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This supplementary material contains some missing proofs of Long et al. (2017). The

numbering of Propositions and Lemmas are same as that in Long et al. (2017).

Proof of Proposition 2

Proof : We only focus on n > 8. Notice that value of ` in Theorem 1 in Long et al. (2017)

is obtained by choosing the value of i for which i is even and (i−1)
C(n−2,i−1)+i is minimized. But

minimizing (i−1)
C(n−2,i−1)+i is equivalent to maximizing

C(n− 2, i− 1) + 1

(i− 1)
.

We now prove an elementary fact from combinatorics.

Fact 1 If n ≥ 8 and 4 ≤ k ≤ n−1
2

, then

C(n− 2, k − 1) + 1

k − 1
≥ C(n− 2, k − 2) + 1

k − 2
.

Proof :

C(n− 2, k − 1) + 1

k − 1
− C(n− 2, k − 2) + 1

k − 2

=
1

(k − 1)(k − 2)

(
(k − 2)C(n− 2, k − 1)− (k − 1)C(n− 2, k − 2)− 1

)
∗Yan Long: NYU, Abu Dhabi, yl79@nyu.edu; Debasis Mishra: Indian Statistical Institute, Delhi,

dmishra@isid.ac.in; dmishra@gmail.com; Tridib Sharma: ITAM, Mexico, sharma@itam.mx

1



Hence, to show the above expression is non-negative, we need to show that the expression

below is no less than 1:

(k − 2)C(n− 2, k − 1)− (k − 1)C(n− 2, k − 2)

=
(k − 2)(n− k)

(k − 1)
C(n− 2, k − 2)− (k − 1)C(n− 2, k − 2)

=
1

(k − 1)
C(n− 2, k − 2)

(
(n− k)(k − 2)− (k − 1)2

)
.

Since k ≤ (n−1)
2

, we have (n − k) ≥ (k + 1). Then the above expression is greater than or

equal to
1

(k − 1)
C(n− 2, k − 2)

(
(k + 1)(k − 2)− (k − 1)2

)
.

But (k+ 1)(k− 2)− (k− 1)2 = k2− k− 2− k2 + 2k− 1 = k− 3 ≥ 1 since k ≥ 4. This means

that

(k − 2)C(n− 2, k − 1)− (k − 1)C(n− 2, k − 2) ≥ 1

(k − 1)
C(n− 2, k − 2)

=
1

n− 1
C(n− 1, k − 1)

≥ 1,

as desired. �

Fact 1 implies that if n > 8, then ` ≥ b (n−1)
2
ce. Next we show that the maximum of

the expression C(n−2,i−1)+1
(i−1) is achieved for i ≤ b (n+1)

2
ce. To see this, pick an even number

k > b (n+1)
2
ce. Note that since k is even, we get that 2k > (n+ 1). We consider two cases.

Case 1. n is even. But 2k > n + 1 implies n − k − 1 < n − k < k − 1. Then,
C(n−2,k−1)+1

k−1 = C(n−2,n−k−1)+1
(k−1) < C(n−2,n−k−1)+1

(n−k−1) . Since (n − k) is even, we see that the

expression C(n−2,i−1)+i
i−1 cannot be maximized at k.

Case 2. n is odd. The maximum of the expression C(n − 2, i − 1) is found at two values:

i∗ − 1 = n−1
2

and i∗ − 1 = n−1
2
− 1. Since k > n+1

2
, we get k − 1 > n−1

2
. This implies that

C(n− 2, k − 1) < C(n− 2, k − 2) = C(n− 2, n− k). But then, k − 1 > n− k implies that
C(n−2,k−1)+1

k−1 < C(n−2,n−k)+1
(n−k) . Since n − k + 1 is even, this implies that k does not maximize

the required expression. �
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Proof of Proposition 3

Proof : Consider n which is even such that n
2

is odd. Then, by Proposition 2 in Long et al.

(2017), ` = n
2
− 1. As a result,

h(n) =
(n− 4)

2(C(n− 2, n
2
− 2) + (n−2)

2
)

=
(n− 4)

(2C(n− 2, n
2
− 2) + (n− 2))

.

But observe that

C(n− 2,
n

2
− 2) =

(n− 2)!

