
AN INTRODUCTION TO R

DEEPAYAN SARKAR

Introduction and examples

What is R?.

R provides an environment in which you can perform statistical analysis and produce
graphics. It is actually a complete programming language, although that is only
marginally described in this book.

—Peter Dalgaard, “Introductory Statistics with R”, 2002

R can be viewed as a programming language that happens to come with a large library of pre-defined
functions that can be used to perform various tasks. A major focus of these pre-defined functions is
statistical data analysis, and these allow R to be used purely as a toolbox for standard statistical
techniques. However, some knowledge of R programming is essential to use it well at any level. For
advanced users in particular, the main appeal of R (as opposed to other data analysis software) is as a
programming environment suited to data analysis. Our goal will be to learn R as a statistics toolbox, but
with a fairly strong emphasis on its programming language aspects.

In this tutorial, we will do some elementary statistics, learn to use the documentation system, and learn
about common data structures and programming features in R. Some follow-up tutorials are available for
self-study at http://www.isid.ac.in/~deepayan/R-tutorials/.

For more resources, see the R Project homepage http://www.r-project.org, which links to various
manuals and other user-contributed documentation. A list of books related to R is available at
http://www.r-project.org/doc/bib/R-jabref.html. An excellent introductory book is Peter Dalgaard,
“Introductory Statistics with R”, Springer (2002).

Interacting with R. Unlike languages like C, Fortran, or Java, R is an interactive programming langauge.
This means that R works interactively, using a question-and-answer model:

• Start R
• Type a command and press Enter

• R executes this command (often printing the result)
• R then waits for more input
• Type q() to exit

Here are some simple examples:

> 2 + 2

[1] 4

> exp(-2) ## exponential function

[1] 0.1353353

> log(100, base = 10)

[1] 2

> runif(10)

Date: November 2015.

1

http://www.isid.ac.in/~deepayan/R-tutorials/
http://www.r-project.org
http://www.r-project.org/doc/bib/R-jabref.html

2 DEEPAYAN SARKAR

[1] 0.71829119 0.11197272 0.11390057 0.60670044 0.79062081 0.52907665

[7] 0.05448591 0.39639954 0.32871118 0.25154177

The last command generates ten U(0, 1) random variables; the result (which is printed) is a vector of 10
numbers. exp(), log(), and runif() are functions.

R features very strong graphics capabilities. The simplest way to produce plots is to use the plot()

function. We will learn more about graphics in a different tutorial.

> plot(runif(10))

2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0

Index

ru
ni

f(
10

)

Variables. As in other programming languages, R has symbolic variables which can be assigned values.
Assignment is done using the ’<-’ operator. The more C-like ’=’ also works (with some exceptions).

> x <- 2

> x + x

[1] 4

> yVar2 = x + 3

> yVar2

[1] 5

> s <- "this is a character string"

> s

[1] "this is a character string"

Variable names can be almost anything, but they should not start with a digit, and should not contain
spaces. Names are case-sensitive. Some common names are already used by R (c, q, t, C, D, F, I, T)
and should be avoided.

AN INTRODUCTION TO R 3

Vectorized arithmetic. The elementary data types in R are all vectors; even the scalar variables we
defined above are stored as vectors of length one. The c(...) construct can be used to create vectors:

> weight <- c(60, 72, 57, 90, 95, 72)

> weight

[1] 60 72 57 90 95 72

To generate a vector of regularly spaced numbers, use

> seq(0, 1, length = 11)

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> 1:10

[1] 1 2 3 4 5 6 7 8 9 10

The c() function can be used to combine vectors as well as scalars, e.g.,

> x <- seq(0, 1, length = 6)

> c(x, 1:10, 100)

[1] 0.0 0.2 0.4 0.6 0.8 1.0 1.0 2.0 3.0 4.0 5.0 6.0

[13] 7.0 8.0 9.0 10.0 100.0

Common arithmetic operations (including +, -, *, /, ^) and mathematical functions (e.g. sin(),
cos(), log()) work element-wise on vectors, and produce another vector:

> height <- c(1.75, 1.80, 1.65, 1.90, 1.74, 1.91)

> height^2

[1] 3.0625 3.2400 2.7225 3.6100 3.0276 3.6481

> bmi <- weight / height^2

> bmi

[1] 19.59184 22.22222 20.93664 24.93075 31.37799 19.73630

> log(bmi)

[1] 2.975113 3.101093 3.041501 3.216102 3.446107 2.982460

When two vectors are not of equal length, the shorter one is recycled. For example, The following adds 0 to
all the odd elements and 2 to all the even elements of 1:10:

> 1:10 + c(0, 2)

[1] 1 4 3 6 5 8 7 10 9 12

These simple vectorized arithmetic rules are among the most powerful design features of the R language.

Scalars from Vectors. Many functions summarize a data vector by producing a scalar from a vector, e.g.,

> sum(weight)

[1] 446

> length(weight)

[1] 6

> avg.weight <- mean(weight)

> avg.weight

[1] 74.33333

Simple descriptive statistics. Simple summary statistics (mean, median, s.d., variance) can be
computed from numeric vectors using appropriately named functions:

> x <- rnorm(100)

> mean(x)

[1] 0.02733828

> sd(x)

4 DEEPAYAN SARKAR

[1] 1.037162

> var(x)

[1] 1.075705

> median(x)

[1] -0.004447385

Quantiles can be computed using the quantile() function. IQR() computes the inter-quartile range.

