Stat-134, Section 02
 Fall 2002

Solution of The Extra Credit Problem Set

1. Observe that from definition $X=R \cos \Theta$ and $Y=R \sin \Theta$.
(a) Step-1 : The range of values of Θ is $[0,2 \pi)$.

Step-2 : Fix $\alpha \in[0,2 \pi)$,

$$
\begin{aligned}
F_{\Theta}(\alpha) & =\mathbf{P}(\Theta \leq \alpha) \\
& =\int_{\theta \leq \alpha} \int_{2} \frac{1}{2 \pi} e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)} d x d y \\
& =\int_{0}^{\alpha} \int_{0}^{\infty} \frac{1}{2 \pi} e^{-\frac{r^{2}}{2}} r d r d \theta \\
& =\left(\int_{0}^{\alpha} \frac{d \theta}{2 \pi}\right)\left(\int_{0}^{\infty} r e^{-\frac{r^{2}}{2}} d r\right) \\
& =\frac{\alpha}{2 \pi}
\end{aligned}
$$

So the CDF of Θ is given by

$$
F_{\Theta}(\alpha)=\left\{\begin{array}{cl}
0 & \text { if } \alpha \leq 0 \\
\frac{\alpha}{2 \pi} & \text { if } 0<\alpha \leq 2 \pi \\
1 & \text { if } \alpha>2 \pi
\end{array}\right.
$$

Clearly, $\Theta \sim \operatorname{Unif}(0,2 \pi)$.
(b) Observe that (Z, W) is nothing but a rotation of (X, Y) by an angle of $\theta=\frac{\pi}{4}$. Now recall the following fact proved in the class
Fact : If X and Y are i.i.d $\operatorname{Normal}(0,1)$ random variables and (Z, W) is a rotation of (X, Y) then (Z, W) are also i.i.d $\operatorname{Normal}(0,1)$.
So using this we conclude that (Z, W) are i.i.d. $\operatorname{Normal}(0,1)$ random variables.
2. (a) Notice that $F: \mathbb{R} \rightarrow(0,1)$ is defined as $F(x)=\int_{-\infty}^{x} f(t) d t$, where $f(t)>0$ for all $-\infty<t<\infty$.

Thus F is a strictly increasing function, and hence $F^{-1}:(0,1) \rightarrow \mathbb{R}$ exists.
(b) Observe that the range of values of $Y=F^{-1}(U)$ is \mathbb{R}. Fix $-\infty<y<\infty$, then

$$
\begin{aligned}
F_{Y}(y) & =\mathbf{P}(Y \leq y) \\
& =\mathbf{P}\left(F^{-1}(U) \leq y\right) \\
& =\mathbf{P}(U \leq F(y)) \\
& =F(y)
\end{aligned}
$$

The last equality follows from the fact that $U \sim \operatorname{Unif}(0,1)$, and $F(y) \in(0,1)$. So the CDF of $Y=F^{-1}(U)$, is F. In otherwords Y has the same distribution as of X.
(c) First note that from definition $W=F(X) \in(0,1)$. Fix $w \in(0,1)$.

$$
\begin{aligned}
F_{W}(w) & =\mathbf{P}(W \leq w) \\
& =\mathbf{P}(F(X) \leq w) \\
& =\mathbf{P}\left(X \leq F^{-1}(w)\right) \\
& =F\left(F^{-1}(w)\right) \\
& =w
\end{aligned}
$$

So clearly $W \sim \operatorname{Unif}(0,1)$.
3. Suppose $U_{1}, U_{2}, U_{3}, \ldots$ be the i.i.d. sequence of $\operatorname{Unif}(0,1)$ random variables produced by the computer routine.
(a) Define $W_{1}:=-\frac{1}{\lambda} \log U_{1}$, and use change of variable formula to conclude that $W_{1} \sim \operatorname{Exponential}(\lambda)$ (done in class).
(b) For each $i \geq 1$, define $W_{i}:=-\frac{1}{\lambda} \log U_{i}$. So using part (a), $W_{1}, W_{2}, W_{3}, \ldots$ are i.i.d. Exponential (λ). Let $T_{r}:=W_{1}+W_{2}+\cdots+W_{r}$, where $r \geq 1$. Define N to be the first r such that $T_{r+1} \geq 1$; that is, $N=0$ if $T_{1} \geq 1 ; N=1$ if $T_{1}<1$ but $T_{2} \geq 1, N=2$ if $T_{2}<1$ but $T_{3} \geq 1$, and so on. Naturally, N is nothing but the number of arrivals in $[0,1)$ for the Poisson arrival process of rate λ defined through the Exponential variables $W_{1}, W_{2}, W_{3}, \ldots$, so clearly $N \sim \operatorname{Poisson}(\lambda)$.
4. First note that $\mathbf{E}[Z]=\mathbf{E}\left[(X-Y)^{2}\right]=\mathbf{E}\left[X^{2}\right]+\mathbf{E}\left[Y^{2}\right]-2 \mathbf{E}[X Y]$. Now using the Law of Iterated Expectations and the first given condition we get

$$
\begin{aligned}
\mathbf{E}[X Y] & =\mathbf{E}[\mathbf{E}[X Y \mid Y]] \\
& =\mathbf{E}[Y \mathbf{E}[X \mid Y]] \\
& =\mathbf{E}\left[Y^{2}\right]
\end{aligned}
$$

