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Binomial Random Graphs1

Anirban Nath

Indian Statistical Institute, Kolkata

June 15, 2020

1Submitted as a part of Random Graphs course at ISI Kolkata
Anirban Nath Asymptotic Degree Distribution June 15, 2020 1 / 19



Introduction

Erdős-Rényi model for random graphs is one of the most popular models
in graph theory. They are named after mathematicians Paul Erdős and
Alfréd Rényi, who first introduced one of the models in 1959, while Edgar
Gilbert introduced the other model contemporaneously and independently
of Erdős and Rényi. There are two closely related variants of the
Erdős–Rényi random graph model.

In the G (n,M) model, a graph is chosen uniformly at random from
the collection of all graphs which have n nodes and M edges.

In the G (n, p) model, a graph is constructed by connecting nodes
randomly. Each edge is included in the graph with probability p
independent from every other edge.

However, for the rest of this article, we shall be considering the G (n, p)
model for our purpose where p = λ/n. Why this specific form of p shall be
useful, we shall see in a bit.
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Degree Distribution

We would like to investigate the nature of the degree of a uniformly
selected vertex given an Erdős-Rényi random graph.Since the vertex to be
selected is arbitrary, its distribution will asymptotically be same as the
empirical distribution of all the vertices given the graph.

Suppose the graph has n vertices and Di denote the degree of vertex i .
Then the empirical degree distribution will be

P(n)
k =

1

n

∑
i∈[n]

1{Di=k}

Remark

Even if we fix a vertex and check its degree the distribution will be same,
but the choice should be arbitrary i.e. if we intentionally choose an
isolated vertex, the result will obviously not follow.

We also define the Poisson(λ) pmf as pk = e−λ λ
k

k! for k ≥ 0
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Simulation
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Main Theorem

Theorem

Fix λ > 0. Then, for every εn such that nε2n →∞,

Pλ

(
max
k≥0
|P(n)

k − pk | ≥ εn
)
→ 0

Remark. The proof involves some ideas and results of coupling which we
shall discuss in the next section in details.
Proof. First, note that,

Eλ

[
P(n)
k

]
= Pλ (D1 = k) =

(
n − 1

k

)(
λ

n

)k(
1− λ

n

)n−1

because D1 ∼ Bin(n − 1, λn ) i.e. node 1 has n − 1 edges to connect each

with probability λ
n . Now,∑

k≥0

∣∣∣pk −Eλ[P(n)
k ]
∣∣∣ =

∑
k≥0

∣∣Pλ (X ∗ = k)−Pλ (Xn = k)
∣∣
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Main Theorem

where X ∗ ∼ Poi(λ) and Xn ∼ Bin
(
n − 1, λn

)
. We shall bound the

difference by a coupling argument as follows.

Let Yn ∼ Bin(n, λn ). Then, Yn = Xn + In where In ∼ Ber
(
λ
n

)
and Xn and

In are independent.∑
k≥0
|P(Xn = k)−P(Yn = k)|

=
∑
k≥0
|P(Xn = k)−P(Xn = k , In = 0)−P(Xn = k − 1, In = 1)|

=
λ

n

∑
k≥0
|P(Xn = k)−P(Xn = k − 1)| ≤ 2λ

n

Therefore, for all k ≥ 0, we have,∑
k≥0
|P(Xn = k)−P(X ∗ = k)| ≤ 2λ+ λ2

n
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Main Theorem

Thus, it is enough to show that,

Pλ

(
max
k≥0

∣∣∣P(n)
k −Eλ

[
P(n)
k

]∣∣∣ ≥ εn
2

)
= o(1)

Boole’s Identity gives us,

Pλ

(
max
k≥0

∣∣∣P(n)
k −Eλ

[
P(n)
k

]∣∣∣ ≥ εn
2

)
≤
∑
k≥0

Pλ

(∣∣∣P(n)
k −Eλ

[
P(n)
k

]∣∣∣ ≥ εn
2

)
Then, for a fixed k ≥ 0, by Chebychev’s Inquality, we get,

Pλ

(∣∣∣P(n)
k −Eλ

[
P(n)
k

]∣∣∣ ≥ εn
2

)
≤

4Varλ(P
(n)
k )

ε2n

Varλ(P
(n)
k ) =

1

n
[Pλ(D1 = k) −Pλ(D1 = k)2

+
n − 1

n

[
Pλ(D1 = D2 = k)−Pλ(D1 = k)2

]
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Main Theorem

Let, X1,X2
i .i .d∼ Bin(n − 2, λ/n), and I1, I2

i .i .d∼ Ber(λ/n). Then,

(D1,D2)
d
= (X1 + I1,X2 + I1) while (X1 + I1,X2 + I2) are two independent

copies of D1.Thus,

Pλ(D1 = D2 = k) = Pλ((X1 + I1,X2 + I1) = (k , k))