> xquants <- quantile(x)

> xquants

0% 25% 50% 75% 100%

-2.399912100 -0.649411780 -0.004447385 0.850385825 2.169407334

> xquants[4] - xquants[2]

75%

1.499798

> IQR(x)

[1] 1.499798

> quantile(x, probs = c(0.2, 0.4, 0.6, 0.8))

20% 40% 60% 80%

-0.8790315 -0.2544181 0.3782825 0.9413860

The so-called five-number summary (minimum, maximum, and quartiles) is given by fivenum(). A slightly
extended summary is given by summary().

> fivenum(x)

[1] -2.399912100 -0.652375004 -0.004447385 0.857845801 2.169407334

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.399912 -0.649412 -0.004447 0.027338 0.850386 2.169407

Object-oriented progamming: classes and methods. summary() produces a nice summary for
numeric vectors. However, not all data is numeric in nature, and we may want a summary of non-numeric
variables as well, for which this kind of output would not be appropriate. To illustrate how R handles this
problem, we will make use of a real dataset. Data can be read into R from a file (we will soon see how), but
we can also use one of the many datasets built into R. One such dataset is the well-known Iris data. The
dataset contains measurements on 150 flowers, 50 each from 3 species: Iris setosa, versicolor and virginica.
It is typically used to illustrate the problem of classification— given the four measurements for a new
flower, can we predict its Species?

Like most datasets, iris is not a simple vector, but a composite “data frame” object made up of several
component vectors. We can think of a data frame as a matrix-like object, with each row representing an
observational unit (in this case, a flower), and columns representing multiple measurements made on the
unit. The head() function extracts the first few rows, and the $ operator extracts individual components.

> head(iris) # The first few rows

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

> iris$Sepal.Length

AN INTRODUCTION TO R 5

[1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9 5.4 4.8 4.8 4.3 5.8 5.7 5.4 5.1

[19] 5.7 5.1 5.4 5.1 4.6 5.1 4.8 5.0 5.0 5.2 5.2 4.7 4.8 5.4 5.2 5.5 4.9 5.0

[37] 5.5 4.9 4.4 5.1 5.0 4.5 4.4 5.0 5.1 4.8 5.1 4.6 5.3 5.0 7.0 6.4 6.9 5.5

[55] 6.5 5.7 6.3 4.9 6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8 6.2 5.6 5.9 6.1

[73] 6.3 6.1 6.4 6.6 6.8 6.7 6.0 5.7 5.5 5.5 5.8 6.0 5.4 6.0 6.7 6.3 5.6 5.5

[91] 5.5 6.1 5.8 5.0 5.6 5.7 5.7 6.2 5.1 5.7 6.3 5.8 7.1 6.3 6.5 7.6 4.9 7.3

[109] 6.7 7.2 6.5 6.4 6.8 5.7 5.8 6.4 6.5 7.7 7.7 6.0 6.9 5.6 7.7 6.3 6.7 7.2

[127] 6.2 6.1 6.4 7.2 7.4 7.9 6.4 6.3 6.1 7.7 6.3 6.4 6.0 6.9 6.7 6.9 5.8 6.8

[145] 6.7 6.7 6.3 6.5 6.2 5.9

A more concise description is given by the str() function (short for “structure”).

> str(iris)

'data.frame': 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

As we can see, the first four components of iris are numeric vectors, but the last is a “factor”. These are
how R represents categorical variables.

Let us now see the effect of calling summary() for different types of objects.

> summary(iris$Sepal.Length)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.300 5.100 5.800 5.843 6.400 7.900

> summary(iris$Species)

setosa versicolor virginica

50 50 50

> summary(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width

Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300

Median :5.800 Median :3.000 Median :4.350 Median :1.300

Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199

3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Species

setosa :50

versicolor:50

virginica :50

Note the different formats of the output. Species is summarized differently (by the frequency distribution
of its values) because it is a categorical variable, for which mean or quantiles are meaningless. The entire
data frame iris is summarized by combining the summaries of all its components.

R achieves this kind of object-specific customized output through a fairly simple object-oriented paradigm.
Each R object has a class (“numeric”,“factor”, etc.). summary() is what is referred to as a generic function,
with class-specific methods that handle objects of various classes. When the generic summary() is called, R
figures out the appropriate method and calls it.

The details of what happens in the example above is revealed by the following calls.

> class(iris$Sepal.Length)

6 DEEPAYAN SARKAR

[1] "numeric"

> class(iris$Species)

[1] "factor"

> class(iris)

[1] "data.frame"

> methods(summary)

[1] summary.aov summary.aovlist*

[3] summary.aspell* summary.check_packages_in_dir*

[5] summary.connection summary.data.frame

[7] summary.Date summary.default

[9] summary.ecdf* summary.factor

[11] summary.glm summary.infl*

[13] summary.lm summary.loess*

[15] summary.manova summary.matrix

[17] summary.mlm* summary.nls*

[19] summary.packageStatus* summary.POSIXct

[21] summary.POSIXlt summary.ppr*

[23] summary.prcomp* summary.princomp*

[25] summary.proc_time summary.srcfile

[27] summary.srcref summary.stepfun

[29] summary.stl* summary.table

[31] summary.tukeysmooth* summary.warnings

see '?methods' for accessing help and source code

The rules are fairly intuitive. The last call gives the list of all available methods. Objects of class“factor”
are handled by summary.factor(),“data.frame”-s are handled by summary.data.frame(). There is no
summary.numeric(), so numeric vectors are handled by summary.default(). We will learn more about
object-oriented programming later, but we introduce the concept now because finding appropriate
documentation may be dificult otherwise.

Getting help. R has too many tools for anyone to remember them all, so it is very important to know
how to find relevant information using the help system. There are three important functions every R user
should know about.

• help.start() starts a browser window with an HTML help interface. This is one of the best ways
to get started; it links to a very detailed manual for beginners called “An Introduction to R”, as well
as topic-wise listings.

