
AN INTRODUCTION TO R

DEEPAYAN SARKAR

Language Overview II

In this tutorial session, we will learn more details about the R language.

Objects. Objects in R are anything that can be assigned to a variable. They could be

• Constants: 2, 13.005, "January"

• Special symbols: NA, TRUE, FALSE, NULL, NaN

• Things already defined in R: seq, c (functions), month.name, letters (character), pi (numeric)
• New objects we can create using existing objects (this is done by evaluating expressions — for

example, 1 / sin(seq(0, pi, length = 50)))

Mode and class. R objects come in a variety of types. Given an object, the functions mode and class tell
us about its type. mode(object) has to do with how the object is stored. class(object) gives the class of
an object. The main purpose of the class is so that generic functions (like print and plot) know what to
do with it. Often, objects of a particular class can be created by a function with the same name as the class.

> obj <- numeric(5)

> obj

[1] 0 0 0 0 0

> mode(obj)

[1] "numeric"

> class(obj)

[1] "numeric"

The mode of an object tells us how it is stored. Two objects may be stored in the same manner but have
different class. How the object will be printed will be determined by its class, not its mode.

> x <- 1:12

> y <- as.table(matrix(1:12, 2, 6))

> class(x)

[1] "integer"

> mode(x)

[1] "numeric"

> class(y)

[1] "table"

> mode(y)

[1] "numeric"

> print(x)

[1] 1 2 3 4 5 6 7 8 9 10 11 12

> print(y)

Date: November 2015.

1

2 DEEPAYAN SARKAR

A B C D E F

A 1 3 5 7 9 11

B 2 4 6 8 10 12

Classes and generic functions. This is achieved by the following mechanism: When print(y) is called,
the print() function determines that class(y) is "table", so it looks for a function named
print.table(). Such a function exists, so the actual printing is done by print.table(y). When
print(x) is called, the print() function determines that class(x) is "integer", so it looks for a function
named print.integer(). There is no such function, so instead the fallback is used, and the actual printing
is done by print.default(). This happens only for generic functions (those that call UseMethod).

This is actually a simplified version of what really happens, but it is close enough for our purposes.

Functions. Functions in R are simply objects of a particular type (of mode "function"). Like other
objects, they can be assigned to variables. Most of the time, they actually are assigned to a variable, and
we refer to the function by the name of the variable it is assigned to. All standard functions (like print(),
plot(), c()) are actually variables, whose value is an R object of mode "function". When we refer to the
seq() function, we actually mean the value of the variable seq.

> class(seq)

[1] "function"

> mode(seq)

[1] "function"

> print(seq)

function (...)

UseMethod("seq")

<bytecode: 0x55968f500490>

<environment: namespace:base>

Calling functions. To call a function, the function object is followed by a list of arguments in parentheses:
fun.obj(arglist). Every function has a list of formal arguments (displayed by args(fun.obj)).
Arguments can be matched by

• position: e.g., plot(v1, v2)

• name: e.g., plot(x = v1, y = v2)

• default: many arguments have default values which are used when the arguments are not specified.
For example, plot() can be given arguments called col, pch, lty, lwd. Since they have not
been specified in the calls above, the defaults are used.

This is most easily understood by looking at examples.

Functions are objects. Functions are regular R objects, just like other objects like vectors, data frames,
and lists. So, variables can be assigned values which are functions, and functions can be passed as
arguments to other functions. We have already seen one example of this in the last tutorial, when using the
by() function, where one of the arguments was a function object. More common examples are lapply()

and sapply(), which we will encounter later in this tutorial.

What happens when a function is called? Most functions return a new R object, which is typically assigned
to a variable or used as an argument to another function. Some functions are more useful for their
side-effects, e.g., plot() produces a graphical plot, write.table() writes some data to a file on disk.

AN INTRODUCTION TO R 3

Expressions. Before we discuss functions further, we need to know a bit about expressions.
Expressions are statements which are evaluated to create an object. They consist of operators (+, *, ^)
and other objects (variables and constants). e.g., 2 + 2, sin(x)^2.

