Indian Statistical Institute, Delhi Centre

Measure Theoretic Probability

<u>Fall 2010</u>

Quiz # 1

Date: August 5, 2010 (Thursday)

Total Points: 10

Note:

- Please write your name.
- There are 2 problems carrying 5 points each. Answer all of them.
- Please write your answer for each of the problems in the space provided and show all your work.
- This is a CLOSE NOTE and CLOSE BOOK examination.
- You have <u>20 minutes</u> to complete the quiz.

Name: _____

1. Let
$$\mathcal{F} := \left\{ B \in \mathcal{B}_{\mathbb{R}} \, \middle| \, B = -B \right\}$$
 show that \mathcal{F} is a σ -algebra on \mathbb{R} .

2. Let (Ω, \mathcal{F}) be a measurable space. A set function $\mathbf{P} : \mathcal{F} \longrightarrow [0, 1]$ with $\mathbf{P}(\emptyset) = 0$ and $\mathbf{P}(\Omega) = 1$ is said to be a *finitely additive probability* if for any finite sequence $A_1, A_2, \ldots, A_n \in \mathcal{F}$ which are pairwise disjoint $\mathbf{P}(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mathbf{P}(A_i)$. Show that a finitely additive probability \mathbf{P} on (Ω, \mathcal{F}) is a probability, if and only if, it is *continuous at* \emptyset from above, that is, if and only if, for any decreasing sequence $A_n \downarrow \emptyset$ such that $A_n \in \mathcal{F}$ we have $\mathbf{P}(A_n) \downarrow 0$.