(n
2
)!(n

2
− 2)!

=
(n
2
− 1)(n

2
)

(n− 1)n
C(n,

n

2
) =

(n− 2)

4(n− 1)
C(n,

n

2
).

Hence, we can write

h(n) =
(n− 4)

(n−2)
2(n−1)C(n, n

2
) + (n− 2)

=
(
1− 2

n− 2

) 1
1

2(n−1)C(n, n
2
) + 1

.

Now, define ρ(n) = 1√
2πn

2n+1. Note that by Stirling’s approximation of central binomial

coefficient (Eger, 2014), we have

lim
n→∞

C(n, n
2
)

ρ(n)
= 1. (1)

Now, using the previous equation, we can write

h(n) =
(
1− 2

n− 2

) 1
2n√

2πn(n−1)
C(n,n

2
)

ρ(n)
+ 1

Define σ(n) =
√
2πn(n−1)

2n
, and note that

lim
n→∞

σ(n) = 0. (2)

Now, we can rewrite the expression of h(n) as

h(n)

σ(n)
=
(
1− 2

n− 2

) 1
C(n,n

2
)

ρ(n)
+ σ(n)

So, as n→∞ (by considering sequence where n is even n
2

is odd), we see that the first term

of RHS is 1 and the denominator of the second term in the RHS is 1 because of Equations

(1) and (2). Hence, we get,

lim
n→∞

h(n)

σ(n)
= 1.

�
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Proofs of Lemma 4 and Lemma 5

Both the proofs use the following simple lemma.

Lemma 1 Suppose f is a satisfactorily implementable two-step ranking allocation rule de-

fined by (π1, `). Then, for every 0-generic valuation profile v, we have

Rf (v) = (π1 − π2)v(2) + `π2v(`+1),

where π2 = 1
`−1(1− π1).

Proof : The proof of the formula forRf follows from the formula derived for any satisfactorily

implementable ranking allocation rule in Lemma 3 in Long et al. (2017). �

Proof of Lemma 4

Proof : Pick a satisfactory mechanism (f,p), where f is a two-step ranking allocation rule

defined by (π1, `). Suppose v is such that |N0
v| = n−K, K ≤ `. If K = 0, then by symmetry

and budget-balance, we get pi(v) = 0 for all i ∈ N . Else, suppose v1 > . . . > vK > 0. If

K = 1, then, by budget-balance and symmetry we get p1(v)+(n−1)pi(v) = 0 for any i ∈ N0
v.

But p1(v) = p1(0, v−1) + v1π1 − v1π1 = p1(0, v−1) = 0, where we used revenue equivalence

formula for the first equality and p1(0, v−1) = 0 for the last equality. Hence, we get p1(v) = 0,

and hence, pi(v) = 0 for all i 6= 1. Now, suppose K = 2. Then, budget-balance requires

p1(v) + p2(v) +
∑
i/∈{1,2}

pi(v) = 0.

But using revenue equivalence and the fact that p1(0, v−1) = 0, we get that

p1(v) = p1(0, v−1) + v1π1 − (v1 − v2)π1 − v2π2 = v2(π1 − π2).

Similarly, we get p2(v) = p2(0, v−2) + v2π2 − v2π2 = 0. Hence, by choosing some i /∈ {1, 2},
we can simplify the budget-balance equation as v2(π1− π2) + (n− 2)pi(v) = 0. This implies

that

pi(v) = −(π1 − π2)
(n− 2)

v2,

which is the required expression.

Next, suppose K > 2 and use induction. Suppose the claim is true for all k < K. Then,

by revenue equivalence and symmetry we get

∑
j∈N

pj(v) =
∑
j∈N

pj(0, v−j) +Rf (v) = (n−K)pi(v) +
K∑
j=1

pj(0, v−j) +Rf (v),
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where i is some agent in N0
v. By budget-balance, the above summation is zero, and Rf (v) =

(π1 − π2)v2 since K ≤ ` (by Lemma 1). Using this, we get

0 = (n−K)pi(v) +
K∑
j=1

pj(0, v−j) + (π1 − π2)v2. (3)

