Game Theory - Assignment 2

Due date: September 12, 2023

1. Consider the following two player game in Table 1. Draw the best response maps of the two players and use this to find out

- any mixed strategy of each player which is never a best response.
- the set of all (pure and mixed) Nash equilibria using this.

	a	b	c
A	$(1,0)$	$(3,0)$	$(2,1)$
B	$(3,1)$	$(0,1)$	$(1,2)$
C	$(2,1)$	$(1,6)$	$(0,2)$

Table 1: Two Player Game
2. Suppose Player i has a pure strategy s_{i} that is chosen with positive probability in each of his maxmin strategies. Prove that s_{i} is not weakly dominated by any other strategy (pure or mixed).
3. A finite square matrix $A=\left\{a_{i j}\right\}_{i, j \in T}$, where T is the set of rows/columns is called anti-symmetric if for every row i and column $j, a_{i j}+a_{j i}=0$. Consider a two player zero sum game with T as the set of pure strategies for both the players. The utility of player 1 is $u_{1}(i, j)=a_{i j}$ for every $i, j \in T$. Find the payoff of any player in any (mixed strategy) Nash equilibrium of this zero-sum game.
4. A Nash equilibrium s^{*} in a finite strategic form game $\Gamma=\left(N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right)$ is a strict Nash equilibrium if for every $i \in N$, for every $s_{i} \in S_{i} \backslash\left\{s_{i}^{*}\right\}$,

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right)>u_{i}\left(s_{i}, s_{-i}^{*}\right) .
$$

Prove that if the process of iterative elimination of strictly dominated strategies results in a unique strategy profile s^{*}, then s^{*} is a strict Nash equilibrium.
5. Suppose (σ_{1}, σ_{2}) and ($\sigma_{1}^{\prime}, \sigma_{2}^{\prime}$) are two (mixed strategy) Nash equilibria in the mixed extension of a two-player zero-sum game. Show that $\left(\sigma_{1}, \sigma_{2}^{\prime}\right)$ and $\left(\sigma_{1}^{\prime}, \sigma_{2}\right)$ are also Nash equilibria.