• help(topic) displays the help page for a particular topic. Every R function has a help page.
• help.search("search string") performs a subject/keyword search.

The help() function provides topic-wise help. When you know which function you are interested in, this is
usually the best way to learn how to use it. There’s also a short-cut for this; use a question mark (?)
followed by the topic. The following are equivalent.

> help(plot)

> ?plot

The help pages can be opened in a browser for easier navigation (through links to other help pages).

> help(plot, help_type = "html")

When you want to know about a subject, but don’t know which particular help page has the information,
the help.search() function (shortcut: ??) can be useful. For example, try

> help.search("logarithm")

> ??logarithm

AN INTRODUCTION TO R 7

The help pages are usually detailed (but terse). Among other things, they often contain a description of
what the function returns, a ‘See Also’ section that lists related help pages, and an ‘Examples’ section,
with actual code illutrating how to use the documented functions. These examples can be run directly
using the example() function. e.g., try

> example(plot)

Another useful tool is the apropos() function, which lists all functions (or other variables) whose name
matches a specified character string.

> apropos("plot")

[1] "assocplot" "barplot" "barplot.default"

[4] "biplot" "boxplot" "boxplot.default"

[7] "boxplot.matrix" "boxplot.stats" "cdplot"

[10] "coplot" "fourfoldplot" "interaction.plot"

[13] "lag.plot" "matplot" "monthplot"

[16] "mosaicplot" "plot" "plot.default"

[19] "plot.design" "plot.ecdf" "plot.function"

[22] "plot.new" "plot.spec.coherency" "plot.spec.phase"

[25] "plot.stepfun" "plot.ts" "plot.window"

[28] "plot.xy" "preplot" "qqplot"

[31] "recordPlot" "replayPlot" "savePlot"

[34] "screeplot" "spineplot" "sunflowerplot"

[37] "termplot" "ts.plot"

Getting help for generic functions and methods. Getting help is not as obvious in the case of
generic functions and methods. In principle, the generic function and specific methods are all considered
separate topics, and may have separate help pages, although in practice a single page often documents
multiple topics. For example, summary() and summary.default() are documented together, but plot()
and plot.default() are documented separately. To use plot() effectively, it is essential to read the
?plot.default help page. Note that even though plot.default() has its own help page, it should never
be called directly.

Further reading. Even the “standard” functions in R are too numerous to be covered exhaustively. Thus,
you should get in the habit of studying the documentation and examples for any new function you
encounter. A useful initial list can be found in a one-page “R Reference Card” available at
http://cran.fhcrc.org/doc/contrib/refcard.pdf. It may also be worthwhile to browse through the
index of help pages in specific packages, produced by

> library(help = base)

> library(help = graphics)

etc., and read the topics that seem interesting.

Importing data. External data is typically read in into R using the read.table() function or one of its
close relatives. For a comprehensive discussion and more advanced options, consult the “R Data
Import/Export” Manual (type help.start() for a link).

Exercise 1. Read ?read.table and read in data from the file "Gcsemv.txt". A description of the data
available at
http: // www. cmm. bristol. ac. uk/ learning-training/ multilevel-m-software/ gcsemv. shtml is
reproduced here:

The data contain GCSE exam scores on a science subject. Two components of the exam
were chosen as outcome variables: written paper and course work. There are 1,905
students from 73 schools in England. Five fields are as follows.

http://cran.fhcrc.org/doc/contrib/refcard.pdf
http://www.cmm.bristol.ac.uk/learning-training/multilevel-m-software/gcsemv.shtml

8 DEEPAYAN SARKAR

Missing values are coded as -1.

1. School ID
2. Student ID
3. Gender of student

0 = boy
1 = girl

4. Total score of written paper
5. Total score of coursework paper

Read in the data and give appropriate names to the columns. How should you handle the missing values?
Some of the variables read in as numeric are actually categorical variables. How would you convert them to
factors? Missing values and factors are discussed later in this tutorial.

Exercise 2. The file "iris.xls" contains a copy of the iris data with one observation modified. Read in
the data after first exporting it as a CSV file (comma-separated values) from a spreadsheet software such as
Microsoft Excel, OpenOffice Calc, or Gnumeric. Determine which value has been modified.

Packages. R makes use of a system of packages that enables the addition of new functionality. Each
package is a collection of functions (and data) with a common theme; the core of R itself is a package called
base. A collection of packages is called a library. Some packages are already attached when R starts up.
Other packages need be attached using the library() function. It is fairly easy for anyone to write new R
packages. This is one of the attractions of R over other statistical software.

Several packages come pre-installed with R.

> ip <- installed.packages()

> rownames(ip)[ip[, "Priority"] %in% c("base", "recommended")]

[1] "base" "boot" "class" "cluster" "codetools"

[6] "compiler" "datasets" "foreign" "graphics" "grDevices"

[11] "grid" "KernSmooth" "lattice" "MASS" "Matrix"

[16] "methods" "mgcv" "nlme" "nnet" "parallel"

[21] "rpart" "spatial" "splines" "stats" "stats4"

[26] "survival" "tcltk" "tools" "utils"

There are also many (more than 5000) other packages contributed by various users of R available online,
from the Comprehensive R Archive Network (CRAN) at http://cran.fhcrc.org/web/packages/. The
Bioconductor project provides an extensive collection of R packages specifically for bioinformatics at
http://www.bioconductor.org/packages/release/Software.html

Some packages are already attached when R starts up. At any point, The list of currently loaded packages
can be listed by the search() function:

> search()

[1] ".GlobalEnv" "package:tools" "package:stats"

[4] "package:graphics" "package:grDevices" "package:utils"

[7] "package:datasets" "package:methods" "Autoloads"

[10] "package:base"

Other packages can be attached by the user. For example, the ISwR package contains datasets used in
Peter Dalgaard’s “Introductory Statistics with R”. This can be loaded by:

> library(ISwR)

http://cran.fhcrc.org/web/packages/
http://www.bioconductor.org/packages/release/Software.html

AN INTRODUCTION TO R 9

New packages can be downloaded and installed using the install.packages() function. For example, to
install the ISwR package (if it’s not already installed), one can use

> install.packages("ISwR")

> library(help = ISwR)

The last call gives a list of all help pages in the package.

