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a b s t r a c t

In this work, we consider a modification of the time inhomogeneous branching random
walk, where the driving increment distribution changes over time macroscopically. Fol-
lowing Bandyopadhyay and Ghosh (2021), we give certain independent and identically
distributed (i.i.d.) displacements to all the particles at the last generation. We call this
process last progeny modified time inhomogeneous branching random walk (LPMTI-BRW).
Under very minimal assumptions on the underlying point processes of the displace-
ments, we show that the maximum displacement converges to a non-trivial limit after
an appropriate centering which is either linear or linear with a logarithmic correction.
Interestingly, the limiting distribution depends only on the first set of increments. We
also derive Brunet–Derrida-type results of point process convergence of our LPMTI-BRW
to a decorated Poisson point process. As in the case of the maximum, the limiting point
process also depends only on the first set of increments. Our proofs are based on a
method of coupling the maximum displacement with an appropriate linear statistics,
which was introduced by Bandyopadhyay and Ghosh (2021).

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

One dimensional Branching random walk (BRW) was introduced by Hammersley (1974) in the early ’70s and since then
t has received significant attention from various researches. Some references on this classical model with homogeneous
isplacements which are relevant to our work are Kingman (1975), Biggins (1976), Bramson (1978), Biggins and Kyprianou
1997), Bramson and Zeitouni (2007), Hu and Shi (2009), Bramson and Zeitouni (2009), Addario-Berry and Reed (2009),
ïdékon (2013), Aïdékon and Shi (2014), Madaule (2017). Under reasonable assumptions, it is well known from these
iterature that in the homogeneous case the maximum displacement grows linearly, with a logarithmic correction, and
s tight around its median. The inhomogeneous case has received some attention in recent years (Bramson and Zeitouni,
009; Fang, 2012; Fang and Zeitouni, 2012). Under certain uniform regularity assumptions, Bramson and Zeitouni (2009)
nd Fang (2012) showed that in the inhomogeneous case also the maximum displacement re-centered around its median
s tight. Later Fang and Zeitouni (2012) showed that in the binary branching with independent Gaussian displacements the
xact coefficients of the centering terms, both for the linear term and also for the logarithmic correction term differ based
n the increasing/decreasing variance of the time inhomogeneous displacements. This particular example is interesting
nd relevant for our work and is described in more details in Section 4.
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Bandyopadhyay and Ghosh (2021) introduced a new modification of the classical homogeneous BRW, where they
dded a set of i.i.d. displacements with a specific form at the last generation. This new process was termed as the last
rogeny modified BRW (LPM-BRW) (Bandyopadhyay and Ghosh, 2021). In this work, we consider an inhomogeneous version
ith the same modification. Our results complement and work of Fang and Zeitouni (2012) in the context of this new
odel of last progeny modified version of BRW. We shall show that under mild conditions the maximum displacement
fter appropriate centering, which can either be linear or linear with a logarithmic correction, has a weak limit, where
he limiting distribution depends only on the point process of the first set of displacements. This result is unusual and
an have some non-trivial statistical applications (see Remark 2.1).

.1. Model

We fix k ∈ N. For each i ∈ {1, 2, . . . , k}, we let Zi be a point process with Ni := Zi(R) < ∞ a.s. and qi be a sequence of
ntegers satisfying

∑k
i=1 qi(n) = n, and we write tm =

∑m
i=1 qi(n). A time inhomogeneous branching random walk (TI-BRW)

s a discrete-time stochastic process that can be described for each n ≥ 1 as follows:
At the 0-th generation, we start with an initial particle at the origin. At time t ∈ (tm−1, tm], each of the particles at

eneration (t − 1) gives birth to a random number of offspring distributed according to Nm. The offspring are then given
andom displacements independently and according to a copy of the point process Zm.