Now, for every j ∈ {1, . . . , K}, the profile (0, v−j) has one more zero-valued agent than the

profile v, and hence, we can apply our induction hypothesis. We refer to (0, v−j) for each

j ∈ {1, . . . , K} as a marginal profile having an additional zero-valuation agent than v, and

denote this as vj with the valuation of the k-th ranked agent in this valuation profile denoted

as vj(k). Note that a marginal profile contains (K−1) non-zero valuation agents. Thus, using

our induction hypothesis, Equation 3 can be rewritten as

(n−K)pi(v)

=
K∑
j=1

(π1 − π2)
ψ(n−K + 1, n− 2)

[K−2∑
k=2

(−1)k(k − 1)!ψ(n−K + 1, n− k − 1)vj(k) + (−1)K−1(K − 2)!vj(K−1)

]
− (π1 − π2)v2

=
(π1 − π2)

ψ(n−K + 1, n− 2)

K∑
j=1

[K−2∑
k=2

(−1)k(k − 1)!ψ(n−K + 1, n− k − 1)vj(k) + (−1)K−1(K − 2)!vj(K−1)

]
− (π1 − π2)v2

We write this equivalently as

ψ(n−K,n− 2)

π1 − π2
pi(v) =

K∑
j=1

[K−2∑
k=2

(−1)k(k − 1)!ψ(n−K + 1, n− k − 1)vj(k) + (−1)K−1(K − 2)!vj(K−1)

]
− ψ(n−K + 1, n− 2)v2. (4)

Now, we remind that v is a valuation profile of the form v1 > v2 > . . . > vK > 0 and vj = 0

for all j > K. We now simplify the RHS of Equation 4 in terms of v1, . . . , vK . To do so,

we explicitly compute the coefficients of vk for each k ∈ {1, . . . , K} in the RHS of Equation 4.

Case 1. Note that v1 does not appear in the summation, and hence, its coefficient is always

zero. Next, v2 = vj(2) for all j 6= {1, 2}. Hence, it has a rank 2 in (K − 2) marginal profiles,

and in each such case, its coefficient in the first summation is

(−1)2(1)!ψ(n−K + 1, n− 3).
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Adding this with −ψ(n−K + 1, n− 2)v2, we get the coefficient of v2 as

(K − 2)ψ(n−K + 1, n− 3)− ψ(n−K + 1, n− 2) = −ψ(n−K,n− 3) = −(−1)2(1!)ψ(n−K,n− 3).

Case 2. Now, consider K > k > 2. Note that vk = vj(k′) where k′ ∈ {k, k−1}. In particular,

k′ = k if j ∈ {k + 1, . . . , K} and k′ = k − 1 if j ∈ {1, . . . , k − 1}. Hence, it has rank k in

(K − k) marginal profiles and rank (k − 1) in (k − 1) marginal profiles. When it has rank k

in a marginal profiles, its coefficient in the RHS of Equation 4 is

(−1)k(k − 1)!ψ(n−K + 1, n− k − 1),

and when it has rank (k − 1), its coefficient is

(−1)k−1(k − 2)!ψ(n−K + 1, n− k).

Hence, collecting the coefficient of vk, we get

(−1)k(K − k)(k − 1)!ψ(n−K + 1, n− k − 1) + (−1)k−1(k − 1)(k − 2)!ψ(n−K + 1, n− k)

= (−1)k(k − 1)!ψ(n−K + 1, n− k − 1)
(

(K − k)− (n− k)
)

= −(−1)k(k − 1)!ψ(n−K,n− k − 1).

Case 3. Finally, vK = vj(k′) where k′ = K − 1 when j ∈ {1, . . . , K − 1}. Hence, vK has

rank (K−1) in (K−1) marginal profiles. Whenever it has rank (K−1) its coefficient in the

RHS of Equation 4 is (−1)K−1(K − 2)!. Hence, the coefficient of vK in the RHS of Equation

4 is

−(−1)K(K − 1)(K − 2)! = −(−1)K(K − 1)!

Aggregating the findings from all the three cases, we can rewrite Equation 4 as

ψ(n−K,n− 2)

π1 − π2
pi(v) =

[K−1∑
k=2

(−1)k(k − 1)!ψ(n−K,n− k − 1)vk + (−1)K(K − 1)!vK

]
.

