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1 Introduction

In this report, I shall outline some basics from graph theory and probability theory in an
attempt to present a proof of Cayley’s Formula. Cayley’s Formula is one of the most simple
and elegant results in graph theory that counts number of labelled trees.

Definition 1.1 (Tree). A graph G = (V,E) (V is the set of vertices and E is the set of
edges) is said to be a tree if it is connected, acyclic and undirected.

A tree on n vertices can be labelled by assigning each of its vertex a number from
[n] := {1, 2, · · · , n}. Edge set of a labelled tree has two-element subsets of [n] as its elements.

Theorem 1.2 (Cayley’s Formula). There are nn−2 different labelled trees on n vertices.

The term labelled emphasises that we are not identifying isomorphic trees. We have
fixed the set of vertices, namely [n], and two trees are counted as the same if and only if
they have same edge set. A spanning tree of a connected graph G is a spanning subgraph
of G that is a tree. So, alternatively we could have stated the above theorem as: “The
complete graph Kn has nn−2 different spanning trees”.

We shall prove this theorem in a probabilistic approach. In fact, we consider simulating a
branching process with Poisson(1) offspring distribution. From theory of branching process,
one can show that such a process will be extinct with probability 1. As we label the
simulated tree, and shall calculate the probability that we get one specific labelled tree
l on n vertices, conditioned on the fact that the entire tree has n vertices, we shall see
that the conditional probability won’t depend on l. That would prove that this conditional
probability distribution is uniform on the set of all labelled trees on n vertices. Rest of
the proof would be immediate. We need to introduce and prove a few facts from theory of
Branching Processes before we get into the proof of Cayley’s Formula.

2 Introduction to Branching Process

A branching process is a popular and one of the simplest models for a population evolving
with time. Consider particles such as bacteria that can generate new particles of the same
type. The initial set of objects is referred to as belonging to the 0-th generation. Particles
generated from the n-th generation are said to belong to the (n + 1)-th generation. As a
convention, we shall assume that the 0-th generation consists of one particle only. Shall
denote by Zn the the number of individuals in n-th generation. So, according to convention,
Z0 = 1. Also, for n ≥ 1, Zn satisfies the recursion relation,

Zn =

Zn−1∑
i=1

Xn,i,
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where (Xn,i)n,i≥1 is a doubly infinite array of i.i.d. random variables having same distri-
bution as some non-negative integer-valued random variable X. The distribution of X is
called the offspring distribution of the branching process.
There is a major result involving the extinction probability of a branching process. For a
branching process (Zn)n≥0, we define its extinction probability as,

η = P(∃n : Zn = 0).

Theorem 2.1 (Extinction probability for branching processes). For a branching process
with i.i.d. offspring X, η = 1 when E[X] < 1, while η < 1 when E[X] > 1. Further, if
E(X) = 1 and P(X = 1) < 1, then η = 1. The extinction probability of η is the smallest
solution in [0, 1] of GX(t) = t, where GX is the probability generating function of X, i.e.,

GX(t) = E(tX).

The proof of this theorem is skipped here. It can be found in any standard text discussing
branching processes. We shall continue by studying laws of total progeny T of the branching
process, which is defined as,

T =

∞∑
n=0

Zn.

3 Random Walk perspective of Branching Process and Law
of Total Progeny

One can give a general result to give the distribution of T in terms of probabilities involving
independent copies of X.

Theorem 3.1 (Laws of Total Progeny). For a branching process with i.i.d. offspring
distribution Z1 = X,

P(T = n) =
1

n
P(X1 + · · ·+Xn = n− 1), (1)

where (Xi)
n
i=1 are i.i.d. copies of X.

We shall prove Theorem 3.1 later. In fact, we prove a more general result that states
that,

P(T1 + · · ·+ Tk = n) =
k

n
P(X1 + · · ·+Xn = n− k), (2)

where T1, · · · , Tk are independent copies of T . Its proof will follow from the Kemperman’s
formula (Theorem 3.2). Before stating and proving that, we need to introduce the Random
Walk perspective of Branching Process.
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3.1 Random Walk Perspective

In branching processes, it is quite common to study the number of descendants of each in-
dividual in a given generation. For random graph purposes though, it is often convenient to
use a different construction of a branching process by sequentially investigating the number
of children of each member of the population. Let X

′
1, X

′
2, · · · be independent and identi-

cally distributed random variables having same distribution as the progeny distribution of
the branching process. Next, we define S

′
0, S

′
1, · · · recursively as,

S
′
0 = 1

S
′
i = S

′
i−1 +X

′
i − 1 = X

′
1 + · · ·+X

′
i − (i− 1)

The branching process belonging to the above recursion is as follows. The population
starts with only one individual. At time i (i > 0), we select one of the active individuals
in the population and give it X

′
i children. The children are set to active and the individual

itself is set to inactive. One may do this exploration process in breadth-first manner or
depth-first manner or even neither.
This exploration process is continued as long as there are active individuals in the pop-
ulation. Then, the process S

′
i describes the number of active individuals after the first i

individuals has been explored. The process stops when, for the first time, S
′
t = 0. Let T

′

be the smallest t for which S
′
t = 0, i.e.,

T
′

= inf{t : S
′
t = 0} = inf{t : X

′
1 + · · ·+X

′
t = t− 1}.