Similarly using the second condition we will get $\mathbf{E}[X Y]=\mathbf{E}\left[X^{2}\right]$. So $\mathbf{E}[Z]=0$, hence using the given math fact we conclude that $\mathbf{P}(Z=0)=1 \Leftrightarrow \mathbf{P}(X=Y)=1$.
5. Let A_{i} be the event that $i^{\text {th }}$ ball goes into $i^{\text {th }}$ box, for $1 \leq i \leq n$. We know from the Midterm Exam Problem \# 3 that $\mathbf{P}\left(A_{i}\right)=(1-1 / n)^{n}$ for any $1 \leq i \leq n$, and $\mathbf{P}\left(A_{i} \cap A_{j}\right)=(1-2 / n)^{n}$ for $1 \leq i \neq j \leq n$. Let I_{i} be the indicator function of the event A_{i}. Naturally from definition $X=I_{1}+I_{2}+\cdots+I_{n}$. Thus $\mathbf{E}[X]=n \times(1-1 / n)^{n}$. Notice that

$$
\begin{aligned}
X^{2} & =\sum_{i=1}^{n} I_{i}^{2}+\sum_{1 \leq i \neq j \leq n} \sum_{i} I_{j} \\
& =\sum_{i=1}^{n} I_{i}+\sum_{1 \leq i \neq j \leq n} \sum_{A_{i} \cap A_{j}}
\end{aligned}
$$

So by taking expectation we get

$$
\begin{aligned}
\mathbf{E}\left[X^{2}\right] & =\sum_{i=1}^{n} \mathbf{P}\left(A_{i}\right)+\sum_{1 \leq i \neq j \leq n} \sum \mathbf{P}\left(A_{i} \cap A_{j}\right) \\
& =n \times\left(1-\frac{1}{n}\right)^{n}+n(n-1) \times\left(1-\frac{2}{n}\right)^{n}
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2} \\
& =n\left(1-\frac{1}{n}\right)^{n}+n(n-1)\left(1-\frac{2}{n}\right)^{n}-n^{2}\left(1-\frac{1}{n}\right)^{2 n}
\end{aligned}
$$

6. (a) From the formula for the joint density we get that both X and Y takes values in $(0,1)$, and have the same distribution. Fix $0<x<1$, then

$$
\begin{aligned}
f_{X}(x) & =\int_{0}^{1}(2 x+2 y-4 x y) d y \\
& =\left[2 x y+y^{2}-2 x y^{2}\right]_{0}^{1} \\
& =2 x+1-2 x=1
\end{aligned}
$$

Thus X and Y are $\operatorname{Unif}(0,1)$.
(b)

$$
f_{Y \mid X}\left(y \left\lvert\, x=\frac{1}{4}\right.\right)=\frac{f\left(\frac{1}{4}, y\right)}{f_{X}\left(\frac{1}{4}\right)}= \begin{cases}\frac{2}{4} y+2 y-\frac{4}{4} y=\frac{1}{2}+y & \text { if } 0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

(c) $\mathbf{E}\left[Y \left\lvert\, X=\frac{1}{4}\right.\right]=\int_{0}^{1} y\left(\frac{1}{2}+y\right) d y=\frac{7}{12}$
7. (a) Observe that Y only takes positive values. Fix $y>0$,

$$
\begin{aligned}
f_{Y}(y) & =\int_{0}^{y} \lambda^{3} x e^{-\lambda y} d x \\
& =\frac{\lambda^{3}}{2} y^{2} e^{-\lambda y}
\end{aligned}
$$

Thus $Y \sim \operatorname{Gammma}(3, \lambda)$. Hence $\mathbf{E}[Y]=\frac{3}{\lambda}$.
(b) The conditional density of X given $Y=1$ is

$$
f_{X \mid Y}(x \mid y=1)=\frac{f(x, 1)}{f_{Y}(1)}= \begin{cases}\frac{\lambda^{3} x e^{-\lambda y}}{\left(\lambda^{3} / 3\right) y^{2} e^{-\lambda y}}=2 x & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Hence $\mathbf{E}[X \mid Y=1]=\int_{0}^{1} x(2 x) d x=\frac{2}{3}$.
8. (a) Observe that Y only takes positive values. Fix $y>0$,

$$
\begin{aligned}
f_{Y}(y) & =\int_{0}^{y} \frac{e^{-y / 2} d x}{2 \pi \sqrt{x(y-x)}} \\
& =\frac{1}{2 \pi} e^{-y / 2} \int_{0}^{y} \frac{d x}{\sqrt{x(y-x)}} \\
& =\frac{c}{2 \pi} e^{-y / 2}
\end{aligned}
$$

where $c=\int_{0}^{1} d s / \sqrt{s(1-s)}$, and the last equality can be obtained by substituting $x=y s$ in the previous integral. Since f_{Y} is a density so it must integrate out to 1 , and so without any difficult integration evaluation we can show that $c=\pi$. Hence $Y \sim \operatorname{Exponential}(1 / 2)$.
(b) The conditional density of X given $Y=1$ is

$$
f_{\left.X\right|_{Y}}(x \mid y=1)=\frac{f(x, 1)}{f_{Y}(1)}= \begin{cases}\frac{e^{-y / 2} /(\pi \sqrt{x(1-x)})}{(1 / 2) e^{-y / 2}}=\frac{1}{\pi} \frac{1}{\sqrt{x(1-x)}} & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Thus Given $Y=1, X$ is a random variable which takes values in $(0,1)$. Notice (by inspection, or by using change of variable formula) that given $Y=1,1-X$ has the same distribution as that of X. Thus clearly with any difficult calculations we can conclude that $\mathbf{E}[X \mid Y=1]=\frac{1}{2}$.