Pλ(D1 = k)2 = Pλ((X1 + I1,X2 + I2) = (k , k))

Using the above coupling, we get,

Varλ(P
(n)
k ) ≤ 1

n
Pλ(D1 = k) +

λ

n
[Pλ(X1 = k) +Pλ(X2 = k − 1)]

Pλ

(
max
k≥0

∣∣∣P(n)
k −Eλ

[
P(n)
k

]∣∣∣ ≥ εn
2

)
≤ 4

ε2n

∑
k≥0

[
1

n
Pλ(D1 = k) +

λ

n
Pλ(X1 = k) +Pλ(X2 = k − 1)

]
=

4(2λ+ 1)

ε2nn
→ 0 since nε2n →∞
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Coupling

Coupling is nothing but a joint distribution of random variables that may
not be individually defined on the same probability space having the same
marginal distribution.

Coupling of Random Variables

The random variables (X̂1, X̂2, . . . , X̂n) are a coupling of the random
variables X1,X2, . . . ,Xn, when (X̂1, X̂2, . . . , X̂n) are defined on the same
probability space and are such that the marginal distribution of X̂i is same
as that of Xi for all i = 1, 2, . . . , n that is for all measurable set E ∈ R,

P(X̂i ∈ E) = P(Xi ∈ E)

We now describe a general coupling between two random variables that
makes them equal with high probability. Let, X and Y be two discrete
random variables with the following probability mass functions

P(X = x) = px P(Y = y) = qy x ∈ X , y ∈ Y
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Total Variation Distance

Now, a convenient distance between discrete probability distributions is the
total variation distance between the discrete probability mass functions
(px)x∈X and (qy )y∈Y .

Total variation distance

For two probability measures µ and ν, the total variation distance between
them is defined as dTV (µ, ν) = supA⊆R |µ(A)− ν(A)|

For discrete probability mass functions,the total variation distance between
them will be

dTV (p, q) = sup
A∈R

∣∣∣∣∣∑
a∈A

(pa − ya)

∣∣∣∣∣ =
1

2

∑
x

|px − qx |

For continuous random variables, the total variation distance will be,

dTV (f , g) =
1

2

∫ ∞
−∞
|f (x)− g(x)|dx
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Useful Theorems

These are the theorems we have used previously in our proof earlier.

Maximal coupling

For any two discrete random variables X and Y , there exists a coupling
(X̂ , Ŷ ) of X and Y such that, P(X̂ 6= Ŷ ) = dTV (p, q) while, for any other
coupling, we have, P(X̂ 6= Ŷ ) ≥ dTV (p, q)

Poisson limit for binomial random variables

Let (Ii )
n
i=1 be independent with Ii ∼ Ber(pi ), and let λ =

∑n
i=1 pi . Let

X =
∑n

i=1 Ii and Y be a Poisson random variable with parameter λ. Then
there exists a coupling (X̂ , Ŷ ) of random variables X and Y such that
P(X̂ 6= Ŷ ) ≤

∑n
i=1 p

2
i

Consequently, for any λ ≥ 0 and n ∈ N, there exists a coupling (X̂ , Ŷ ) of
random variables X and Y where X ∼ Bin(n, λ/n) and Y ∼ Poi(λ) such

that P(X̂ 6= Ŷ ) ≤ λ2

n
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Poisson limit for binomial random variables

Let (Ii )
n
i=1 be independent with Ii ∼ Ber(pi ), and let λ =

∑n
i=1 pi . Let

X =
∑n

i=1 Ii and Y be a Poisson random variable with parameter λ. Then
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Why Enough?

From triangle inequality, it follows that,∣∣∣P(n)
k − pk

∣∣∣ ≤ ∣∣∣P(n)
k −Eλ

[
P(n)
k

]∣∣∣+
∣∣∣Eλ [P(n)

k

]
− pk

∣∣∣
=⇒

∣∣∣P(n)
k − pk

∣∣∣ ≤ ∣∣∣P(n)
k −Eλ

[
P(n)
k

]∣∣∣+
∑
k≥0

∣∣∣Eλ [P(n)
k

]
− pk

∣∣∣
=⇒

∣∣∣P(n)
k − pk

∣∣∣ ≤ ∣∣∣P(n)
k −Eλ

[
P(n)
k

]∣∣∣+
εn
2

=⇒ max
k≥0

∣∣∣P(n)
k − pk

∣∣∣ ≤ max
k≥0

∣∣∣P(n)
k −Eλ

[
P(n)
k

]∣∣∣+
εn
2

=⇒ Pλ

(
max
k≥0
|P(n)