> a <- 2 + 2

> print(a)

[1] 4

> b <- sin(a)^2

> print(b)

[1] 0.57275

R allows expression blocks which consist of multiple expressions. All individual expressions inside this
composite block are evaluated one by one. All variable assignments are done, and any print() or plot()
call have the appropriate side-effect. But most importantly: this whole composite block can be treated as a
single expression whose value on evaluation will be the value of the last expression evaluated inside the
block.

> a <- {

tmp <- 1:50

log.factorial <- sum(log(tmp))

sum.all <- sum(tmp)

log.factorial

}

> print(a)

[1] 148.4778

> print(sum.all)

[1] 1275

Defining a function. A new function is defined / created by a construct of the form

fun.name <- function(arglist) expr

where

• fun.name is a variable where we store the function. This variable will be used to call the function
later.

• arglist is a list of formal arguments. This list
– can be empty (in which case the function takes no arguments);
– can have just some names (in which case these names become variables inside the function,

whose values have to be supplied when the function is called);
– can have some arguments in name = value form, in which case the names are variables

available inside the function, and the values are their default values.
• expr is an expression (typically an exression block) (which can make use of the variables defined in

the argument list). This part is also referred to as the body of a function, and can be extracted by
body(fun.obj).

• Inside functions, there can be special return(val) calls which exits the function and returns the
value val.

Variables and Scope. When an expression involves a variable, we must know how the value of that
variable is determined. For example, most languages have local and global variables. In R, the situation is a
bit more complicated, and involves the concept of environments.

4 DEEPAYAN SARKAR

Environments. Environments consist of a frame (a collection of named objects) and a pointer to an
enclosing environment. Expressions are (usually) evaluated in the context of an environment. Each
variable name in the expression is searched for in the evaluation environment. If it is not found there, it is
searched for in the enclosing environment. If it is not found there, it is searched for in the next enclosing
environment, and so on until there are no other environments to search in. If a variable with that name is
not found in any of these environments, an error is generated.

Expressions entered at the top-level prompt are evaluated in a special environment called .GlobalEnv, also
known as the workspace. The environments enclosing .GlobalEnv correspond to the various packages that
are currently attached, ending in the so-called “base” environment, which has no further enclosing
environment. The current chain of evaluation environments is listed by

> search()

[1] ".GlobalEnv" "package:tools" "package:stats"

[4] "package:graphics" "package:grDevices" "package:utils"

[7] "package:datasets" "package:methods" "Autoloads"

[10] "package:base"

This is also referred to as the search path, as variables are searched for here. The location(s) of a variable in
the search path can be obtained using find().

> find("pi")

[1] "package:base"

> pi

[1] 3.141593

> pi <- 22/7 ## A cruder approximation of pi

> find("pi")

[1] ".GlobalEnv" "package:base"

> cos(2 * pi)

[1] 0.9999968

> with(baseenv(), cos(2 * pi))

[1] 1

Variable scope inside functions. Whenever a function is executed, a new environment is created within
which the body of the function is evaluated. The enclosure of this environment is the environment where
the function was defined. The frame of the environment consists of the variables local to the function call,
which consists of variables defined as arguments of that function and further variables defined inside the
function. These local variables remain in effect only inside the function; they can no longer be accessed
once the function has returned (unless special effort is made to retain access to the environment).

Thus, variables inside a function are first searched for in the local environment. Variables not found there
are searched for in the enclosure, and then further up the chain. Note that this means that if two variables
of the same name are defined both outside and inside the function, the one inside will be used.

> myvar <- 1

> fun1 <- function() {

myvar <- 5

print(myvar)

}

> fun2 <- function() {

print(myvar)

}

> fun1()

[1] 5

AN INTRODUCTION TO R 5

> myvar # has not changed

[1] 1

> fun2()

[1] 1

> myvar <- 10

> fun2()

[1] 10

Note that assignments will still create variables in the local environment, even if a variable with the same
name exists outside. For example, suppose we want to keep track of the number of times a function has
been called. The following attempt will fail:

> ncall <- 0

> fun3 <- function() {

ncall <- ncall + 1

cat("fun3 called", ncall, "time(s).", fill = TRUE)

}

> fun3()

fun3 called 1 time(s).

> fun3()

fun3 called 1 time(s).