For a particle v in the tth generation, we write |v| = t and S(v) denotes its position, which is the sum of all the
isplacements the particle v and its ancestors have received. We shall call the process {S(v) : |v| = t, 0 ≤ t ≤ n, n ≥ 1}
time inhomogeneous branching random walk (TI-BRW). We denote Rn := max|v|=n S(v) as the right-most position at the
th generation.
Following our earlier work Bandyopadhyay and Ghosh (2021), in this model we also introduce a non-negative real

umber θ > 0, which should be thought of as a scaling parameter for the additional displacement we give to each particle
t the nth generation. The additional displacements are of the form 1

θ
(− log Ev), where {Ev}|v|=n are i.i.d. Exponential (1)

nd are independent of the process {S(v) : |v| ≤ n}. We denote by R∗
n ≡ R∗

n(θ ) the right-most position of this last progeny
odified time inhomogeneous branching random walk (LPMTI-BRW).

.2. Assumptions

we first introduce the following important quantities. For each point process Zi =
∑

j≥1 δ
ξ
(i)
j

with 1 ≤ i ≤ k, we define

νi(a) := logE
[∫

R
eax Zi(dx)

]
= logE

[ Ni∑
i=1

eaξ
(i)
j

]
, (1)

for a ∈ R, whenever the expectations exist. Needless to say that for each i ∈ {1, 2, . . . , k}, νi is the logarithm of the
moment-generating function of the point process Zi.

Throughout this paper, for each i ∈ {1, 2, . . . , k}, we assume the following:

A1) νi(a) is finite for all a ∈ (−ϑ, ∞) for some ϑ > 0.
A2) The point process Zi is non-trivial, and the extinction probability of the underlying branching process is 0, i.e., P(Ni =

1) < 1, P(Zi({a}) = Ni) < 1 for any a ∈ R and P(Ni ≥ 1) = 1.
A3) Ni has finite (1 + p)-th moment for some p > 0.

1.3. Outline

In Section 2, we state our main results, which are proved in Section 3. In Section 4 we consider an important example
and compare our results with that of the existing literature.

2. Main results

We first introduce some constants related to the point processes Zi’s. For i ∈ {1, 2, . . . , k}, we define

θ(i) := inf
{
a > 0 :

νi(a)
a

= ν ′

i (a)
}
. (2)

From our earlier work (Bandyopadhyay and Ghosh, 2021), we note that νi’s are strictly convex under assumption (A1)
and (A2), thus, the above set is at most singleton. If it is a singleton, then θ(i) is the unique point in (0, ∞) such that a
tangent from the origin to the graph of νi(a) touches the graph at a = θ(i). And if it is empty, then by definition θ(i) takes
value ∞, and there does not exist any tangent from the origin to the graph of ν (a) on the right half-plane.
i
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2.1. Asymptotic limits

Our first result is a centered asymptotic limit of the right-most position, which is similar to the results in below-the-
oundary case for last progeny modified BRW (LPM-BRW) shown by Bandyopadhyay and Ghosh (2021).

Theorem 2.1. Suppose qi(n) −→ ∞ for all 1 ≤ i ≤ k, then for any θ < mini θ(i) ≤ ∞, there exists a random variable H∞

θ,(1)
epending only on θ and Z1, such that,

R∗

n(θ ) −

k∑
i=1

qi(n)νi (θ)

θ

d
−→ H∞

θ,(1). (3)

Theorem 2.2. Suppose qi(n) −→ ∞ for all 1 ≤ i ≤ k and θ(1) < mini̸=1 θ(i) ≤ ∞, then there exists a random variable
H∞

θ(1),(1)
depending only on Z1, such that,

R∗

n

(
θ(1)
)
−

k∑
i=1

qi(n)νi
(
θ(1)
)

θ(1)
+

1
2θ(1)

log (q1(n))
d
−→ H∞

θ(1),(1). (4)

Remark 2.1. It is very interesting to note that the centered asymptotic limit only depends on the point process of the
first set of displacements. More interestingly, the result is valid as long as qi(n) −→ ∞ for all 1 ≤ i ≤ k. In particular,
he rate of divergence of q1(n) can be very slow but we will still have the centered asymptotic limit depends only on
he distribution of Z1. Thus our model LPMTI-BRW may be used as a very efficient ‘‘statistical sheave’’ to filter out the
istribution of the first set of displacements (may be thought as the ‘‘signal’’) from a number of others which may be
onsidered as ‘‘noise’’ and of much larger in numbers compared to that of the ‘‘signal’’. We thus feel this result may have
greater statistical significance.