Session management and serialization. R has the ability to save objects, to be loaded again later.
Whenever exiting, R asks to save all the variables created by the user, and restores them when starting up
the next time (in the same directory).

This is actually a special case of a very powerful feature of R called serialization. All R objects, however
complex, can be saved as a file on disk, and re-read in a later session. This allows the results of
resource-intensive operations to be retained across sessions (or shared with others), avoiding the need to
recompute them. See ?save and ?load for details.

Language Overview I

R is often referred to as a dialect of the S language. S was developed at the AT&T Bell Laboratories by
John Chambers and his colleagues doing research in statistical computing, beginning in the late 1970’s.
The original S implementation is used in the commercially available software S-PLUS. R is an open source
implementation developed independently (starting in the early 1990’s) which is mostly similar, but with
some important differences. We will only discuss the S language as implemented in R (and often refer to it
as the R language).

Expressions and Objects. R works by evaluating expressions typed at the command prompt.
Expressions involve variable references, operators, function calls, etc. Most expressions, when evaluated,
produce a value, which can be either assigned to a variable (e.g. x <- 2 + 2), or is printed in the R
session. Some expressions are useful for their “side-effects” (e.g., plot() produces graphics output).
Evaluated expression values can be quite large, and often need to be re-used, so it is good practice to assign
them to variables rather than print them directly.

Objects are anything that can be assigned to a variable. In the following example, c(1, 2, 3, 4, 5) is an
expression that produces an object, whether or not the result is stored in a variable:

> sum(c(1, 2, 3, 4, 5))

[1] 15

> x <- c(1, 2, 3, 4, 5)

> sum(x)

[1] 15

R has several important kinds of objects; for example: functions, vectors (numeric, character, logical),
matrices, lists, and data frames.

Functions. Most useful things in R are done by function calls. Function calls look like a name followed by
some arguments in parentheses.

> plot(height, weight)

Apart from a special argument called ..., all arguments have a formal name. When a function is
evaluated, it needs to know what value has been assigned to each of its arguments. There are several ways
to specify arguments:

By position: The first two arguments of the plot() function are x and y. So,

> plot(height, weight)

is equivalent to

> plot(x = height, y = weight)

10 DEEPAYAN SARKAR

By name: This is the safest way to match arguments, by specifying the argument names explicitly. This
overrides positional matching, so it is equivalent to say

> plot(y = weight, x = height)

Formal argument names can be matched partially (we will see examples later).

With default values: Arguments will often have default values. If they are not specified in the call, these
default values will be used.

> plot(height)

Functions are just like other objects in R; they can be return values in other functions, they can be
assigned to variables, and they can be used as arguments in other function calls. This is often sumarized by
the statement that “functions are first-class citizens” in R.

New function objects are defined using the construct function(arglist) expression. Here is a simple
function assigned to the variable myfun.

> myfun <- function(a = 1, b = 2, c)

return(list(sum = a + b + c, product = a * b * c))

> myfun(6, 7, 8) # positional matching

$sum

[1] 21

$product

[1] 336

> myfun(10, c = 3) # defaults and named argument

$sum

[1] 15

$product

[1] 60

The arguments that a particular function accepts (along with their default values) can be listed by the
args() function:

> args(myfun)

function (a = 1, b = 2, c)

NULL

> args(plot.default)

function (x, y = NULL, type = "p", xlim = NULL, ylim = NULL,

log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,

ann = par("ann"), axes = TRUE, frame.plot = axes, panel.first = NULL,

panel.last = NULL, asp = NA, xgap.axis = NA, ygap.axis = NA,

...)

NULL

The triple-dot (. . .) argument indicates that the function can accept any number of further arguments.
What happens to those arguments is determined by the function.

The full definition of a function can be shown by printing it (as opposed to calling it, by omitting the
parentheses after the function’s name); for example:

> myfun

function(a = 1, b = 2, c)

return(list(sum = a + b + c, product = a * b * c))

<bytecode: 0x559c2753e9f0>

AN INTRODUCTION TO R 11

> summary

function (object, ...)

UseMethod("summary")

<bytecode: 0x559c25b0f300>

<environment: namespace:base>

Exercise 3. From the output above, summary() seems to simply call another function UseMethod(). Read
the help page for UseMethod() to learn what it does (skip the technical parts). Print the definition of the
function that is used when summary() is called on a “data.frame” object.

Exercise 4. In the output of methods(summary), some functions were marked with an asterisk, with a
note stating that “Non-visible functions are asterisked”. One example of this is summary.ecdf. Find and
print the definition of summary.ecdf.

Some functions are “hidden” in this way because they are inside namespaces. A namespace usually consists
of several functions that are all visible to each other, but only the ones that are exported are visible outside
that namespace. Namespaces roughly correspond to packages in R. The main use for namespaces is to
prevent potential confusion caused by multiple functions of the same name in different packages.

