
 - Qt (formerly Trolltech, now Nokia)

Sparse matrix computations

Occurs naturally in statistical modeling

$$\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{y}$$

Interface to UMFPACK
 http://www.cise.ufl.edu/research/sparse/umfpack/
 in R package Matrix, used by Ime4

Graphviz

Open source software for graph layout / visualization

Deepayan Sarkar

The R Environment

Graphviz

- Open source software for graph layout / visualization
- Uses own interface and graph specification language
- Also provides a C library (Cgraph)
- Used by the R package Rgraphviz for layout calculations
- Rendering done using R graphics

R package dependency graph

Reverse dependencies

```
> revDepGraph <- function(g, pkg) {</pre>
      olen <- 0
      pkgKeep <- pkg
      elist <- g@edgeL
      elist <- elist[ !(sapply(elist, is.null)) ]</pre>
      while (length(pkgKeep) > olen) {
           olen <- length(pkgKeep)</pre>
           w <- which(g@nodes %in% pkgKeep)</pre>
           revdep <- sapply(elist, function(x) any(w %in% x$edges
           pkgKeep <- union(pkgKeep, names(revdep)[revdep])</pre>
      7
      subGraph(pkgKeep, g)
  7
> gsub <- revDepGraph(g, "lme4")</pre>
> gsub
A graphNEL graph with directed edges
Number of Nodes = 21
```

Number of Edges = 22

- > library(Rgraphviz)
- > graph.par(nodes = list(shape = "ellipse"))
- > gl = layoutGraph(gsub, layoutType = "twopi")
- > renderGraph(gl)

Qt

- ullet Powerful cross-platform GUI programming library (C++)
- Used to create KDE, Skype, Opera (browser)
- "Language bindings" make features accessible from R
- User can program in R, not C++
- qtdemo.R

Qt

- Powerful cross-platform GUI programming library (C++)
- Used to create KDE, Skype, Opera (browser)
- "Language bindings" make features accessible from R
- User can program in R, not C++
- qtdemo.R

Dissemination of research

- Rapid prototyping ⇒ quick implementation of research ideas
- Well-structured packaging system allows dissemination
- CRAN: Comprehensive R Archive Network: > 2500 packages
- Other specialized collections (Bioconductor, Omegahat)

Reproducible research

- Reproducibility: a core principle of the scientific method
- Difficult in biology, physics, etc. but conceptually trivial for computational experiments
- ...But publications often leave out details (possibly nontrivial)

Reproducible research

- Reproducibility: a core principle of the scientific method
- Difficult in biology, physics, etc. but conceptually trivial for computational experiments
- ...But publications often leave out details (possibly nontrivial)

Sweave

- Inspired by literate documents (Knuth)
- Enables mixing of R code and LATEX
- "Source file" reproduces both analysis and report
- Reproducible research + convenience
- rnw/graph.Rnw

Sweave

- Inspired by literate documents (Knuth)
- Enables mixing of R code and LATEX
- "Source file" reproduces both analysis and report
- Reproducible research + convenience
- rnw/graph.Rnw

- R is a feature-rich interactive language + environment ideally suited to data analysis as well as other kinds of numerical computations
- Some learning required before it can be used effectively
- Typical mind-blocks for newcomers:
 - R is not C!
 - Vectorization (easy to get past with a little experience)
 - Functional approach to programming
 - "Computing on the language", e.g., replicate(10. LRTstat.sim())

- R is a feature-rich interactive language + environment ideally suited to data analysis as well as other kinds of numerical computations
- Some learning required before it can be used effectively
- Typical mind-blocks for newcomers:
 - R is not C!
 - Vectorization (easy to get past with a little experience)
 - Functional approach to programming
 - "Computing on the language", e.g., replicate(10, LRTstat.sim())

- R is a feature-rich interactive language + environment ideally suited to data analysis as well as other kinds of numerical computations
- Some learning required before it can be used effectively
- Typical mind-blocks for newcomers:
 - R is not C!
 - Vectorization (easy to get past with a little experience)
 - Functional approach to programming
 - "Computing on the language", e.g., replicate(10, LRTstat.sim())