As we will see in the proof of the above theorem (see Section 3), we have a slightly stronger result. As in Theorem 2.5
of Bandyopadhyay and Ghosh (2021), we let

Ĥ∞

θ,(1) =
1
θ
logD∞

θ,(1),

where D∞

θ,(1) is the unique solution of the following linear recursive distributional equation with mean 1.

∆
d

HHH

∑
|v|=1

eθS(v)−ν1(θ )∆v, (5)

where ∆v are i.i.d. and has the same distribution as that of ∆. As in Theorem 2.3 of Bandyopadhyay and Ghosh (2021),
we also let

Ĥ∞

θ(1),(1) =
1

θ(1)

[
logD∞

θ(1),(1) +
1
2
log
(

2
πσ 2

1

)]
,

where

D∞

θ(1),(1)
a.s.

=== lim
n→∞

−

∑
|v|=q1(n)

(
θ(1)Sv − q1(n)ν

(
θ(1)
))

eθ(1)Sv−q1(n)ν(θ(1)), (6)

σ 2
1 := E

⎡⎣∑
|v|=1

(
θ(1)Sv − ν

(
θ(1)
))2 eθ(1)Sv−ν(θ(1))

⎤⎦ . (7)

Then we have

Theorem 2.3. Suppose qi(n) −→ ∞ for all 1 ≤ i ≤ k, then for any θ < mini θ(i) ≤ ∞,

R∗

n(θ ) −

k∑
i=1

qi(n)νi (θ)

θ
− Ĥ∞

θ,(1)
d
−→ − log E, (8)

where E ∼ Exponential (1).

Theorem 2.4. Suppose qi(n) −→ ∞ for all 1 ≤ i ≤ k and θ(1) < mini̸=1 θ(i) ≤ ∞, then

R∗

n

(
θ(1)
)
−

k∑
i=1

qi(n)νi
(
θ(1)
)

θ(1)
+

1
2θ(1)

log (q1(n)) − Ĥ∞

θ(1),(1)
d
−→ − log E, (9)

where E ∼ Exponential (1).
3
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Remark 2.2. Note that H∞

θ,(1) in Theorem 2.1 has the same distribution as Ĥ∞

θ,(1) − log E, where E ∼ Exponential (1)
and is independent of Ĥ∞

θ,(1). Similarly, H∞

θ(1),(1)
in Theorem 2.2 has the same distribution as Ĥ∞

θ(1),(1)
− log E, where

E ∼ Exponential (1) and is independent of Ĥ∞

θ(1),(1)
.

As a corollary of the above results, we obtain that if the centering term converges after dividing by n, then R∗
n/n has a

imit in probability. In particular, we have the following result:

heorem 2.5. If for all 1 ≤ i ≤ k, qi(n) −→ ∞ satisfying limn→∞ qi(n)/n = αi ≥ 0, then for any θ < mini θ(i) ≤ ∞ and
also for θ = θ(1) < mini̸=1 θ(i) ≤ ∞,

R∗
n(θ )
n

p
−→

k∑
i=1

αiνi (θ)

θ
. (10)

.2. Brunet-Derrida type results

Here we present results of the type Brunet and Derrida (2011) for our LPMTI-BRW.
For any θ < mini θ(i) ≤ ∞, we define

Zn(θ ) =

∑
|v|=n

δ{
θS(v)−log Ev−

∑k
i=1 qi(n)νi(θ)−θ Ĥ∞

θ,(1)

}, (11)

nd for θ(1) < mini̸=1 θ(i) ≤ ∞, we define

Zn
(
θ(1)
)

=

∑
|v|=n

δ{
θ(1)Sv−log Ev−

∑k
i=1 qi(n)νi(θ(1))+

1
2 log(q1(n))−θ(1)Ĥ∞

θ(1),(1)

}, (12)

where Ĥ∞

θ,(1) and Ĥ∞

θ(1),(1)
are as in Theorems 2.3 and 2.4. Our first result is the weak convergence of the point processes

(Zn (θ))n≥0, which is similar to the results for LPM-BRW as shown by Bandyopadhyay and Ghosh (2021).