Vectors. The basic data types in R are all vectors. The simplest varieties are numeric, character, and
logical (TRUE or FALSE):

> c(1, 2, 3, 4, 5)

[1] 1 2 3 4 5

> c("Spring", "Summer", "Autumn", "Winter")

[1] "Spring" "Summer" "Autumn" "Winter"

> c(TRUE, TRUE, FALSE, TRUE)

[1] TRUE TRUE FALSE TRUE

> c(1, 2, 3, 4, 5) > 3

[1] FALSE FALSE FALSE TRUE TRUE

The length of any vector can be determined by the length() function:

> gt.3 <- c(1, 2, 3, 4, 5) > 3

> gt.3

[1] FALSE FALSE FALSE TRUE TRUE

> length(gt.3)

[1] 5

> sum(gt.3)

[1] 2

This happens because of coercion from logical to numeric.

Functions that create vectors. seq() creates a sequence of equidistant numbers (See ?seq)

> seq(4, 10, 0.5)

[1] 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

> seq(length = 10)

[1] 1 2 3 4 5 6 7 8 9 10

> 1:10

12 DEEPAYAN SARKAR

[1] 1 2 3 4 5 6 7 8 9 10

> args(seq.default)

function (from = 1, to = 1, by = ((to - from)/(length.out - 1)),

length.out = NULL, along.with = NULL, ...)

NULL

Partial matching. Note that the named argument length of the call to seq() actually matches the
argument length.out.

c() concatenates one or more vectors.

> c(1:5, seq(10, 20, length = 6))

[1] 1 2 3 4 5 10 12 14 16 18 20

rep() replicates a vector.

> rep(1:5, 2)

[1] 1 2 3 4 5 1 2 3 4 5

> rep(1:5, length = 12)

[1] 1 2 3 4 5 1 2 3 4 5 1 2

> rep(c('one', 'two'), c(6, 3))

[1] "one" "one" "one" "one" "one" "one" "two" "two" "two"

Special values. R has several special values: NA Denotes a ‘missing value’, NaN denotes ‘Not a Number’,
e.g., 0/0, -Inf, Inf positive and negative infinities, e.g. 1/0. Finally, NULL is the ‘Null object’, which is
mostly used for programming convenience.

Exercise 5. Here are two simple numeric vectors containing NA and Inf values.

> x <- c(1:5, NA, 7:10, NULL)

> y <- c(1:5, Inf, 7:10)

Use R to find the mean and median of these vectors. How can you make R ignore the NA values? What is
the length of the NULL object?

Exercise 6. Find the mean of each numeric variable in the airquality dataset.

Matrices and Arrays. Matrices (and more generally arrays of any dimension) are stored in R as a vector
with a dimension attribute:

> x <- 1:12

> dim(x) <- c(3, 4)

> x

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> nrow(x)

[1] 3

> ncol(x)

[1] 4

AN INTRODUCTION TO R 13

The fact that the left hand side of an assignment can look like a function applied to an object (rather than
a variable) is a very interesting and useful feature. These are called replacement functions.

The same vector can be used to create a 3-dimensional array

> dim(x) <- c(2, 2, 3)

> x

, , 1

[,1] [,2]

[1,] 1 3

[2,] 2 4

, , 2

[,1] [,2]

[1,] 5 7

[2,] 6 8

, , 3

[,1] [,2]

[1,] 9 11

[2,] 10 12

Matrices can also be created conveniently by the matrix function. Their row and column names can be set.

> x <- matrix(1:12, nrow = 3, byrow = TRUE)

> rownames(x) <- LETTERS[1:3]

> x

[,1] [,2] [,3] [,4]

A 1 2 3 4

B 5 6 7 8

C 9 10 11 12

Matrices can be transposed by the t() function. General array permutation is done by aperm().

> t(x)

A B C

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

Matrices do not need to be numeric, there can be character or logical matrices as well:

> matrix(month.name, nrow = 6)

[,1] [,2]

[1,] "January" "July"

[2,] "February" "August"

[3,] "March" "September"

[4,] "April" "October"

[5,] "May" "November"

[6,] "June" "December"

Matrix multiplication. The multiplication operator (*) works element-wise, as with vectors. The matrix
multiplication operator is %*%:

14 DEEPAYAN SARKAR

> x

[,1] [,2] [,3] [,4]

A 1 2 3 4

B 5 6 7 8

C 9 10 11 12

> x * x

[,1] [,2] [,3] [,4]

A 1 4 9 16

B 25 36 49 64

C 81 100 121 144

> x %*% t(x)

A B C

A 30 70 110

B 70 174 278

C 110 278 446

Creating matrices from vectors. The cbind (column bind) and rbind (row bind) functions can create
matrices from smaller matrices or vectors.

> y <- cbind(A = 1:4, B = 5:8, C = 9:12)

> y

A B C

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

> rbind(y, 0)

A B C

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

[5,] 0 0 0

Note that the short vector (0) is replicated.

Factors. Factors are how R handles categorical data (e.g., eye color, gender, pain level). Such data are
often available as numeric codes, but should be converted to factors for proper analysis. Without such
conversion, R would not be able to distinguish between numeric and categorical data.

> pain <- c(0, 3, 2, 2, 1)

> fpain <- factor(pain, levels = 0:3)

> fpain

[1] 0 3 2 2 1

Levels: 0 1 2 3

> levels(fpain) <- c("none", "mild", "medium", "severe")

> fpain

[1] none severe medium medium mild

Levels: none mild medium severe

> as.numeric(fpain)

[1] 1 4 3 3 2

AN INTRODUCTION TO R 15

Factors can be thought of as vectors with a dual nature: as descriptive character strings as well as integer
codes. The last function extracts the internal representation of factors, as integer codes starting from 1.
Factors can also be created from character vectors.

> text.pain <- c("none", "severe", "medium", "medium", "mild")

> factor(text.pain)

[1] none severe medium medium mild

Levels: medium mild none severe

Note that the levels are sorted alphabetically by default, which may not be what you really want. It is
often a good idea to specify the levels explicitly when creating a factor.