In particular, if such a T
′

does not exist, we define T
′

= +∞.
Note that, the above defined T

′
clearly equals the total progeny T of the concerned branching

process. This interpretation of total progeny size will be useful in finding its distribution.

3.2 Law of Total Progeny

The following theorem is a remarkable result for random walk, say, (Sn)n≥0. Suppose the
walk starts from some k ≥ 0, i.e., S0 = k. The theorem states that, conditionally on the
event {Sn = 0}, and regardless of the precise distribution of the steps of the walk (though
there is some condition the distribution needs to obey), the probability that the walk is at
0 for the first time at n-th step equals k/n. Define,

H0 = inf{n ≥ 0 : Sn = 0}.

Theorem 3.2 (Kemperman’s Formula). For a random walk with i.i.d. steps (Yi)i≥1 satis-
fying that Yi is integer valued and

P(Yi ≥ −1) = 1,

the distribution of H0 is given by

Pk(H0 = n) =
k

n
Pk(Sn = 0). (3)

5



We skip the proof of Theorem 3.2 here and use it as a result in the next proof. It is
proved in a later section (Section 5).

Next, we complete the proof of Theorem 3.1.

Proof of Theorem 3.1. We stated earlier that we prove a more general version of the theo-
rem, which is,

P(T1 + · · · .+ Tk = n) =
k

n
P(X1 + · · · .+Xn = n− k).

Define, H i
0 = inf{n ≥ 0 : Sn = 0, given that S0 = i}. Say, H1

0,1, · · · , H1
0,k are k i.i.d.

copies of H1
0 . Next note that, by the Markov Property of random walk, Hk

0 has the same
distribution as H1

0,1 + · · · + H1
0,k. Now, recall the random walk perspective of branching

process, from definition of T ′(the total progeny), it is clearly a zero-hitting time where
the random walk starts from S0 = 1 (which means there is only one particle in the 0-th
generation).
Thus, if the random walk in concern is the random walk representation of the branching
process, we may say,

T1 + · · · .+ Tk
d
= H1

0,1 + · · ·+H1
0,k

d
= Hk

0 .

Also, note that, in this random walk the steps are Yi = Xi − 1, where (Xi)i≥1 are the
offspring of visited vertex. So, P(Yi ≥ −1) = 1. Hence, we can apply Kemperman’s formula
(Theorem 3.2) to write,

P(T1 + · · · .+ Tk = n) = P(H1
0,1 + · · ·+H1

0,k = n)

= P(Hk
0 = n)

=
k

n
Pk(Sn = 0)

=
k

n
P(Y1 + · · ·+ Yn = −k)

=
k

n
P(X1 + · · ·+Xn = n− k).

This completes the proof. �

4 Proof of Cayley’s Formula

As stated earlier, we shall make use of Critical Poisson Branching Process, i.e., Branching
Process with Poisson(1) as its progeny distribution. We find out the law of total progeny(T ∗)
of Poisson Branching Process as a lemma of Theorem 3.1.

Lemma 4.1. For a branching process with i.i.d. offspring X∗ ∼ Poisson(λ),

P(T ∗ = n) =
(λn)n−1

n!
e−λn, n ≥ 1.
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Proof. Directly from Kemperman’s formula, we may write,

P(T ∗ = n) = P(X1 + · · · .+Xn = n− 1) [where, X1, · · · , Xn
iid∼Poisson(λ).]

= P(Z = n− 1) [where, Z ∼ Poisson(nλ).]

=
(λn)n−1

n!
e−λn.

This completes the proof.

�

So, where offspring distribution is Poisson(1), distribution of total progeny T ∗ is:

P(T ∗ = n) =
(n)n−1

n!
e−n, n ≥ 1. (4)

Next, we shall prove the Cayley’s formula (Theorem 1.2).

Proof of Theorem 1.2. This proof will make use of family trees. Each vertex of a family tree
will be represented by certain words. These words arise inductively. Say, for any vertex j,
its number of children is denoted by dj . The root is represented by φ. Then it has dφ may
children, thus, its children are 1, 2, · · · , dφ. Next, inductively the children of vertex 1 are
11, 12, · · · , 1d1. This representation is commonly known as Ulam-Harris Representation of
trees.