Theorem 2.6. Suppose qi(n) −→ ∞ for all 1 ≤ i ≤ k, then for any θ < mini θ(i) ≤ ∞ and also for θ = θ(1) < mini̸=1 θ(i) ≤

,

Zn(θ )
d
−→ Y,

here Y is a decorated Poisson point process. In particular, Y =
∑

j≥1 δ− log ζj , where N =
∑

j≥1 δζj is a homogeneous Poisson
oint process on R+ with intensity 1.

The following is a slightly weaker version of the above theorem.

heorem 2.7. Suppose qi(n) −→ ∞ for all 1 ≤ i ≤ k, then for any θ < mini θ(i) ≤ ∞,∑
|v|=n

δ{
θS(v)−log Ev−

∑k
i=1 qi(n)νi(θ)

} d
−→

∑
j≥1

δ
− log ζj+θ Ĥ∞

θ,(1)
, (13)

nd for θ(1) < mini̸=1 θ(i) ≤ ∞,∑
|v|=n

δ{
θ(1)Sv−log Ev−

∑k
i=1 qi(n)νi(θ(1))+

1
2 log(q1(n))

} d
−→

∑
j≥1

δ
− log ζj+θ(1)Ĥ∞

θ(1),(1)
, (14)

here N =
∑

j≥1 δζj is a homogeneous Poisson point process on R+ with intensity 1, which is independent of the process
{S(v) : |v| ≤ n}.

Let Ymax be the right-most position of the point process Y , and Y be the point process Y viewed from its right-most
osition, i.e.,

Y =

∑
j≥1

δ− log ζj−Ymax .

hen as a corollary of the above theorem, we get the following result, which confirms the validity of the Brunet–Derrida
onjecture for LPMTI-BRW for any θ < mini θ(i) ≤ ∞.

heorem 2.8. Suppose qi(n) −→ ∞ for all 1 ≤ i ≤ k, then for any θ < mini θ(i) ≤ ∞ and also for θ = θ(1) < mini̸=1 θ(i) ≤

, ∑
δ{θS(v)−log Ev−θR∗

n(θ )}
d
−→ Y.
|v|=n

4
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3. Proofs of the main results

3.1. Proof of Theorems 2.1–2.4

To prove these theorems, we need the following technical result. We define the linear statistics

Wn(θ ) ≡ Wn(θ )(q1(n), . . . , qk(n), Z1, . . . , Zk) :=

∑
|v|=n

eθS(v). (15)

Then we have

Lemma 3.1. Suppose qi(n) −→ ∞ for all 1 ≤ i ≤ k, then for any θ < mini θ(i) ≤ ∞ and also for θ = θ(1) < mini̸=1 θ(i) ≤ ∞,

Wn(θ )(q1(n), . . . , qk(n), Z1, . . . , Zk) · e−
∑k

i=1 qi(n)νi(θ)

Wq1(n)(θ )(q1(n), Z1) · e−q1(n)ν1(θ)

p
−→ 1

roof. Without loss of generality we can assume that νi(θ ) = 0 for all i ∈ {1, 2, . . . , k}. This can be made to satisfy by
entering each point process Zi by νi(θ ).
We prove the lemma by induction. Note that for k = 1, the lemma holds trivially. We assume the lemma holds for

= m − 1 for some m ∈ N.
Now, take k = m. For each v such that |v| = q1(n), we define

W n,v(θ ) =

∑
|u|=n,v<u

eθ(S(u)−S(v)). (16)

Here, v < u means u is a descendant of v. Notice that
{
W n,v(θ )

}
|v|=q1n

are i.i.d. and have the same distribution as

Wn−q1(n)(θ )(q2(n), . . . , qm(n), Z2, . . . , Zm),

which by our induction hypothesis and Proposition 4.2 (ii) of Bandyopadhyay and Ghosh (2021) converges in probability
to D∞

θ,(2). Since both of them has mean 1, we also have

Wn−q1(n)(θ )(q2(n), . . . , qm(n), Z2, . . . , Zm)
L1
−→ D∞

θ,(2). (17)

Now, observe that

Wn(θ )(q1(n), . . . , qm(n), Z1, . . . , Zm)
Wq1(n)(θ )(q1(n), Z1)

− 1 =

∑
|v|=q1(n)

eθS(v)∑
|u|=q1(n)

eθS(u)

(
W n,v(θ ) − 1

)
. (18)

Now, from (5.5) and (5.6) of Bandyopadhyay and Ghosh (2021), we know that

Mn(θ ) := max
|v|=q1(n)

eθS(v)∑
|u|=q1(n)

eθS(u)

p
−→ 0.