Exercise 7. Use the gl() function to create a factor with 5 levels, and then change the levels so that two
of the existing levels now have the same name. For example:

> a <- gl(5, 2)

> levels(a)

[1] "1" "2" "3" "4" "5"

> levels(a) <- c("1", "2", "2", "4", "5")

How does the factor change? (Hint: look at the numeric codes of the result.) What happens if you add a
level that does not exist?

Lists. Lists are very flexible data structures used extensively in R. A list is a vector, but the elements of a
list do not need to be of the same type. Each element of a list can be any R object, including another list.
lists can be created using the list() function. List elements are usually extracted by name (using the $

operator).

> x <- list(fun = seq, len = 10)

> x$fun

function (...)

UseMethod("seq")

<bytecode: 0x559c27e69098>

<environment: namespace:base>

> x$len

[1] 10

> x$fun(length = x$len)

[1] 1 2 3 4 5 6 7 8 9 10

Functions are R objects too. In this case, the fun element of x is the already familiar seq() function, and
can be called like any other function.

Lists give us the ability to create composite objects that contain several related, simpler objects. Many
useful R functions return a list rather than a simple vector. Here is a more natural example, where three
sets of observations on ten patients at an asylum are collected together. The observations recorded are the
average increase in the hours of sleep given three sleep-inducing drugs, compared to a control average
where no medication was given.

> extra.hyoscyamine <- c(0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0)

> extra.laevorotatory <- c(1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4)

> extra.racemic <- c(1.5, 1.4, 0.0, -0.7, 0.5, 5.1, 5.7, 1.5, 4.7, 3.5)

> extra.sleep <- list(hyoscyamine = extra.hyoscyamine,

laevorotatory = extra.laevorotatory,

16 DEEPAYAN SARKAR

racemic = extra.racemic)

> extra.sleep

$hyoscyamine

[1] 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0.0 2.0

$laevorotatory

[1] 1.9 0.8 1.1 0.1 -0.1 4.4 5.5 1.6 4.6 3.4

$racemic

[1] 1.5 1.4 0.0 -0.7 0.5 5.1 5.7 1.5 4.7 3.5

> extra.sleep$racemic

[1] 1.5 1.4 0.0 -0.7 0.5 5.1 5.7 1.5 4.7 3.5

> extra.sleep[[2]]

[1] 1.9 0.8 1.1 0.1 -0.1 4.4 5.5 1.6 4.6 3.4

List elements can be extracted by name as well as position.

Data Frames. Lists like the one above are so commonly used in statistical applications that R has a
special data type for them. Data frames are R objects that represent (rectangular) data sets. They are
essentially lists with some additional structure, but they conceptually represent multiple columns of
observations taken over multiple observational units represented by rows.

Each column of a data frame has to be a either a factor or a numeric, character, or logical vector. Each of
these must have the same length. They are similar to matrices because they have the same rectangular
array structure; the only difference is that different columns of a data frame can be of different data types.

Data frames are created by the data.frame() function.

> d <- data.frame(extra.hyoscyamine, extra.laevorotatory, extra.racemic)

> d

extra.hyoscyamine extra.laevorotatory extra.racemic

1 0.7 1.9 1.5

2 -1.6 0.8 1.4

3 -0.2 1.1 0.0

4 -1.2 0.1 -0.7

5 -0.1 -0.1 0.5

6 3.4 4.4 5.1

7 3.7 5.5 5.7

8 0.8 1.6 1.5

9 0.0 4.6 4.7

10 2.0 3.4 3.5

> d$extra.racemic

[1] 1.5 1.4 0.0 -0.7 0.5 5.1 5.7 1.5 4.7 3.5

The list-like $ operator can be used to extract columns.

Indexing. Extracting one or more elements from a vector is done by indexing. Several kinds of indexing
are possible in R, among them

• Indexing by a vector of positive integers
• Indexing by a vector of negative integers
• Indexing by a logical vector
• Indexing by a vector of names

AN INTRODUCTION TO R 17

In each case, the extraction is done by following the vector by a pair of brackets ([...]). The type of
indexing depends on the object inside the brackets.
Here are some examples of indexing by positive integers.

> extra.hyoscyamine

[1] 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0.0 2.0

> extra.hyoscyamine[5]

[1] -0.1

> extra.hyoscyamine[c(3,5,7)]

[1] -0.2 -0.1 3.7

> ind <- c(3,5,7)

> extra.hyoscyamine[ind]

[1] -0.2 -0.1 3.7

> extra.hyoscyamine[8:12]

[1] 0.8 0.0 2.0 NA NA

> extra.hyoscyamine[c(1, 2, 1, 2)]

[1] 0.7 -1.6 0.7 -1.6

This works more or less as expected. Using an index bigger than the length of the vector produces NA’s.
Indices can be repeated, resulting in the same element being chosen more than once. This feature is often
very useful.

Using negative integers as indices leaves out the specified elements.

> extra.hyoscyamine

[1] 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0.0 2.0

> extra.hyoscyamine[-5]

[1] 0.7 -1.6 -0.2 -1.2 3.4 3.7 0.8 0.0 2.0

> ind <- -c(3,5,7)

> ind

[1] -3 -5 -7

> extra.hyoscyamine[ind]

[1] 0.7 -1.6 -1.2 3.4 0.8 0.0 2.0

Negative indices cannot be mixed with positive indices.

For indexing by a logical vector, the logical vector being used as the index should be exactly as long as the
vector being indexed. If it is shorter, it is replicated to be as long as necessary. Only the elements that
correspond to TRUE are retained.