Two family trees are exactly the same if they are represented by same collection of
words. Also, for a word w, |w| be its length which denotes the number of steps it is away
from the root, i.e., its generation. For the root, |φ| = 0.

Let T be the random variable denoting the family tree of a branching process with
Poisson(1) as its progeny distribution. Note that, number of children of all the vertices are
mutually independent. Hence, the probability that T equals t for some specific family tree
t is given by,

P(T = t) =
∏
w∈t

P(ψ = dw) [Where ψ is a Poisson(1) random variable.]

=
∏
w∈t

e−1

dw!
.

Once we have an observation of T , we introduce a labelling for it.The root is labelled 1.
Conditioned on having total progeny T ∗ = n, rest of the vertices are labelled by {2, 3, · · · , n}
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uniformly at random and without replacement. Thus we get a labelled tree L. We shall
prove that L is a uniform labelled tree on n vertices.

For a family tree t and a labelled tree l, we shall write t ∼ l, if l can be obtained by
labelling the family tree t. Now, given a labelled tree l and any family tree t, such that t ∼ l,
let L(l) be the number of ways to label t in different ways (such that the root is labelled
as 1). Here, the observation is that, the quantity L(l) does not depend on the choice of t.
Thus, given a labelled tree l,

#{t : t ∼ l} =
1

L(l)

∏
w∈l

dw!,

since, permuting the children of any vertex does not change the tree.

Also, note that, for a labelled tree l and a family tree t, such that t ∼ l, there are L(l)
many ways to label to t in order to get l. Thus, if t is randomly labelled (always labelling
the root as 1),

P(t receives label l) =
L(l)

(|l| − 1)!
.

Using all these observations above, finally we can say,

P(L = l) =
∑
tl∼l

P(Tl = tl)P(tl receives label l)

=
∑
tl∼l

[(∏
w∈tl

e−1

dw!

)
L(l)

(|l| − 1)!

]

=
∑
tl∼l

[
e−|l|∏
w∈l dw!

L(l)

(|l| − 1)!

]

= #{t : t ∼ l}

[
e−|l|∏
w∈l dw!

L(l)

(|l| − 1)!

]

=
1

L(l)

∏
w∈l

dw!

[
e−|l|∏
w∈l dw!

L(l)

(|l| − 1)!

]

=
e−|l|

(|l| − 1)!
.

(5)

Therefore, conditionally on the total progeny size,T ∗ = n,
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P(L = l | |L| = n) =
P(L = l, |L| = n)

P(|L| = n)

=
e−n

(n− 1)!

n!

nn−1e−n

[Follows from equation (4) and equation (5).]

=
1

nn−2
.

Thus we can see that the obtained probability does not depend on l, except on the fact
that |l| = n. This implies that the conditional probability distribution of L is uniform over
the set of all labelled trees on [n]. Also, the size of that set must be P(L = l | |L| = n)−1 =
nn−2.

This completes the proof of Cayley’s Formula.

�

5 Cyclic Shifts and Lagrange Inversion

We start with an elementary lemma concerning cyclic shifts. This lemma will be the only
useful tool in this entire section.

Definition 5.1 (Cyclic Shift). x := (x1, x2, · · · , xn) be a sequence. For i ∈ [n], x(i) denotes
the i-th cyclic shift of x, that is a sequence of length n whose j-th term is xi+j (mod n).

Lemma 5.2. Let x := (x1, x2, · · · , xn) be a sequence with values in {−1, 0, 1, 2, · · · } such

that
n∑
i=1

xi = −k for some 1 ≤ k ≤ n. Then there are exactly k many distinct i ∈ [n] such

that x(i) first hits −k at time n.

Proof. Define, for 1 ≤ j ≤ n, sj =
j∑
i=1

xi. Set i = m, the least i such that si = min
1≤j≤n

sj .

Then note that the walk with steps from x(m) hits −k for the first time at time n. Replace
x by x(m) and from that we construct the other shifts, since any cyclic shift of x(m) is indeed
a cyclic shift of x.
Now we have a x such that the walk (sn)n≥0 with steps from x hits −k for the first time
at time n. For 1 ≤ b ≤ k define ib to be the least i such that si = −b, i.e., the walk hits
−b for the first time at time b. Trivially, ik = n. Next, we observe that the walk with steps
from x(ib) hits −k for the first time at time n, for all 1 ≤ b ≤ k. Also, x(ik) = x(n) = x.
Thus, we get k distinct cyclic shifts of x each of which hits −k for the first time at time n.
Also, for any j ∈ {0, · · · , i1 − 1} ∪ {i1 + 1, · · · , i2 − 1} ∪ · · · {ik−1 + 1, · · · , ik − 1}, if x(j) is
considered, the walk (sn)n≥0 with steps from x(j) hits −k before time n.
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This leaves us with exactly k distinct cyclic shifts of x that hits −k for the first time at
time n.