> ncall

[1] 0

Exercise 1. Read help("<-") and accordingly modify the example above to give the desired result.

Environments share many properties with lists. In particular, elements can be extracted and set using the
$ operator, and they can be used as the first argument in functions like with(). Environments offer an
alternative solution for the problem above.

> store <- new.env() ## creates a new empty environment

> store$ncall <- 0

> fun3 <- function() {

store$ncall <- store$ncall + 1

cat("fun3 called", store$ncall, "time(s).", fill = TRUE)

}

> fun3()

fun3 called 1 time(s).

> fun3()

fun3 called 2 time(s).

Exercise 2. In the above example, replace store <- new.env() with store <- list(). Can you figure
out why the code no longer works?

Programming constructs. R has the standard programming constructs:

• if

• else

• for

6 DEEPAYAN SARKAR

• while

• etc.

As most R functions are already vectorized, the for construct is usually unnecessary, but can be useful in
some situations. The for keyword is always followed by an expression of the form (variable in vector).
The block of statements that follow this is executed once for every value in vector, with that value being
stored in variable.

> for (i in 1:5) {

print(i^2)

}

[1] 1

[1] 4

[1] 9

[1] 16

[1] 25

while and if statements work more or less as they do in C, as an example will illustrate. The following
function computes members of the Fibonacci sequence (whose first two entries are 0 and 1, and subsequent
entries are computed as the sum of the previous two entries).

> fibonacci <- function(length.out) {

if (length.out < 0) {

warning("length.out cannot be negative")

return(NULL)

}

else if (length.out < 2)

x <- seq(length = length.out) - 1

else {

x <- c(0, 1)

while (length(x) < length.out) {

x <- c(x, sum(rev(x)[1:2]))

}

}

x

}

> fibonacci(-1)

NULL

> fibonacci(1)

[1] 0

> fibonacci(10)

[1] 0 1 1 2 3 5 8 13 21 34

Note that a function returns the last expression it evaluates (in this case x). An explicit return()
statement is necessary only when the function must return before reaching the end.

Exercise 3. Although usually defined through a recurrence relation, the Fibonacci numbers have a
closed-form solution as well. The n-th number in the sequence is given by

F (n) =
φn − (1− φ)n√

5

where φ = 1+
√
5

2 is the so-called “golden ratio”. Use this relationship to write a function that given an
argument n produces the first n Fibonacci numbers.

AN INTRODUCTION TO R 7

Exercise 4. A finite-precision computer cannot represent an irrational number like
√

5 exactly.
Consequently, we would not expect the numbers computed by the closed-form expression above to be exact
integers, even though the Fibonacci numbers are actually integers. Do the numbers reported by your
function appear to be integers? Are they really integers?

What happens to objects? An object is created whenever an expression is evaluated. Unless the result
is assigned to some variable (or used as part of another expression), this object is lost.

In the following example, all the i^2 values are calculated, but nothing is stored and nothing is printed.

> for (i in 1:10) i^2

What to do with an object after creating it depends on what the purpose is. If the only intent is to see the
value, the object can be printed using the print() function.

> for (i in 1:5) print(i^2)

[1] 1

[1] 4

[1] 9

[1] 16

[1] 25

If the intent is to use these values for later, they should be assigned to some variable.

> a <- numeric(10)

> print(a)

[1] 0 0 0 0 0 0 0 0 0 0

> for (i in 1:10) a[i] <- i^2

> print(a)

[1] 1 4 9 16 25 36 49 64 81 100

Type checking. It is often useful to know whether an object is of certain type. There are several
functions of the form is.type which do this. Note that is is not a generic function, even though the
naming convention is similar.

> airq <- head(airquality, 31) ## Air quality measurements in New York, May 1973

> is.data.frame(airq)

[1] TRUE

> is.list(airq)

[1] TRUE

> is.numeric(airq)

[1] FALSE

> is.function(airq)

[1] FALSE

Detecting special values. Some similarly-named functions are used for element-wise checking. The most
important of these is is.na(), which is needed to identify which elements of a vector are missing.