> extra.hyoscyamine

[1] 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0.0 2.0

> ind <- rep(c(TRUE, FALSE), length = length(extra.hyoscyamine))

> ind

[1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

> extra.hyoscyamine[ind]

[1] 0.7 -0.2 -0.1 3.7 0.0

> extra.hyoscyamine[c(T, F)] ## T = TRUE, F = FALSE

[1] 0.7 -0.2 -0.1 3.7 0.0

Indexing by names works only for vectors that have names.

18 DEEPAYAN SARKAR

> names(extra.hyoscyamine) <- LETTERS[1:10]

> extra.hyoscyamine

A B C D E F G H I J

0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0.0 2.0

> extra.hyoscyamine[c('A', 'B', 'C', 'K')]

A B C <NA>

0.7 -1.6 -0.2 NA

> names(extra.hyoscyamine) <- NULL ## revert

All these types of indexing works for matrices and arrays as well, as we shall see later.

Exercise 8. What happens if you use a factor as an indexing vector? For example, consider

my.f <- gl(5, 1, 50)

x <- c("a", "b", "c", "d", "e")

What do you think x[my.f] will look like? What general rule can you infer from this?

Logical comparisons. All the usual logical comparisons are possible:

less than < less than or equal to <=
greater than > greater than or equal to >=

equals == does not equal ! =

Each of these operate on two vectors element-wise (the shorter one is replicated if necessary).

> extra.hyoscyamine

[1] 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0.0 2.0

> extra.hyoscyamine > 0

[1] TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE

> extra.hyoscyamine < extra.racemic

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Element-wise boolean operations are also possible.

AND &

OR |

NOT !

> extra.hyoscyamine

[1] 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0.0 2.0

> extra.hyoscyamine > 0

[1] TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE

> extra.hyoscyamine < 1

[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE

> extra.hyoscyamine > 0 & extra.hyoscyamine < 1

[1] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

Conditional Selection. Logical comparisons and indexing by logical vectors together allow subsetting a
vector based on the properties of other (or perhaps the same) vectors.

> extra.racemic

[1] 1.5 1.4 0.0 -0.7 0.5 5.1 5.7 1.5 4.7 3.5

> extra.racemic[extra.hyoscyamine > 0]

[1] 1.5 5.1 5.7 1.5 3.5

AN INTRODUCTION TO R 19

> extra.racemic[extra.hyoscyamine > 0 & extra.hyoscyamine < 2]

[1] 1.5 1.5

> month.name[month.name > "N"]

[1] "September" "October" "November"

For character vectors, sorting is determined by alphabetical order.

Matrix and Data frame indexing. Indexing for matrices and data frames are similar: they also use
brackets, but need two indices. If one (or both) of the indices are unspecified, all the corresponding rows
and columns are selected.

> x <- matrix(1:12, 3, 4)

> x

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> x[1:2, 1:2]

[,1] [,2]

[1,] 1 4

[2,] 2 5

> x[1:2,]

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

If only one row or column is selected, the result is converted to a vector. This can be suppressed by adding
a drop = FALSE.

> x[1,]

[1] 1 4 7 10

> x[1,,drop = FALSE]

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

Data frames behave similarly.

> d[1:3,]

extra.hyoscyamine extra.laevorotatory extra.racemic

1 0.7 1.9 1.5

2 -1.6 0.8 1.4

3 -0.2 1.1 0.0

> d[1:3, "extra.hyoscyamine"]

[1] 0.7 -1.6 -0.2

> d[d$extra.racemic < 1.5, 1, drop = FALSE]

extra.hyoscyamine

2 -1.6

3 -0.2

4 -1.2

5 -0.1

20 DEEPAYAN SARKAR

Modifying objects. It is usually possible to modify R objects by assigning a value to a subset or function
of that object. For the most part, anything that makes sense, works. This will become clearer with more
experience.

> x <- runif(10, min = -1, max = 1)

> x

[1] 0.69820937 0.32841722 0.72819193 -0.64204506 0.03105727 0.72502908

[7] -0.78677482 -0.63658501 -0.09468364 0.78673990

> x < 0

[1] FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE

> x[x < 0] <- 0

> x

[1] 0.69820937 0.32841722 0.72819193 0.00000000 0.03105727 0.72502908

[7] 0.00000000 0.00000000 0.00000000 0.78673990

This is a very powerful feature of R that is not particularly common in other languages.

Manipulating data frames. New columns can be added to data frame, by assigning to a currently
non-existent column name (this works for lists too):

> d$difference.HR

NULL

> d$difference.HR <- d$extra.racemic - d$extra.hyoscyamine

> d

extra.hyoscyamine extra.laevorotatory extra.racemic difference.HR

1 0.7 1.9 1.5 0.8

2 -1.6 0.8 1.4 3.0

3 -0.2 1.1 0.0 0.2

4 -1.2 0.1 -0.7 0.5

5 -0.1 -0.1 0.5 0.6

6 3.4 4.4 5.1 1.7

7 3.7 5.5 5.7 2.0

8 0.8 1.6 1.5 0.7

9 0.0 4.6 4.7 4.7

10 2.0 3.4 3.5 1.5

But working with data frames this way can become a bit cumbersome because we always need to prefix the
name of the data frame to every column. There are several functions to make this easier. For example,
subset() can be used to select rows of a data frame.

> library(ISwR)

> data(thuesen)

> str(thuesen)

'data.frame': 24 obs. of 2 variables:

$ blood.glucose : num 15.3 10.8 8.1 19.5 7.2 5.3 9.3 11.1 7.5 12.2 ...

$ short.velocity: num 1.76 1.34 1.27 1.47 1.27 1.49 1.31 1.09 1.18 1.22 ...