�

5.1 Proof of Kemperman’s Formula

Theorem 5.3 (Kemperman’s Formula). Suppose a sequence of random variables X :=
(X1, X2, · · · , Xn) taking values in {−1, 0, 1, 2, · · · } such that all the Xi’s are independent

and identically distributed. Define Sj :=
j∑
i=1

Xi and T−k = inf{j > 0 : Sj = −k}. Then,

P(T−k = n) =
k

n
P(Sn = −k). [∀k ∈ {1, 2, · · · , n}]

Remark 5.4. The above theorem and the version in Theorem 3.2 are equivalent. In Theo-
rem 3.2, the walk started from S0 = k and was supposed to hit 0 in time n. In this version,
the walk starts from 0 and hits −k in time n, i.e., there is a origin change keeping the events
otherwise same.

Proof of Kemperman’s Formula. It is equivalent to prove for each k ∈ {1, 2, · · · , n},

P(T−k = n|Sn = −k) =
k

n
.

Consider the set S to be the set of all sequences of length n taking values in {−1, 0, 1, 2, · · · }
such that each sequence sums up to −k. Define a relation R on S S as, (w,v) ∈ R
if ∃i ∈ [n] such that w(i) = v. Then, clearly this relation R is an equivalence relation
and hence partitions S into equivalence classes. Each equivalence class contains n many
different sequences, since each sequence has n many distinct cyclic shifts, one being itself.
By Lemma 5.2, we know that each equivalence class contains exactly k members such that
the walk with steps from each of them hits −k for the first time at time n. Thus, out of all

walks hitting −k at time n, a
k

n
fraction of them hits −k for the first time at time n. In

terms of probability, the same statement can be written as,

P(T−k = n|Sn = −k) =
k

n
[∀k ∈ {1, 2, · · · , n}]

=⇒ P(T−k = n) =
k

n
P(Sn = −k) [∀k ∈ {1, 2, · · · , n}].

This concludes the proof.

�
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5.2 Lagrange Inversion Formula

Theorem 5.5 (Lagrange Inversion Formula). Let F (x) = a1x+a2x
2 + · · · ∈ xK[[x]], where

a1 6= 0 (and charK = 0), and let k, n ∈ Z. Then

n[xn]F (−1)(x)k = k[xn−k]

(
x

F (x)

)n
. (6)

Equivalently, suppose G(x) ∈ K[[x]] with G(0) 6= 0, and let f(x) be defined by

f(x) = xG(f(x)).

Then,
n[xn]f(x)k = k[xn−k]G(x)n. (7)

Remark 5.6. equations (6) and (7) are equivalent since the statement that f(x) = F (−1)(x)

is easily seen to mean the same as f(x) = xG(f(x)) where G(x) =
x

F (X)
.

Shall use Kemperman’s Formula to give a proof sketch of this algebraic result.

Suppose the sequence of random variables X = (X1, X2, · · · , Xn), as mentioned in

statement of Kemperman’s Formula takes values in {0, 1, 2, · · · } and Sj =
j∑
i=1

Xi. Then, we

concern ourselves with the walk (Sn)n≥0. Define

T−k := inf{j > 0 : Sj − j = −k},

Kemperman’s Formula can be restated as,

P(T−k = n) =
k

n
P(Sn − n = −k) ∀k ∈ {1, 2, · · · , n}

Suppose the steps Xi has a common pmf pj = P(Xi = j) for j ≥ 0. Then, the probability
generating function of Xi is,

g(z) := E(zXi) =
∞∑
j=0

pjz
j (|z| < 1)

And, for k = 1, 2, · · · , probability generating function for T−k would be,

hk(z) := E(zT−k) =

∞∑
n=1

P(T−k = n)zn (|z| < 1)

Observe that the walk (Sn − n)n≥0 can move a maximum of 1 downwards in one step.
Thus, for the walk to hit −k for the first time, it needs to hit each of −1,−2,−3, · · · one

by one. Thus, T−k
d
= sum of k independent copies of T−1. What immediately follows is,

hk(z) = h(z)k. [h(z) := h1(z)]
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Next, note that,

h(z) =
∞∑
k=0

E(zT−1 |X1 = k)P(X1 = k)

=
∞∑
k=0

[ ∞∑
n=1

P(T−1 = n|X1 = k)zn

]
P(X1 = k)

=

∞∑
k=0

[ ∞∑
n=1

P(T−k = n− 1)zn

]
P(X1 = k)

[∵ X1 = k, we need Sn−1 − (n− 1) = −k.]

