Assignment 4 Due date. 18 October, 2018

1. Consider the linear program (SP)

$$
\begin{align*}
& \qquad Z=\max \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { s.t. } \tag{SP}\\
& \sum_{j=1}^{n} a_{j} x_{j} \leq b \\
& \quad x_{j} \geq 0 \quad \forall j \in\{1, \ldots, n\} .
\end{align*}
$$

Assume that $c_{j}>0$ and $a_{j}>0$ for all $j \in\{1, \ldots, n\}$, and $b>0$. Prove that $Z=b \max _{j \in\{1, \ldots, n\}} \frac{c_{j}}{a_{j}}$.
2. Consider the linear program (\mathbf{P}).

$$
\begin{array}{ll}
\max \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { s.t. } \\
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & \forall i \in\{1, \ldots, m\} \\
\quad x_{j} \geq 0 & \forall j \in\{1, \ldots, n\} . \tag{1}
\end{array}
$$

Show that if (\mathbf{P}) is unbounded then there exists $x_{k}(k \in\{1, \ldots, n\})$ such that the following LP $(\mathbf{P}-k)$ is unbounded.

$$
\begin{align*}
& \quad \max x_{k} \\
& \text { s.t. } \tag{P-k}\\
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \forall i \in\{1, \ldots, m\} \\
& \quad x_{j} \geq 0 \quad \forall j \in\{1, \ldots, n\} . \tag{2}
\end{align*}
$$

3. Consider the following linear program.

$$
\begin{aligned}
\max x_{1}+x_{2} & \\
\text { s.t. } & \\
8 x_{1}+5 x_{2} & \leq 32 \\
8 x_{1}+6 x_{2} & \leq 33 \\
8 x_{1}+7 x_{2} & \leq 35 \\
x_{1}, x_{2} & \geq 0 .
\end{aligned}
$$

Let x_{3}, x_{4}, x_{5} be the slack variables corresponding to the first, second, and third constraints respectively. The optimal solution of this linear program was found using the simplex method: $x_{1}=0, x_{2}=5, x_{3}=7, x_{4}=3, x_{5}=0$.
(a) Identify the basic and non-basic variables in the final dictionary of the simplex method.
(b) Write down the final dictionary of the simplex method (you need not solve the linear program).
(c) Write down the dual and the optimal solution of the dual.
4. While solving for the optimal solution of a linear program, we encountered the following dictionary in the second phase of the simplex method.

$$
\begin{aligned}
x_{2} & =5+2 x_{3}-x_{4}-3 x_{1} \\
x_{5} & =7-3 x_{4}-4 x_{1} \\
z & =5+x_{3}-x_{4}-x_{1} .
\end{aligned}
$$

(a) If x_{1}, x_{2}, x_{3} are the original variables and x_{4}, x_{5} are the slack variables, write the original linear program.
(b) Does the linear program have an optimal solution? If yes, find the optimal solution, else argue why it does not have an optimal solution.
(c) Write the dual of this linear program.
(d) Does the dual have an optimal solution? If yes, find the optimal solution, else argue why it does not have an optimal solution.