k − pk | ≥ εn
)
≤ Pλ

(
max
k≥0

∣∣∣P(n)
k −Eλ

[
P(n)
k

]∣∣∣ ≥ εn
2

Thus, it is enough to show that,

Pλ

(
max
k≥0

∣∣∣P(n)
k −Eλ

[
P(n)
k

]∣∣∣ ≥ εn
2

)
= o(1)
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The bound on variance

Pλ(D1 = D2 = k)−Pλ(D1 = k)2

= Pλ((X1 + I1,X2 + I1) = (k, k))−Pλ((X1 + I1,X2 + I2) = (k, k))

≤ Pλ
(
(X1 + I1,X2 + I1) = (k , k)), (X1 + I1,X2 + I2) 6= (k , k)

)
It can happen only when I1 6= I2. If, I1 = 0, then I2 = 1 and X1 = k and
when, I1 = 1. then I2 = 0 and X2 = k − 1. Thus,

Varλ(P
(n)
k ) ≤ 1

n
Pλ(D1 = k) +

λ

n
[Pλ(X1 = k) +Pλ(X2 = k − 1)]
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Proof of maximal coupling theorem

We start by defining the coupling that achieves the equality.

P(X̂ = Ŷ = x) = px ∧ qx

P(X̂ = x , Ŷ = y) =
(px − (px ∧ qx))(qy − (py ∧ qy ))

1
2

∑
z |pz − qz |

, x 6= y

First of all, observe that,∑
x

(px − (px ∧ qx)) =
∑
x

(qx − (px ∧ qx)) =
1

2

∑
x

|px − qx |

Then,

P(X̂ 6= Ŷ ) = 1−P(X̂ = Ŷ ) = 1−
∑
x

(px ∧ qx) =
1

2

∑
x

|px − qx |

This proves the first part of the theorem.
For the latter part,

P(X̂ = Ŷ = x) ≤ P(X̂ = x) = P(X = x) = px
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Proof of maximal coupling theorem

and also,

P(X̂ = Ŷ = x) ≤ P(Ŷ = x) = P(Y = x) = qx

which implies that,

P(X̂ = Ŷ = x) ≤ (px ∧ qx)

=⇒ P(X̂ = Ŷ ) =
∑
x

P(X̂ = Ŷ = x) ≤
∑
x

(px ∧ qx)

=⇒ P(X̂ 6= Ŷ ) = 1−P(X̂ = Ŷ ) ≥ 1−
∑
x

(px ∧ qx) =
1

2

∑
x

|px − qx |

The coupling above attains this equality, which makes it the best coupling
possible, in the sense that it maximizes P(X̂ = Ŷ ).
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Proof of poisson limit for binomial RVs

Let us define random variables Ji ∼ Poi(pi ) for all i = 1, 2, . . . , n and they
are independent. Moreover we write their p.m.fs as

pi ,x = P(Ii = x) = pi1{x=1} + (1− pi )1{x=0}

qi ,x = P(Ji = x) = e−pi
pxi
x!

Let, (Îi , Ĵi ) be a coupling of Ii and Ji where (Îi , Ĵi ) are independent for
different i . Now, for each pair Ii ,Ji , the maximal coupling (Îi , Ĵi ) described
above satisfies

P(Îi = Ĵi = x) = pi ,x ∧ qi ,x =


1− pi x = 0

pie
−pi x = 1

0 x ≥ 2
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Proof of poisson limit for binomial RVs

Thus, we obtain,

P(Îi = Ĵi ) = 1−P(Îi 6= Ĵi ) = 1− (1− pi )− (pie
−pi ) = pi (1− e−pi ) ≤ p2i

Now, let X̂ =
∑n

i=1 Îi and Ŷ =
∑n

i=1 Ĵi . Then X̂ has the same
distribution as X =

∑n
i=1 Ii and Ŷ has the same distribution as

Y =
∑n

i=1 Ji ∼ Poi(p1 + p2 + · · ·+ pn). Finally, by Boole’s Inequality, we
obtain

P(X̂ 6= Ŷ ) ≤ P

(
n⋃

i=1

{Îi 6= Ĵi}

)
≤

n∑
i=1

P

(
Îi 6= Ĵi

)
≤

n∑
i=1

p2i

For the later part, we choose pi = λ/n and the result follows.
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