> thue2 <- subset(thuesen, blood.glucose < 7)

> thue2

blood.glucose short.velocity

6 5.3 1.49

11 6.7 1.25

12 5.2 1.19

15 6.7 1.52

AN INTRODUCTION TO R 21

17 4.2 1.12

22 4.9 1.03

Similarly, the transform() function can be used to add new variables to a data frame using the old ones.

> thue3 <- transform(thue2, log.gluc = log(blood.glucose))

> thue3

blood.glucose short.velocity log.gluc

6 5.3 1.49 1.667707

11 6.7 1.25 1.902108

12 5.2 1.19 1.648659

15 6.7 1.52 1.902108

17 4.2 1.12 1.435085

22 4.9 1.03 1.589235

Another similar and very useful function is with(), which can be used to evaluate arbitrary expressions
using variables in a data frame:

> with(thuesen, log(blood.glucose))

[1] 2.727853 2.379546 2.091864 2.970414 1.974081 1.667707 2.230014 2.406945

[9] 2.014903 2.501436 1.902108 1.648659 2.944439 2.714695 1.902108 2.151762

[17] 1.435085 2.332144 2.525729 2.778819 2.587764 1.589235 2.174752 2.251292

Grouped data. Grouped data have one or more numerical variables, and one or more categorical factors
(also called groups) that indicate the category for each observation. The most natural way to store such
data is as data frames with different columns for the numerical and categorical variables.

> data(energy)

> str(energy)

'data.frame': 22 obs. of 2 variables:

$ expend : num 9.21 7.53 7.48 8.08 8.09 ...

$ stature: Factor w/ 2 levels "lean","obese": 2 1 1 1 1 1 1 1 1 1 ...

> summary(energy)

expend stature

Min. : 6.130 lean :13

1st Qu.: 7.660 obese: 9

Median : 8.595

Mean : 8.979

3rd Qu.: 9.900

Max. :12.790

We often want to extract information by group. We can do so using what we have already learnt.

> exp.lean <- energy$expend[energy$stature == "lean"]

> exp.obese <- with(energy, expend[stature == "obese"])

> exp.lean

[1] 7.53 7.48 8.08 8.09 10.15 8.40 10.88 6.13 7.90 7.05 7.48 7.58

[13] 8.11

> exp.obese

[1] 9.21 11.51 12.79 11.85 9.97 8.79 9.69 9.68 9.19

A more sophisticated way to do this is

> l <- with(energy, split(x = expend, f = stature))

> l

22 DEEPAYAN SARKAR

$lean

[1] 7.53 7.48 8.08 8.09 10.15 8.40 10.88 6.13 7.90 7.05 7.48 7.58

[13] 8.11

$obese

[1] 9.21 11.51 12.79 11.85 9.97 8.79 9.69 9.68 9.19

More generally, arbitrary functions can be applied to data frames split by a group using the by() function:

> by(data = energy, INDICES = energy$stature, FUN = summary)

energy$stature: lean

expend stature

Min. : 6.130 lean :13

1st Qu.: 7.480 obese: 0

Median : 7.900

Mean : 8.066

3rd Qu.: 8.110

Max. :10.880

--

energy$stature: obese

expend stature

Min. : 8.79 lean :0

1st Qu.: 9.21 obese:9

Median : 9.69

Mean :10.30

3rd Qu.:11.51

Max. :12.79

Sorting. Vectors can be sorted by sort().

> sort(extra.racemic)

[1] -0.7 0.0 0.5 1.4 1.5 1.5 3.5 4.7 5.1 5.7

But it is usually more useful to work with the sort order, using the order() function, which returns an
integer indexing vector that can be used get the sorted vectors. This can be useful to re-order the rows of a
data frame by one or more columns.

> ord <- order(extra.racemic)

> ord

[1] 4 3 5 2 1 8 10 9 6 7

> extra.racemic[ord]

[1] -0.7 0.0 0.5 1.4 1.5 1.5 3.5 4.7 5.1 5.7

> d[ord,]

extra.hyoscyamine extra.laevorotatory extra.racemic difference.HR

4 -1.2 0.1 -0.7 0.5

3 -0.2 1.1 0.0 0.2

5 -0.1 -0.1 0.5 0.6

2 -1.6 0.8 1.4 3.0

1 0.7 1.9 1.5 0.8

8 0.8 1.6 1.5 0.7

10 2.0 3.4 3.5 1.5

9 0.0 4.6 4.7 4.7

6 3.4 4.4 5.1 1.7

7 3.7 5.5 5.7 2.0

AN INTRODUCTION TO R 23

Exercise 9. The plot on the left below is produced by

> with(d, plot(extra.hyoscyamine, extra.racemic, type = "o"))

The type="o" argument in plot() causes the points to be joined by line segments, in the order in which
the data are provided (in the x and y arguments). Modify the call so that points are joined in the order of
increasing x-value, as in the plot on the right.

−1 0 1 2 3

0
1

2
3

4
5

extra.hyoscyamine

ex
tr

a.
ra

ce
m

ic

−1 0 1 2 3
0

1
2

3
4

5

extra.hyoscyamine

ex
tr

a.
ra

ce
m

ic

	Introduction and examples
	What is R?
	Interacting with R
	Variables
	Vectorized arithmetic
	Scalars from Vectors
	Simple descriptive statistics
	Object-oriented progamming: classes and methods
	Getting help
	Getting help for generic functions and methods
	Further reading
	Importing data
	Packages
	Session management and serialization

	Language Overview I
	Expressions and Objects
	Functions
	Vectors
	Functions that create vectors
	Special values
	Matrices and Arrays
	Matrix multiplication
	Creating matrices from vectors
	Factors
	Lists
	Data Frames
	Indexing
	Logical comparisons
	Matrix and Data frame indexing
	Modifying objects
	Manipulating data frames
	Grouped data
	Sorting