> airq$Ozone

[1] 41 36 12 18 NA 28 23 19 8 NA 7 16 11 14 18 14 34 6 30

[20] 11 1 11 4 32 NA NA NA 23 45 115 37

8 DEEPAYAN SARKAR

> airq$Ozone == NA

[1] NA

[26] NA NA NA NA NA NA

> is.na(airq$Ozone)

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[25] TRUE TRUE TRUE FALSE FALSE FALSE FALSE

> is.na(c(Inf, NaN, NA, 1))

[1] FALSE TRUE TRUE FALSE

> is.nan(c(Inf, NaN, NA, 1))

[1] FALSE TRUE FALSE FALSE

> is.finite(c(Inf, NaN, NA, 1))

[1] FALSE FALSE FALSE TRUE

Coercion methods. There are several functions of the form as.type that are used to convert objects of
one type to another.

> as.numeric(c("1", "2", "2a", "b"))

[1] 1 2 NA NA

> as.numeric(c(TRUE, FALSE, NA))

[1] 1 0 NA

> as.character(c(TRUE, FALSE, NA))

[1] "TRUE" "FALSE" NA

There are some automatic coercion rules that often simplify things.

> airq$Ozone > 30

[1] TRUE TRUE FALSE FALSE NA FALSE FALSE FALSE FALSE NA FALSE FALSE

[13] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

[25] NA NA NA FALSE TRUE TRUE TRUE

> sum(airq$Ozone > 30)

[1] NA

> sum(airq$Ozone > 30, na.rm = TRUE)

[1] 7

But sometimes they can produce surprising results.

> 1 == TRUE

[1] TRUE

> 1 == "1"

[1] TRUE

> "1" == TRUE

[1] FALSE

Automatic printing. Although we have not made it explicit, it should be clear by now that objects are
usually printed automatically when they are evaluated on the command prompt without assigning them to
a variable. This is (almost) equivalent to calling print() on the object. This does not always happen; R
has a mechanism for suppressing this printing, which is used in some cases. The automatic printing never
happens inside a function. So remember to deal with whatever objects you evaluate inside your functions.
The suppression of automatic printing can sometimes lead to unexpected behaviour. To avoid surprises,
use calls to print() explictly.

AN INTRODUCTION TO R 9

Implicit loops. We often need to apply one particular function to all elements in a vector or a list.
Generally, this would be done by looping through all those elements. R has a few functions to do this
elegantly. lapply() Returns the results as a list. sapply() tries to simplify the results and make it a
vector or matrix. Other useful functions in the same family are apply() and tapply().

> lapply(airq, mean)

$Ozone

[1] NA

$Solar.R

[1] NA

$Wind

[1] 11.62258

$Temp

[1] 65.54839

$Month

[1] 5

$Day

[1] 16

> sapply(airq, mean)

Ozone Solar.R Wind Temp Month Day

NA NA 11.62258 65.54839 5.00000 16.00000

> sapply(airq, mean, na.rm = TRUE)

Ozone Solar.R Wind Temp Month Day

23.61538 181.29630 11.62258 65.54839 5.00000 16.00000

Note the need for na.rm = TRUE because there are some missing observations. Unless otherwise specified,
all calculations involving an NA usually produce an NA.

Exercise 5. Using the full airquality dataset, convert the Month column to a factor with suitable levels
(you may use the predefined variable month.name). Obtain the per-month mean Ozone concentration using

(1) a combination of split() and sapply()

(2) tapply().

Exercise 6. Create a 100× 10 matrix of U(0, 1) random variables. We can think of these as 100
replications of 10 U(0, 1) random variables. Use apply() to compute a vector of per-replicate (per-row)
means. Can you perform the same operation without a loop using a single matrix operation?

Exercise 7. Loops (whether implicit or explicit) are generally slower than vectorized operations in R.
Compare the speed of the two approaches in the last exercise using the system.time() function. You may
need several repititions of the procedure to detect a difference; use replicate(). How do these two
approaches compare in terms of speed to rowMeans()?

10 DEEPAYAN SARKAR

Exercise 8. Find a way to insert a value at a given position in a vector. Implement this using a function.
For example, the function call might look like this:

> insert(x, where, what)

> ## x: initial vector

> ## where: which position to insert in

> ## what: what to insert

A test case using this function:

> x <- 1:10

> x <- insert(x, 5, 0)

> x

[1] 1 2 3 4 0 5 6 7 8 9 10

How would you extend this idea to insert rows in a matrix?

