Assignment 3

Due date: September 6, 2018.

1. Let $C \subseteq \mathbb{R}^{n}$. Then show that C is a closed convex set if and only if $C=\cap \mathbb{F}$, where \mathbb{F} is a collection (possibly infinite of them) of half-spaces. (Hint: Consider the intersection of half-spaces that contain C and use separating hyperplane theorem)
2. Let A be a $m \times n$ matrix. Define $F=\left\{x \in \mathbb{R}_{+}^{n}: A x=0, \sum_{j=1}^{n} x_{j}=1\right\}$ and $G=\left\{y \in \mathbb{R}^{m}: y A>0\right\}$. Show that either $F \neq \emptyset$ or $G \neq \emptyset$ but not both.
3. Let A be a $m \times n$ matrix. Prove that the system $A x=0$ has a non-zero, nonnegative solution (i.e, $x \geq 0$ and $x \neq 0$) or there is a $y \in \mathbb{R}^{m}$ such that $y A>0$, but not both. (Hint: Use the result from the previous question.)
4. Use Farkas Lemma to show that a weighted directed graph has a potential if and only if it has no cycles of negative length.