=

∞∑
k=0

[ ∞∑
n=1

zP(T−k = n− 1)zn−1

]
P(X1 = k)

= z

∞∑
k=0

hk(z)P(X1 = k) = z

∞∑
k=0

P(X1 = k)h(z)k

= zE(h(z)X1) = zg(h(z)).

Next,

[zn]h(z)k = [zn]hk(z) = P(T−k = n) =
k

n
P(Sn − n = −k) =

k

n
P(Sn = n− k)

=
k

n
[zn−k]g(z)n

[Since, Sn = sum of n independent copies of X1, pgf of Sn = g(z)n]

Thus, h(z) = zg(h(z)) has a solution for arbitrary non-negative p0( 6= 0), p1, · · · pn such

that
n∑
i=0

pi ≤ 1. The general conclusion follows by polynomial continuation.

5.3 Galton-Watson Forests

We discussed a random walk perspective of Branching Process in Section 3. The following
lemma states the bijection between lattice walks and plane forests formally, and can be
easily checked.

Lemma 5.7. Given a plane forest F of k trees with n vertices, let xi be the number of
children of vertex i in order of depth-first search. Then,

F ←→ (x1, x2, · · · , xn)

sets up a bijection between the set of plane forests with n vertices, k components and
sequences of non-negative integers (x1, x2, · · · , xn) such that the lattice walks with steps

12



xi−1 first reaches−k at time n. Moreover, if the trees of the forest are of sizes n1, n2, · · · , nk,
then for each 1 ≤ i ≤ k, the walk first reaches −i at the time n1 + n2 + · · ·+ ni, i.e., when
the depth-first search of the i-th tree is completed.

As an application of this lemma and cyclic shift lemma, we immediately arrive at these
following corollaries.

Corollary 5.8 (Enumeration of plane forests by type). The type of a forest F is the
sequence of of non-negative integers (ni), where ni is the number of vertices in F with
i children. Let 1 ≤ k ≤ n and let (ni) be a sequence of non-negative integers with∑

i

ni = n and
∑
i

ini = n− k. (8)

Then, a forest of type (ni) has n vertices and n − k non-root vertices, hence k roots
and k components. For 1 ≤ k ≤ n and (ni) subject to equation (8) the number
Nplane(n0, n1, · · · ) of plane forests of type (ni) with k components and n vertices is,

Nplane(n0, n1, · · · ) =
k

n

(
n

n0, n1, · · · , nn

)
. (9)

Proof. We count the number of sequences of (x1, x2, · · · , xn) of non-negative integers such
that,

n0 = number of 0′s in (x1, x2, · · · , xn)

n1 = number of 1′s in (x1, x2, · · · , xn)

.

.

.

nn = number of n′s in (x1, x2, · · · , xn)

Number of such sequences=

(
n

n0, n1, · · · , nn

)
Hence, by cyclic shift lemma, number of such sequences such that the lattice walk with

steps xi − 1 hits −k for the first time at time n =
k

n

(
n

n0, n1, · · · , nn

)
Thus, by an application of Lemma 5.7,

Nplane(n0, n1, · · · ) =
k

n

(
n

n0, n1, · · · , nn

)
.

�
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Corollary 5.9 (Enumeration of labeled forests by type). For 1 ≤ k ≤ n and (ni)
subject to equation (8), the number of N [n](n0, n1, · · · ) of forests labeled by [n] of type
(ni) with k components and n vertices is,

N [n](n0, n1, ...nn) =
k

n

(
n

k

)
(n− k)!∏
i≥0(i!)ni

(
n

n0, n1, · · · , nn

)
. (10)

Proof. To count labeled forest of type (ni), we need to count number of ways to label an
unlabeled tree of type (ni) by [n]. First, we label the roots of the forest, which can be done

in

(
n

k

)
ways. For the non-root vertices, for each permutation of their labels a new labeled

tree is listed. Also, permuting the labels of children of same parent does not change the
labeled tree. Thus, we conclude,

N [n](n0, n1, ...nn) =

(
n

k

)
(n− k)!∏
i≥0(i!)ni

Nplane(n0, n1, · · · )

=
k

n

(
n

k

)
(n− k)!∏
i≥0(i!)ni

(
n

n0, n1, · · · , nn

)
�

The next theorem is not a direct consequence of previously stated lemmas. Still it being
very similar to the previous results, is enlisted here.