Let Fn be the σ -field generated by {S(v) : |v| ≤ q1(n)}. Then using Lemma 2.1 of Biggins and Kyprianou (1997), which is
a particular case of Lemma 2.2 in Kurtz (1972), we get that for every 0 < ε < 1/2,

P
(⏐⏐⏐⏐Wn(θ )(q1(n), . . . , qm(n), Z1, . . . , Zm)

Wq1(n)(θ )(q1(n), Z1)
− 1

⏐⏐⏐⏐ > ε

⏐⏐⏐⏐Fn

)
≤

2
ε2

(∫ 1
Mn(θ )

0
Mn(θ )t · P

(⏐⏐Wn−q1(n)(θ )(q2(n), . . . , qm(n), Z2, . . . , Zm) − 1
⏐⏐ > t

)
dt

+

∫
∞

1
Mn(θ )

P
(⏐⏐Wn−q1(n)(θ )(q2(n), . . . , qm(n), Z2, . . . , Zm) − 1

⏐⏐ > t
)
dt

)

≤
2
ε2

(∫
∞

0
P
(⏐⏐Wn−q1(n)(θ )(q2(n), . . . , qm(n), Z2, . . . , Zm) − D∞

θ,(2)

⏐⏐ > t/2
)
dt

+

∫ 1
Mn(θ )

0
Mn(θ )t · P

(⏐⏐D∞

θ,(2) − 1
⏐⏐ > t/2

)
dt +

∫
∞

1
Mn(θ )

P
(⏐⏐D∞

θ,(2) − 1
⏐⏐ > t/2

)
dt

)
(19)

By using the dominated convergence theorem, the second and the third term on the right-hand side of (19) converges to
0 as n → ∞, and by (17), the first term also tends to 0 as n → ∞. Then by taking expectation and using the dominated
5
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convergence theorem again, we get

lim
n→∞

P
(⏐⏐⏐⏐Wn(θ )(q1(n), . . . , qm(n), Z1, . . . , Zm)

Wq1(n)(θ )(q1(n), Z1)
− 1

⏐⏐⏐⏐ > ε

)
= 0 ⇒

Wn(θ )(q1(n), . . . , qm(n), Z1, . . . , Zm)
Wq1(n)(θ )(q1(n), Z1)

p
−→ 1. (20)

o if the lemma holds for k = m − 1, it also holds for k = m. Therefore, by using induction we complete the proof. □

Now, note that

θR∗

n(θ ) = max
|v|=n

(θS(v) − log Ev) = − log
(
min
|v|=n

Ev

eθS(v)

)
d
= − log

(
E∑

|v|=n eθS(v)

)
= logWn(θ ) − log E, (21)

here E ∼ Exponential (1) and is independent of the process {S(v) : |v| ≤ n}. Similarly,

θR∗

n(θ ) − logWn(θ ) = max
|v|=n

(θS(v) − log Ev − logWn(θ )) = − log

⎛⎝min
|v|=n

Ev

(
eθS(v)∑

|u|=n eθS(u)

)−1
⎞⎠ d

= − log E. (22)

ow, by Proposition 4.2 (ii) of Bandyopadhyay and Ghosh (2021), for any θ < θ(1) ≤ ∞,

Wq1(n)(θ )(q1(n), Z1) · e−q1(n)ν1(θ)
→ D∞

θ,(1) a.s., (23)

nd by Theorem 1.1 of Aïdékon and Shi (2014),√
q1(n) · Wq1(n)(θ )(q1(n), Z1) · e−q1(n)ν1(θ) p

−→

(
2

πσ 2
1

)1/2

· D∞

θ(1),(1). (24)

Now, combining Lemma 3.1 together with Eqs. (21), (22), (23) and (24) proves the theorems.