(5)

This simplifies to the desire expression:

pi(v) = − (π1 − π2)
ψ(n−K,n− 2)

[K−1∑
k=2

(−1)k(k − 1)!ψ(n−K,n− k − 1)vk + (−1)K(K − 1)!vK

]
�
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Proof of Lemma 5

Proof : We follow a similar line of proof as Lemma 4. Consider a valuation profile v with

|N0
v| = n−K, K ≥ `+ 1, v1 > . . . > vK > 0 and vj = 0 for all j > K.

We now modify Equation 3 by using Rf (v) = (π1 − π2)v2 + `π2v`+1 (by Lemma 1) as

follows:

0 = (n−K)pi(v) +
K∑
j=1

pj(0, v−j) + (π1 − π2)v2 + `π2v`+1. (6)

Now, for every j ∈ {1, . . . , K}, the profile vj has one more zero-valued agent than the

profile v, and hence, we can apply our induction argument - the base case of K = ` is solved

in Lemma 4, where we computed pi(v) with K ≤ ` agents having non-zero valuations. Using

induction hypothesis, we simplify Equation 6 as follows:

−(n−K)pi(v) =
K∑
j=1

− (π1 − π2)
ψ(n− `, n− 2)

[ `−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vj(k) + (−1)`(`− 1)!vj(`)

]
+ (π1 − π2)v2 + `π2v`+1.

This can be rewritten as follows:

(n−K)ψ(n− `, n− 2)

π1 − π2
pi(v) =

K∑
j=1

[ `−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vj(k) + (−1)`(`− 1)!vj(`)

]
− ψ(n− `, n− 2)v2 −

`π2ψ(n− `, n− 2)

π1 − π2
v`+1. (7)

By Proposition 8 in Long et al. (2017),

π1 − π2 = 1− (`− 1)

C(n− 2, `− 1) + `
− 1

C(n− 2, `− 1) + `

=
C(n− 2, `− 1)

C(n− 2, `− 1) + `

= C(n− 2, `− 1)π2

=
ψ(n− `, n− 2)

(`− 1)!
π2. (8)

Hence, Equation 7 can be rewritten as

(n−K)ψ(n− `, n− 2)

π1 − π2
pi(v) =

K∑
j=1

[ `−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vj(k) + (−1)`(`− 1)!vj(`)

]
− ψ(n− `, n− 2)v2 − `!v`+1 (9)
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Like in Lemma 4 proof, we will rewrite the RHS of Equation 10 in terms of v1, . . . , vK .

For this, observe that for any k, vk will appear on the RHS of Equation 10 if there

is some j ∈ {1, . . . , K} and some k′ ∈ {2, . . . , `} such that vj(k′) = vk. Hence, v1 and

v`+2, . . . , vn do not appear on the RHS of Equation 10. We compute the coefficients of vk

for k ∈ {2, . . . , `+ 1}. We consider three cases.

Case 1. For v2, we note that v2 = vj(2) for all j 6= {1, 2}. Hence, it has a rank 2 in (K − 2)

marginal profiles, and in each such case, its coefficient in the first summation is

(−1)2(1)!ψ(n− `, n− 3).

Adding this with −ψ(n− `, n− 2), we get the coefficient of v2 in the RHS of Equation 10 as

(K − 2)ψ(n− `, n− 3)− ψ(n− `, n− 2) = −ψ(n− `, n− 3)(n−K)

= −(−1)2(1!)ψ(n− `, n− 3)(n−K).

Case 2. Now, consider 2 < k < `. For vk, note that vk = vj(k′) where k′ ∈ {k, k − 1}. In

particular, k′ = k if j ∈ {k + 1, . . . , K} and k′ = k − 1 if j ∈ {1, . . . , k − 1}. Hence, it has

rank k in (K−k) marginal profiles and rank (k−1) in (k−1) marginal profiles. In the RHS

of Equation 10, the coefficient of vk is (−1)k−1(k− 2)!ψ(n− `, n− k) if its rank is k− 1 and

the coefficient is (−1)k(k − 1)!ψ(n− `, n− k − 1) if its rank is k. Adding them, we get the

coefficient of vk in the RHS of Equation 10 as

(−1)k(K − k)(k − 1)!ψ(n− `, n− k − 1) + (−1)k−1(k − 1)(k − 2)!ψ(n− `, n− k)

= (−1)k(k − 1)!ψ(n− `, n− k − 1)
(

(K − k)− (n− k)
)

= −(−1)k(n−K)(k − 1)!ψ(n− `, n− k − 1).