Theorem 5.10 ((Enumeration of labeled forests by numbers of children). For all
sequences of non-negative integers (c1, c2, · · · , cn) with

∑
i
ci = n− k, the number

N(c1, c2, · · · , cn) of forests F with vertex set [n] in which vertex i has ci children for
each i ∈ [n] is,

N(c1, c2, · · · , cn) =
k

n

(
n

k

)(
n− k

c1, c2, · · · , cn

)
. (11)

Proof. For a labeled forest F with vertex set [n] and i ∈ [n], let Ji(F ) be the set of
children of i in F . So F is determined by the sequence of disjoint sets
J1(F ), J2(F ), · · · , Jn(F ), and vice-versa. Given a sequence of disjoint subsets J1, · · · , Jn of
[n], for each m ∈ [n] let fm be the relation on [m] ∪ (∪mi=1Ji) defined by,

i
fm−→ j iff i ∈ [m] and j ∈ Ji.

14



There exists a forest F labeled by [n] such that such that Ji(F ) = Ji for all i ∈ [n] if and
only if the Ji’s are such that fm is a forest with vertex set [m] ∪ (∪mi=1Ji) for every
m ∈ [n]. It follows that for each sequence of non-negative integers (ci) with

∑
i
ci = n− k,

the number

N(c1, c2, · · · , cn) := #{F ∈ Fk,n : #Ji(F ) = ci for all i ∈ [n]},

(where Fk,n :=set of all labeled forests with n vertices and k components) is the number of
ways to choose a sequence of subsets (J1, · · · , Jn) of [n] such that #Jm = cm and the
relation fm is a forest on vertex set [m] ∪ (∪mi=1Ji) for every m ∈ [n]. Clearly, J1 can be

any of the

(
n− 1

c1

)
subsets of [n] \ {1} of size c1. For m ∈ [n− 1] make the inductive

hypothesis that sets J1, · · · , Jm of sizes c1, · · · , cm respectively have been chosen such that
fm is a forest. Which choices of Jm+1 of size cm+1 makes fm+1 a forest? There are two
cases to consider:

(i) m+ 1 /∈ ∪mi=1Ji: then Jm+1 can be any subset of [n] \ ∪mi=1Ji \ {m+ 1};

(ii) m+ 1 ∈ ∪mi=1Ji: then Jm+1 can be any subset of [n] \ ∪mi=1Ji \ {rm+1}, where
rm+1 /∈ ∪mi=1Ji is the root of the tree component in fm that contains m+ 1.

Either way, regardless of choices of J1, · · · , Jm the number of possible choices of Jm+1 to

make fm+1 a forest is

(
n−

m∑
i=1

ci − 1

cm+1

)
. Consequently, by induction,

N(c1, · · · , cn) =

(
n− 1

c1

)(
n− c1 − 1

c2

)
· · ·
(
n−

n−1∑
i=1

ci − 1

cn

)

=
(n− 1)!

c1!(n− c1 − 1)!

(n− c1 − 1)!

c2!

(
n−

2∑
i=1

ci−1

)
!

· · ·

(
n−

n−1∑
i=1

ci − 1

)
!

cn!

(
n−

n∑
i=1

ci − 1

)
!

=
(n− 1)!

(k − 1)!

1

c1!c2! · · · cn!
[Since,

n∑
i=1

ci = n− k]

=
(n− 1)!

(k − 1)!(n− k)!

(n− k)!

c1!c2! · · · cn!

=

(
n− 1

k − 1

)(
n− k

c1, c2, · · · , cn

)
=
k

n

(
n

k

)(
n− k

c1, c2, · · · , cn

)
.

�
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6 A few more Proofs

There are many different methods to prove the Cayley’s Formula. Here, we include two
more methods that use the theorems and corollaries we have already discussed in the
report. Also, a complete proof of the Lagrange Inversion Formula is included in this
section.

6.1 A second proof of Cayley’s Formula

In view of multinomial theorem, equation (11) amounts to the following identity of
polynomials in n commuting indeterminates xi, 1 ≤ i ≤ n :

∑
F∈Fk,n

n∏
i=1

x
C(i,F )
i =

k

n

(
n

k

)
(x1 + · · ·+ xn)n−k, (12)

where C(i, F ) is the number of children of vertex i in forest F . Hence, taking all the xi’s
to be identically 1, we obtain,

#Fk,n =#Rooted, labeled forests on n vertices and having k components

= k

(
n

k

)
nn−k−1.

In particular, for k = 1, number of labeled rooted trees on n vertices= nn−1. Equivalently,
number of unrooted trees, labeled by [n] = nn−2.

6.2 A third proof of Cayley’s Formula

Suppose, t(n) denote the number of rooted trees on n vertices who are labelled by [n].
Then, the exponential generating function T (x) counting the number of rooted labelled
trees is defined as,

T (x) =
∑
n≥1

t(n)
xn

n!
.

