To compare the variance of regression coefficients by using different resampling techniques

Anujit, Ipsita, Pooja

November 3, 2010

1 Introduction

Consider the following regression models

$$y_i = \alpha + \beta x_i + \epsilon_i, i = 1, \cdots, n$$

$$y_i = \alpha + \beta x_i + x_i \epsilon_i, i = 1, \cdots, n$$

where $\alpha = 1.5$, $\beta = 7.5$, n = 15, x_i 's are generated from Uniform(0, 20) distribution, and ϵ_i 's are generated from one of the following distribution let $\hat{\beta}$ be the OLS estimator of β . For each of the above cases, compare

- The true variance of $\hat{\beta}$ (estimated)
- The estimated variance using delete-1 jackknife
- The estimated variance using residual bootstrap
- The estimated variance using paired bootstrap

2 Results

Distribution	standard	Double	t-distribution	Logistic
	normal	exponential	with d.f 2	
Estimated Variance of beta -	.054100064	.08149226	.05461763	.07262628
hat by simulation				
Estimated Variance of beta -	.05205357	.08352675	.0497562	.07139115
hat by jackknife sampling				
Estimated Variance of beta -	.05365725	.09632952	.05114177	.06413493
hat by residual bootstrap				
Estimated Variance of beta -	.05222555	.08326425	.04760964	.05591118
hat by paired bootstrap				

Table 1: Results of model 1

Table 2: Result of model 2 $\,$

Distribution	standard	Double	t-distribution	Logistic
	normal	exponential	with d.f 2	
Estimated Variance of beta -	.04227235	.86834482	.6635769	1.22626803
hat by simulation				
Estimated Variance of beta -	.02731309	.07073187	.4044742	.08270864
hat by jackknife sampling				
Estimated Variance of beta -	.03903361	.52648465	.03214410	.03903361
hat by residual bootstrap				
Estimated Variance of beta -	.03479961	.57495839	.3733652	.03479961
hat by paired bootstrap				

Figure 2 : Boxplot for double exponential (model 2)

Figure 3 : Boxplot for logistic with parameter 0,1 (model 1)

Figure 4 :Boxplot for logistic with parameter 0,1 (model 2)

Figure 5 :Boxplot for normal with parameter 0,1 (model 1)

Figure 6 :Boxplot for normal with parameter 0,1 (model 2)

Figure 8 :Boxplot for t-distribution with d.f 2 (model 2)

3 Methodology

We considered two linear models

$$y_i = \alpha + \beta x_i + \epsilon_i, i = 1, \cdots, n \tag{1}$$

$$y_i = \alpha + \beta x_i + x_i \epsilon_i, \quad i = 1, \cdots, n \tag{2}$$

where $\alpha = 1.5$, $\beta = 7.5$, $n = 15, x_i$ -s are generated from U(0,20) distribution, and ϵ_i -s are generated from one of the following distribution.

- standard normal
- t_5
- double exponential with rate 1
- logistic(with location parameter 0 and scale parameter 1)

Now we want to estimate β for these models ,and then to find variance of estimated β by these resampling techniques. We adopted 4 resampling plans to obtain $\hat{\beta}$ and its variance.

3.1 Simulation

In first techniques we fitted linear model and then calculated value of β and then simply simulated the process to find estimate variance of $\hat{\beta}$.

3.2 Residual Bootstrap

We fitted a least square regression equation and define the usual residuals as

$$\epsilon_{in} = y_i - x'_i \beta_n, i = 1, \cdots, n$$

We used

$$\epsilon_{in}^{\sim} = \epsilon_{in} - n^{-1} \Sigma_{i=1}^{n} \epsilon_{in}$$

Let F_n be the EDF that puts mass n^{-1} at each $\{\epsilon_{in}^{\sim}\}, i = 1, \cdots, n$ Now let $\{\epsilon_1^*, \cdots, \epsilon_n^*\}$ be i.i.d. F_n and let

$$y_i^* = x_i' \beta_n + \epsilon_i^*, \qquad i = 1, \cdots, n$$

where $\{\epsilon_1^*, \cdots, \epsilon_n^*\}$ is a random sample drawn with replacement from $\{\epsilon_{1n}^{\sim}, \cdots, \epsilon_{nn}^{\sim}\}$. then using y^* instead of y in the linear model and we estimated beta.

3.3 Paired Bootstrap

Consider the ECDF F_n which puts mass n^{-1} at each pair $\{y_i, x_i\}, i = 1, \dots, n$. The bootstrap random samples are drawn with replacement from y_i, x_i and hence the pair y_i^*, x_i^* are i.i.d. F_n . then using these pairs we estimated β and its variance

3.4 delete-1 Jackknife

In this method we deleted 1 pair among $\{y_i, x_i\}$ and using the remaining pairs we estimated β . Repeating this n times we calculated its variance which is given by

$$V(\hat{\beta}) = n^{-1} \sum_{i=1}^{n} (\beta_i - \bar{\beta})^2$$

where $\bar{\beta} = \frac{1}{n} \sum_{i=1}^{n} \beta_i$.

3.5 Variance consistent

Any resampling plan, say R is said to be variance consistent if its variance estimates say V_R , satisfies $V(\beta_n)/V_R \to 1$

4 Conclusion

4.1 Model 1

We see from our result that overall residual bootstrap is approximates our simulated result i.e residual bootstrap is *variance consistent*

4.2 Model 2

In model 2 where we have heteroscedasticity no resampling plans go near to simulated result of variance. But from theory we know that paired bootstrap resampling technique is robust ,but our results deviate.