Corrected Proof of Lemma 2 in **"Implementation with Contingent Contracts"** Rahul Deb and Debasis Mishra¹ October 7, 2015

There is a mistake in the proof of Lemma 2 (the statement of which is correct) in Deb and Mishra (2014) - the partition created in Lemma 2 is not f-ordered partitioned as claimed. We are very grateful to Kiho Yoon who brought this error to our attention.

Below is the corrected proof of Lemma 2.

LEMMA 2: Suppose the type space is finite and f is an acyclic scf. Then, the type space can be f-ordered partitioned.

Corrected Proof: We define a new relation \triangleright^f as follows: for every v_i, v'_i , we say $v_i \triangleright^f v'_i$ if there is a finite sequence $\{v_i^1, \ldots, v_i^k\}$ such that $v_i \equiv v_i^1 \succeq^f v_i^2 \succeq^f \ldots \succeq^f v_i^k \equiv v'_i$, with at least one of the above relations strict (\succ^f) . Now, we do the proof in several steps.

STEP 1. First, we show that \triangleright^f is acyclic. Consider a sequence v_i^1, \ldots, v_i^k such that $v_i^1 \triangleright^f \ldots \triangleright^f v_i^k$. Assume for contradiction $v_i^k \triangleright^f v_i^1$. So, we get $v_i^1 \triangleright^f \ldots \triangleright^f v_i^k \triangleright^f v_i^{k+1} \equiv v_i^1$. Between any consecutive types v_i^j and v_i^{j+1} in this sequence, we have $v_i^j \succeq^f \ldots \succeq^f v_i^{j+1}$, with strict relation holding for at least one. Hence, we get a finite sequence $v_i^1 \succeq^f \ldots \succeq^f v_i^{k+1} \equiv v_i^1$ with strict relation holding for at least one. Acyclicity of f implies that $v_i^1 \nsucceq^f v_i^1$, contradicting the reflexivity of \succeq^f .

STEP 2. Next, choose any nonempty subset $V'_i \subseteq V_i$, and let $M(V'_i) \subseteq V'_i$ be the set of maximal elements of V'_i corresponding to the relation \triangleright^f . Formally

$$M(V'_i) := \{ v_i \mid v_i \in V'_i \text{ and there is no } v'_i \in V'_i \text{ such that } v'_i \triangleright^f v_i \}.$$

Since \triangleright^f is acyclic, $M(V'_i)$ is non-empty.

STEP 2(A). $v'_i \not\succ^f v_i$ for every $v_i, v'_i \in M(V'_i)$. To see this, if $v'_i \succ^f v_i$, then $v'_i \triangleright^f v_i$, contradicting $v_i \in M(V'_i)$.

STEP 2(B). $v'_i \succeq^f v_i$ for every $v_i \in M(V'_i)$ and every $v'_i \in (V'_i \setminus M(V'_i))$. Assume for contradiction $v'_i \succeq^f v_i$. Since $v'_i \notin M(V'_i)$, there exists a v''_i such that $v''_i \succ^f v'_i$. Hence, there is a

¹Rahul Deb: University of Toronto, rahul.deb@utoronto.ca; Debasis Mishra: Indian Statistical Institute, Delhi, dmishra@isid.ac.in

finite sequence, $v''_i \succeq^f \ldots \succeq^f v'_i \succeq^f v_i$, with strict relation holding at least once. As a result, we have $v''_i \succ^f v_i$, contradicting the fact that $v_i \in M(V'_i)$.

STEP 3. Now, we recursively define a partition. We set $V_i^1 = M(V_i)$. Having defined, $(V_i^1, \ldots, V_i^{k-1})$, we define $R^k := V_i \setminus (V_i^1 \cup \ldots \cup V_i^{k-1})$. If $R^k = \emptyset$, we stop, else, we set $V_i^k := M(R^k)$. Suppose (V_i^1, \ldots, V_i^K) is the partition created. We show that (V_i^1, \ldots, V_i^K) satisfies Property P1 and P2. To do that, pick $v_i, v'_i \in V_i^j$ for some j. Since $V_i^j = M(R^j)$, by Step 2(A), we have $v'_i \not\succ^f v_i$. So, Property P1 is satisfied.

Similarly, pick $v_i \in V_i^j$ and $v'_i \in (V_i^{j+1} \cup \ldots \cup V_i^K)$. Since $V_i^j \equiv M(R^j)$ and $(V_i^{j+1} \cup \ldots \cup V_i^K) \equiv R^j \setminus V_i^j$, by Step 2(B), we get $v'_i \not\succeq^f v_i$. So, Property P2 is satisfied.

References

DEB, R. AND D. MISHRA (2014): "Implementation with Contingent Contracts," *Econometrica*, 82, 2371–2393.