For this exponential generating function T (x), we get this following identity (more details
of exponential generating functions are given in the Appendix),

T (x) = xeT (x)

We can use Lagrange Inversion Formula to find out the power series expansion of T (x)
explicitly. T (x) is the functional composition inverse of xe−x. In the Lagrange Inversion

formula n[xn]F (−1)(x)k = k[xn−k]

(
x

F (x)

)n
, take F (x) = xe−x and k = 1. Hence,
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F (−1)(x) = T (x) and,

n[xn]T (x) = [xn−1]
( x

xe−x

)n
=⇒ n

t(n)

n!
= [xn−1]enx

=⇒ n
t(n)

n!
=

nn−1

(n− 1)!

=⇒ t(n) = nn−1.

Hence, number of labeled rooted trees on n vertices= nn−1. Equivalently, number of
unrooted trees, labeled by [n] = nn−2.

6.3 A complete proof of Lagrange Inversion Formula

This proof is not seen as a direct consequence of the Cyclic Shift lemma. Instead we make
use of one of its Corollaries.

Theorem 6.1 (Lagrange Inversion Formula). Suppose G(x) ∈ K[[x]] with G(0) 6= 0, and
let f(x) be defined by

f(x) = xG((f(x))).

Then,
n[xn]f(x)k = k[xn−k]G(x)n.

Proof. Let G(x) be the exponential generating function of plane forests on n vertices,
labeled by [n].

G(x) =
∑
n≥0

tn
xn

n!
.

If σ is a labelled forest on [n], then let ri(σ) be the number of vertices with i children,

then define, tσ :=
∏
t
ri(σ)
i . Now set

sn =
∑
τ

tτ ,

where the sum runs over all rooted trees on [n]. Suppose,

f(x) =
∑
n≥1

sn
xn

n!

= t0x+ 2t0t1
x2

2!
+ (6t0t

2
1 + 3t20t2)

x3

3!
+ · · · .

17



If τ is a rooted tree on [n], whose root has k children, then τ is obtained by choosing a
root r ∈ [n] and then placing k rooted trees on remaining vertices [n] \ {r}. Hence, by
Multiplication principle of Exponential Generating Function,

f(x)k =
∑
n≥1

∑
ζ

tζ

 xn

n!
,

where ζ runs over all ordered k-tuples of rooted trees with total vertex set [n]. Thus (since
rooted trees are non-empty, so there are k! ways to order k of them on [n]),

1

k!
f(x)k =

∑
n≥1

(∑
σ

tσ

)
xn

n!
, (13)

where σ runs over all planted forests on [n] with k components. Next, by Multiplication
principle,

tk
k!
xf(x)k =

∑
n≥1

∑
ζ

tζ

 xn

n!
,

where now ζ runs over all rooted trees on [n] whose root has k children. Summing over all
k ≥ 1 yields, f(x) = xG((f(x))).
Now let k be any positive integer. Then, from equation (13) and recalling equation (10),
we obtain, [

xn

n!

]
1

k!
f(x)k =

[
xn

n!

]∑
n≥1

(∑
σ

tσ

)
xn

n!

=
k

n

(
n

k

) ∑
r0,r1,···

(n− k)!∏
i≥0(i!)ri

(
n

r0, r1, · · ·

)
tr00 t

r1
1 · · · ,

summed over all N-sequences r0, r1, · · · satisfying
∑
ri = n and

∑
iri = n− k.

Equivalently,

[xn]f(x)k =
k

n

∑
(r0,r1,··· ):

∑
ri=n&

∑
iri=n−k

(
n

r0, r1, · · ·

)
tr00 t

r1
1 · · ·

0!r01!r1 · · ·
.

But,

G(x)n =

(
t0 + t1

x

1!
+ t2

x2

2!
+ · · ·

)n
=

∑
r0+r1+···=n

(
n

r0, r1, · · ·

)
tr00 t

r1
1 · · ·

0!r01!r1 · · ·
x
∑
iri .

Thus, [xn]f(x)k =
k

n
[xn−k]G(x)n, as desired.
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Note that the above is a general and complete proof of Lagrange Inversion Formula.
Though, the used G(x) and f(x) has some special structure counting trees, they are
written in terms of indeterminates t0, t1, · · · . Any two power series G1(x) and f1(x)
obeying f1(x) = xG1((f1(x))), can be written in form of the used G(x) and f(x) by
assigning certain values to the indeterminates. This completes the proof. �

7 List of Referred Books and Notes

I referred to some parts of these following books and notes to prepare this report.

(i) Remco van der Hofstad. RANDOM GRAPHS AND COMPLEX NETWORKS
Volume I (Chapter 3).

(ii) Richard P. Stanley. Enumerative Combinatorics Volume II (Chapter 5).