3.2. Proof of Theorems 2.6 and 2.7

Let Gn be the σ -algebra generated by the TI-BRW defined up to generation n. We know that conditioned on Gn,
EvWn(θ )e−θS(v)

}
|v|=n are independent, and

EvWn(θ )e−θS(v)
⏐⏐ Gn ∼ Exponential

(
eθS(v)

Wn(θ )

)
.

Now, for any θ < mini̸=1 θ(i), we choose a such that θ < a < mini̸=1 θ(i) and note that

E

[
max|v|=n eθS(v)−

∑k
i=1 qi(n)νi(θ)

Wq1(n)(θ )(q1(n), Z1)e−q1(n)ν1(θ)

]

≤ E

⎡⎣ ∑
|u|=q1(n)

eθS(u)

Wq1(n)(θ )(q1(n), Z1)

⎛⎝ ∑
|v|=n,u<v

ea(S(v)−S(u))

⎞⎠θ/a

e−
∑k

i=2 qi(n)νi(θ)

⎤⎦
= E

[(
Wn−q1(n)(a)(q2(n), . . . , qk(n), Z2, . . . , Zk(n))

)θ/a
]

· e−
∑k

i=2 qi(n)νi(θ) (25)

s discussed in the proof of Lemma 3.1,

Wn−q1(n)(a)(q2(n), . . . , qk(n), Z2, . . . , Zk(n)) · e−
∑k

i=2 qi(n)νi(θ) L1
−→ D∞

θ,(2). (26)

Since νi(θ )
θ

>
νi(a)
a for all i ≥ 2, combining Eqs. (25) and (26), we get

E

[
max|v|=n eθS(v)−

∑k
i=1 qi(n)νi(θ)

Wq1(n)(θ )(q1(n), Z1)e−q1(n)ν1(θ)

]
→ 0 ⇒

max|v|=n eθS(v)−
∑k

i=1 qi(n)νi(θ)

Wq1(n)(θ )(q1(n), Z1)e−q1(n)ν1(θ)

p
−→ 0,

hich, together with Lemma 3.1, suggests that for any θ < mini θ(i) ≤ ∞ and also for θ = θ(1) < mini̸=1 θ(i) ≤ ∞,

max
|v|=n

eθS(v)

Wn(θ )
P
−→ 0. (27)

lso, note that∑ eθS(v)

Wn(θ )
= 1,
|v|=n

6
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n

T

o

S

T

a

R

N
f

N

Therefore by Lemma 5.2 of Bandyopadhyay and Ghosh (2021), for any positive integer r , Borel sets B1, B2, . . . , Br and
on-negative integers t1, t2, . . . , tr , we have

P

⎛⎝∑
|v|=n

δEvWn(θ )e−θS(v) (B1) = t1, . . . ,
∑
|v|=n

δEvWn(θ )e−θS(v) (Br ) = tr

⏐⏐⏐⏐⏐⏐ Gn

⎞⎠ P
−→ P (N (B1) = t1, . . . ,N (Br ) = tr) .

hen, using the dominated convergence theorem, we get

P

⎛⎝∑
|v|=n

δEvWn(θ )e−θS(v) (B1) = t1, . . . ,
∑
|v|=n

δEvWn(θ )e−θS(v) (Br ) = tr

⎞⎠ → P (N (B1) = t1, . . . ,N (Br ) = tr) .

r equivalently (see Theorem 11.1.VII of Daley and Vere-Jones (2008)),∑
|v|=n

δEvWn(θ )e−θS(v)
d
−→ N .

ince − log(.) is continuous and therefore Borel measurable, the above equation suggests that

Un :=

∑
|v|=n

δθSv−log Ev−logWn(θ )
d
−→ Y. (28)

o simplify the notations, for all θ < mini θ(i) ≤ ∞, we denote

An(θ ) =

k∑
i=1

qi(n)νi(θ ) + logD∞

θ,(1),

nd for θ = θ(1) < mini̸=1 θ(i) ≤ ∞, we denote

An(θ(1)) =

k∑
i=1

qi(n)νi(θ(1)) −
1
2
log(q1(n)) + logD∞

θ(1),(1) +
1
2
log
(

2
πσ 2

1

)
.