Exercise 9. How would you check if two numeric vectors (possibly containing NA-s) are the same (without
using identical())?

The next exercise involves hypotrochoids, which are geometric curves traced out by a point within a circle
that is rolling along “inside” another fixed circle (a spirograph is a popular toy that produces
hypotrochoids). Our goal is to design a framework where we can easily plot hypotrochoids. Hypotrochoids
can be parameterized by the equations

x(t) = (R− r) cos t+ d cos
R− r
r

t

y(t) = (R− r) sin t− d sin
R− r
r

t

where R is the radius of the fixed circle, r the radius of the moving circle, and d is the distance of the point
being traced from the center of the latter. Fixing R = 1, we can plot a hypotrochoid with r = 0.7 and
d = 0.16 as follows.

> r <- 0.7

> d <- 0.16

> hypox <- function(t) (1 - r) * cos(t) + d * cos((1-r) * t / r)

> hypoy <- function(t) (1 - r) * sin(t) - d * sin((1-r) * t / r)

> tt <- seq(0, 20 * pi, by = 0.1)

> par(pty = "s")

> plot(x = hypox(tt), y = hypoy(tt), type = "l", axes = FALSE)

AN INTRODUCTION TO R 11

hypox(tt)

hy
po

y(
tt)

This is sufficient as a quick proof-of-concept, but if we wish to work with hypotrochoids more
systematically, we would want a cleaner implementation. The typical R approach is to write a constructor
function that collects the information required to define a hypotrochoid into an object of a new class.
Further manipulation is done using methods.

> hypotrochoid <- function(r = runif(1), d = r * runif(1))

{

ans <- list(r = r, d = d)

class(ans) <- "hypotrochoid"

ans

}

> print.hypotrochoid <- function(x, ...)

{

cat("A hypotrochoid with r =", x$r, "and d =", x$d, fill = TRUE)

}

> h1 <- hypotrochoid(r = 0.7, d = 0.16)

> h2 <- hypotrochoid() # random choices

> h1

A hypotrochoid with r = 0.7 and d = 0.16

> h2

A hypotrochoid with r = 0.03314217 and d = 0.01703217

>

Exercise 10. Write a suitable plot.hypotrochoid() method and use it to plot h1 and h2. Your method
should allow the to and by arguments for seq() to be specified.

12 DEEPAYAN SARKAR

Distributions and random variables. One of the frequent uses of R is to genrate pseudo-random
numbers from various probablity distributions. R has functions to generate observations from several
distributions, as well as functions giving their density and the cumulative distribution functions.
For example, the functions related to the Normal distribution are described in the ?pnorm help page.
Among other common distributions are Lognormal (?plnorm), Exponential (?pexp), Uniform (?punif),
Binomial (?pbinom) and Poisson (?ppois).

Calculating probabilities. Consider a random variable X that is Normally distributed with mean 100 and
standard deviation 10.

Exercise 11. Use pnorm() to calculate the following probabilities:

• P (X < 80)
• P (X > 95.5)
• P (90 < X < 115)

An alternative method of calculating these probabilities is to integrate the Normal density function, which
unfortunately cannot be integrated analytically. R can perform approximate numerical integration using
the function integrate(). Probabilities calculated by pnorm() are nothing but integrals (areas) of the
Normal density computed by dnorm(). Thus, an alternative way to calculate P (90 < X < 115) is as follows
(this is another example where a function is an argument of another function).

> integrate(dnorm, 90, 115, mean = 100, sd = 10)

0.7745375 with absolute error < 8.6e-15

How does this compare with what you get using pnorm()? Note that it is generally NOT a good idea to
use integrate() instead of pnorm() or other similar functions. Although they solve the same problem,
integrate() is a general-purpose function while pnorm() etc. are tailored to work with specific
distributions.

Calculating quantiles. While pnorm() calculates probabilities of a random variable being less than or
greater than a certain number, qnorm() solves the inverse problem: Given a probability p, find a location q
such that P (X < q) = p. q is called the lower p-th quantile, we can similarly define upper quantiles that
satisfy P (X > q) = p.

