Game Theory - Assignment 1

Due date: August 14, 2023.

1. Consider the following game with two players $\{b, s\}$: Player b is the buyer of time from Player s who has 1 unit of time to sell. Strategies of the players are as follows:

- b chooses a price $p_{b} \in\{3,4\}$.
- s chooses a price $p_{s} \in\{3,4\}$.

Depending on the prices $\left(p_{b}, p_{s}\right)$ chosen by the players, an amount of time $q\left(p_{b}, p_{s}\right)$ is given by Player s to Player b :

- $q\left(p_{b}, p_{s}\right)=0$ if $p_{b}<p_{s}$.
- $q\left(p_{b}, p_{s}\right)=1$ if $p_{s}=3 \leq p_{b}$ at a per unit price $p_{s}=3$.
- $q\left(p_{b}, p_{s}\right)=\frac{2}{3}$ if $p_{s}=4=p_{b}$ at a per unit price $p_{b}=4$.

Utilities of players are as follows. Player s incurs a cost $c \in[0,4]$ by giving one unit of time and Player b gets a value $v \in[3,5]$ per unit time of Player s. The per unit price paid by b to s is the price chosen by the seller $\left(p_{s}\right)$. Utilities are

$$
\begin{aligned}
& u_{b}\left(p_{b}, p_{s} ; v\right)=q\left(p_{b}, p_{s}\right)\left(v-p_{s}\right) \\
& u_{s}\left(p_{b}, p_{s} ; c\right)=q\left(p_{b}, p_{s}\right)\left(p_{s}-c\right),
\end{aligned}
$$

where u_{b} is the utility of buyer and u_{s} is utility of seller. Answer the following.

- Show that for every $v \neq 4$, Player b has a weakly dominant strategy in this game. Specify the weakly dominant strategy. What happens at $v=4$?
- Show that for $c \geq 3$ and $c \leq 1$, Player s has a weakly dominant strategy in this game.
- What happens if $c \in(1,3)$ for Player s ?

2. Three indivisible objects (houses) need to be assigned to three agents. Each agent needs to be assigned a unique house. Each agent has a strict preference ordering over the set of objects.

The agents play an allocation game to allocate objects. First, agent 1 goes and selects an object from the three objects. Second, agent 2 goes and selects an object from the remaining two objects. Finally, agent 3 gets the remaining object.

Write down the strategic form game by clearly specifying the strategies of the players.
3. An indivisible good is sold to 3 buyers. If any buyer i gets $q_{i} \in\{0,1\}$ quantity of the goods makes a payment of p_{i}, her payoff is

$$
q_{i} v_{i}-p_{i} .
$$

Payment p_{i} can be positive, negative or zero (some buyers may be paid or compensated).

The seller asks each buyer to place a bid. If $\left(b_{1}, b_{2}, b_{3}\right)$ are the bids of the buyers then the highest bidder wins (with ties broken in favor of highest indexed bidder ${ }^{1}$). If bidder i wins, she pays $\max _{j \neq i} b_{j}$. Out of this payment, the seller returns

$$
\frac{1}{3} \min _{j \neq i} b_{j}
$$

to highest and second highest bidder and

$$
\frac{1}{3} \max _{j \neq i} b_{j}
$$

to the lowest bidder.
Show that bidding their own value is a weakly dominant strategy for each bidder.

[^0]
[^0]: ${ }^{1}$ For instance, if buyer 1 and 2 are joint winners, buyer 1 wins the object.