ecall that by Eqs. (23), (24) and Lemma 3.1, for θ < mini θ(i) ≤ ∞ and also for θ = θ(1) < mini̸=1 θ(i) ≤ ∞,

An(θ ) − logWn(θ )
P
−→ 0.

ow, take any positive integer r , non-negative integers {ti}ri=1, and extended real numbers {ai}ri=1 and {bi}ri=1 with ai < bi
or all i. We choose δ ∈

(
0,minr

i=1(bi − ai)/2
)
. Then, we have

P (Un ((a1 − δ, b1 + δ)) ≤ t1, . . . ,Un ((ar − δ, br + δ)) ≤ tr) − P (|An(θ ) − logWn(θ )| > δ)

≤ P (Zn(θ ) ((a1, b1)) ≤ t1, . . . , Zn(θ ) ((ar , br )) ≤ tr)
≤ P (Un ((a1 + δ, b1 − δ)) ≤ t1, . . . ,Un ((ar + δ, br − δ)) ≤ tr) + P (|An(θ ) − logWn(θ )| > δ) .

ow, by Eq. (28), we have Un
d
−→ Y . By Lemma 5.3 of Bandyopadhyay and Ghosh (2021), we also have that Y is a decorated

Poisson point process, and hence it is continuous. Therefore, allowing n → ∞ and then letting δ → 0, we obtain

lim
n→∞

P (Zn(θ ) ((a1, b1)) ≤ t1, . . . , Zn(θ ) ((ar , br )) ≤ tr) = P (Y ((a1, b1)) ≤ t1, . . . ,Y ((ar , br )) ≤ tr) ,

or equivalently, Zn(θ )
d
−→ Y . This, together with Lemma 5.3 of Bandyopadhyay and Ghosh (2021), completes the proof of

Theorem 2.6.
Theorem 2.7 is a slightly weaker version and it follows from the argument similar to that mentioned above.

4. A specific example

In this section we consider a time inhomogeneous Gaussian displacement binary BRW, which is a specific example of
inhomogeneous BRW introduced by Fang and Zeitouni (2012). Here we shall consider the last progeny modified version
of the same example. To be precise, let Z1 = δξ11 +δξ12 , Z2 = δξ21 +δξ22 , ξ11, ξ12 are i.i.d. N (0, σ 2

1 ), ξ21, ξ22 are i.i.d. N (0, σ 2
2 )

and q1(n) = q2(n) = n/2. In this case we have

ν1(t) = log 2 +
σ 2
1 t

2

2
and ν2(t) = log 2 +

σ 2
2 t

2

2
,

and

θ1 =

√
2 log 2
σ1

and θ2 =

√
2 log 2
σ2

.

Therefore by Theorem 2.2, we obtain that
7
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c
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f
w
r

R

A
A
A
B
B
B
B
B
B
B
D

F
F
H
H

K
K
M

Theorem 4.1. Assume σ1 > σ2, then the following sequence of random variables

R∗

n

(√
2 log 2
σ1

)
− n

(
σ1

√
log 2
2

+

√
2 log 2
4σ1

(
σ 2
1 + σ 2

2

))
+ log n

(
σ1

2
√
2 log 2

)
onverges in distribution to a non-trivial distribution which depends only on σ1.

As comparison we note that in Fang and Zeitouni (2012), it is shown that for this example when σ1 > σ2, the following
sequence of random variables

Rn − n

(
(σ1 + σ2)

√
log 2
2

)
+ log n

(
3 (σ1 + σ2)

2
√
2 log 2

)
s tight. Thus for our model we have been able to establish more than Fang and Zeitouni (2012) as we obtain a weak limit
or the right-most position of the LMPTI-BRW after an appropriate centering. However, we only have this for the case
hen σ1 > σ2. In Fang and Zeitouni (2012) the other case when σ1 < σ2 has also been worked out and tightness of the
ight-most position has been proved with an appropriate centering.
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