Exercise 12. For the same random variable X, calculate the lower and upper quantiles corresponding to
the probabilities 0.2, 0.4, 0.5, 0.6, and 0.8. Notice that the upper and lower quantiles are symmetric about
the mean (100). This does not hold for non-symmetric distributions. Calculate the same quantiles for the
Standard Normal distribution Z ∼ N(0, 1). Verify that the Z-quantiles can be obtained from the
X-quantiles by subtracting the mean (100) and dividing by the standard deviation (10).

Probability as Relative Frequency. Probability theory tells us that if we repeat an experiment a large
number of times, the relative frequency of an event A (the number of times the event A occurs as a fraction
of the total number times we do the experiment) converges to the probability of A. The goal of the
following exercises is to verify this in two examples.

Exercise 13. If we have a finite number of independent observations X1, . . . , Xn from N(100, 10), then the
relative frequency of observations that fall between 90 and 115 should converge to P (90 < X < 115) as n
increases. Use rnorm() to obtain a vector of 500 N(100, 10) observations, and plot the cumulative
proportions of observations between 90 and 115.

AN INTRODUCTION TO R 13

Hint: use the function cumsum(), which works for logical vectors as well as numeric vectors. Remember
that you will need the cumulative relative frequencies, i.e., you would need to divide the number of
“successes” up to a point by the number of experiments up to that point.

Your plot should look roughly like the following.

0 100 200 300 400 500

0.5

0.6

0.7

0.8

0.9

1.0

Index

p

For the next example, consider a regular deck of 52 cards. Suppose our experiment consists of drawing a
single card from the full deck, and we are interested in the event

A = {the card drawn is an Ace or from the Clubs suite}

Exercise 14. Compute P (A).

As before, we want to fix the number N of experiments we will do (say N = 5000), and simulate the
experiment N times to generate a logical (TRUE/FALSE) vector indicating whether the event A happened for
each of the experiments. For i = 1, 2, . . . , N , we then want to calculate (and plot) the relative frequency of
A in the first i experiments. The only new step is to actually simulate the experiment N times. The first
thing we need is the sample space (the 52 cards). A nice way to do this in R is:

> cards <- expand.grid(value = c("A", 2:10, "J", "Q", "K"),

suite = c("Clubs", "Diamonds", "Hearts", "Spades"),

KEEP.OUT.ATTRS = FALSE)

> head(cards)

value suite

1 A Clubs

2 2 Clubs

3 3 Clubs

4 4 Clubs

5 5 Clubs

6 6 Clubs

> tail(cards)

value suite

47 8 Spades

48 9 Spades

49 10 Spades

14 DEEPAYAN SARKAR

50 J Spades

51 Q Spades

52 K Spades

Our sample space thus consists of each row of the data frame cards. Simple random sampling with and
without replacement from a finite population can be performed by the sample() function. We can sample
from the row indices using

> sample(1:52, N, replace = TRUE)

and use that as an index to get a new data frame with N rows, each representing one card drawn at
random from the deck.

> N <- 5000

> cards.sample <- cards[sample(1:52, N, rep = TRUE),]

> str(cards.sample)

'data.frame': 5000 obs. of 2 variables:

$ value: Factor w/ 13 levels "A","2","3","4",..: 12 1 10 4 12 10 3 9 4 13 ...

$ suite: Factor w/ 4 levels "Clubs","Diamonds",..: 1 4 2 3 3 2 2 3 1 4 ...

The event that the selected card is a Clubs, for instance, can now be obtained (in vectorized form) as
cards.sample$suite == "Clubs".

Exercise 15. Figure out how to determine whether the event A happened for each draw, and from that
obtain and plot the cumulative relative frequencies.

	Language Overview II
	Objects
	Mode and class
	Classes and generic functions
	Functions
	Functions are objects
	Expressions
	Defining a function
	Variables and Scope
	Environments
	Variable scope inside functions
	Programming constructs
	What happens to objects?
	Type checking
	Detecting special values
	Coercion methods
	Automatic printing
	Implicit loops
	Distributions and random variables