Case 3. For v`, note that v` = vj(k′) where k′ ∈ {`, ` − 1}. In particular, k′ = ` if

j ∈ {` + 1, . . . , K} and k′ = ` − 1 if j ∈ {1, . . . , ` − 1}. Hence, it has rank ` in (K − `)

marginal profiles and rank (` − 1) in (` − 1) marginal profiles. In the RHS of Equation 10,

the coefficient of v` is (−1)`−1(`− 2)!ψ(n− `, n− `) if its rank is `− 1 and the coefficient is

(−1)`(`−1)! if its rank is `. Adding them, we get the coefficient of v` in the RHS of Equation

10 as

(−1)`−1(`− 1)(`− 2)!ψ(n− `, n− `) + (−1)`(K − `)(`− 1)!

= (−1)`(`− 1)!
(
(K − `)− (n− `)

)
= −(−1)`(n−K)(`− 1)!
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Case 4. Now, consider k = `+ 1. Note that v`+1 = vj(k′) if k′ = ` and j ∈ {1, . . . , `}. Hence,

it has a rank ` in ` marginal economies, where its coefficient in the summation of the RHS

of Equation 10 is

(−1)`(`− 1)! = (`− 1)!,

since ` is even. Hence, the coefficient of v`+1 in the RHS of Equation 10 is `(`− 1)!− `! = 0.

Aggregating the findings from all the four cases, we can rewrite Equation 10 as

(n−K)ψ(n− `, n− 2)

π1 − π2
pi(v) = −

`−1∑
k=1

(−1)k(n−K)(k − 1)!ψ(n− `, n− k − 1)− (−1)`(n−K)(`− 1)!

(10)

This simplifies to the desired expression:

pi(v) = − (π1 − π2)
ψ(n− `, n− 2)

[ `−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk + (−1)`(`− 1)!v`

]
�

Proof of Proposition 4

Proof : Consider a valuation profile v with v1 > v2 > . . . > vn > 0. By Proposition 8 in

Long et al. (2017),

π1 − π2 = 1− (`− 1)

C(n− 2, `− 1) + `
− 1

C(n− 2, `− 1) + `

=
C(n− 2, `− 1)

C(n− 2, `− 1) + `

= C(n− 2, `− 1)π2

=
ψ(n− `, n− 2)

(`− 1)!
π2. (11)
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Then, the payments are computed using Lemma 5 in Long et al. (2017) as follows.

p1(v) = p1(0, v−1) + v1π1 −
∫ v1

0

f1(x1, v−1)dx1

= p1(0, v−1) + v1π1 − (v1 − v2)π1 − (v2 − v`+1)π2

= p1(0, v−1) + v2(π1 − π2) + v`+1π2

= − π2
(`− 1)!

[ `−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk+1

]
− v`+1π2 + v2(π1 − π2) + v`+1π2

(The above simplification uses Lemma 5 in Long et al. (2017)

along with Equation 11 and the fact that ` is even.)

= − π2
(`− 1)!

[ `−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk+1

]
+
ψ(n− `, n− 2)

(`− 1)!
v2π2

= − π2
(`− 1)!

[ `−1∑
k=1

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk+1

]

For every i ∈ {2, . . . , `},

pi(v) = pi(0, v−i) + viπ2 −
∫ vi

0

fi(xi, v−i)dxi

= pi(0, v−i) + viπ2 − (vi − v`+1)π2

= pi(0, v−i) + v`+1π2

= − π2
(`− 1)!

[ i−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk +
`−1∑
k=i

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk+1

]
− v`+1π2 + v`+1π2

(The above simplification uses Lemma 5 in Long et al. (2017)

along with Equation 11 and the fact that ` is even.)

= − π2
(`− 1)!

[ i−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk +
`−1∑
k=i

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk+1

]
For every i > `, we directly use Lemma 5 in Long et al. (2017) along with Equation (11)

to get

pi(v) = pi(0, v−i) = − π2
(`− 1)!

[ `−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk + (−1)`(`− 1)!v`

]
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