(iii) J. Pitman. Combinatorial Stochastic Processes Ecole d’Eté de Probabilités de
Saint-Flour XXXII – 2002 (Chapter 6).

(iv) Lecture notes of a course in Combinatorics by Mark Haiman. (Available here.)

8 Conclusion

Here, I list the topics in order that I read and learnt while doing this project work.

(i) I revised the basics of Branching Processes before learning the Random Walk
perspective of Branching Processes and the Kemperman’s Formula.

(ii) I read a proof of Kemperman’s Formula using mathematical induction. Next, I learnt
the law of total progeny of a branching process.

(iii) The main topic, proof of Cayley’s formula came next.

(iv) For further reading, I consulted Stanley’s book (Enumerative Combinatorics Volume
II) to read tree counting in more detail and find how Lagrange Inversion Formula is
related. I also learnt exponential generating function here.

(v) Next, from Pitman’s book (Combinatorial Stochastic Processes Ecole d’Eté de
Probabilités de Saint-Flour XXXII – 2002), I read about cyclic shifts and Lagrange
Inversion. It gave some nice insight. I found a more intuitive proof of Kemperman’s
Formula here.

(vi) Finally, I wrapped with more detailed tree counting as consequences of cyclic shift
lemma.
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1 Introduction to Exponential Generating Functions and
Rooted labelled trees

Definition 1.1 (Exponential Generating Functions). f(n) be the number of ways to
impose a certain structure on a set of n elements. Then, F (n), the exponential generating
function of that specific structure is defined as,

F (n) =
∑
n

f(n)
xn

n!
.

Example 1.2. Consider the trivial structure, which is the structure of being a “set”.
Trivially, for any given set there can be only one such structure which is the one we
already have. Thus, for all n, f(n) = 1. Thus, the exponential generating function is,

F (x) = 1 + 1.
x

1!
+ 1.

x2

2!
+ 1.

x3

3!
+ · · · = ex.

1.1 Addition and Multiplication Principle

In order to be able to apply exponential generating functions, we need to know what it
means to add or multiply them. Say we have some kinds of structures, f -structures,
g-structures, h-structures. We let f(n), g(n) and h(n) be respectively the number of f, g
and h-structures on a set of size n. Their generating functions are respectively F (x), G(x)
and H(x).

Result 1.3 (Addition principle for exponential generating functions). Suppose that the
set of f -structures on each set is the disjoint union of the sets of g-structures and
h-structures on that set. Then,

F (x) = G(x) +H(x).

Example 1.4. The addition principle is rather obvious. To illustrate this, we may again
use the structure of being a “set”. Trivially, for any given set, it can be either empty or
non-empty and these two structures are mutually exclusive. So, if one defines f =trivial
structure, g =empty set structure and h =non-empty set structure, it follows that,
F (x) = G(x) +H(x). Now, g(n) = 1 if n = 0, and g(n) = 0 for any other n ≥ 1. On the
other hand, h(n) = 0 if n = 0, and h(n) = 1 for any other n ≥ 1. Thus, G(x) = 1 and
H(x) = ex − 1. That makes, F (x) = ex which matches our previous example.

Result 1.5 (Multiplication principle for exponential generating functions). Say, X is any
given set. Then, number of f -structures on X follows the following rule,

f(|X|) =
∑
(S,T )

g(|S|)h(|T |),

where (S, T ) runs over all weak ordered partitions of X into two blocks, i.e., S ∩ T = φ
and S ∪ T = X. Then,

F (x) = G(x)H(x).
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Example 1.6. We aim to find the exponential generating function counting the number
of non-empty subsets of a n-element set, A. We might partition A in A1 and A2 such that,
A1 will be considered the subset. Then A1 will need to have the structure of “non-empty
set”, while A2 is required to have the trivial structure of being a “set”. Generating
functions associated with the structure of A1 and A2 are respectively G(x) = ex − 1 and
H(x) = ex. Thus, the required generating function is,

F (x) = G(x)H(x) = (ex − 1)(ex) = e2x − ex =
∑
n≥0

(2n − 1)
xn

n!
.

This is the expected answer, since we knew that there are (2n − 1) many subsets of an
n-element set.

1.2 Composition Principle

This principle exhibits the real strength of exponential generating function. We shall
assume f, g and h-structures and their generating functions to be F (x), G(x) and H(x) as
before. We have one additional restriction that, h(0) = 1.

Result 1.7 (Composition principle for exponential generating functions). Say, X is any
given set. Then, number of f -structures on X follows the rule,

f(|X|) =
∑

π ∈Π(X)

g(|B1|)g(|B2|) · · · g(|Bk|)h(k), |X| > 0,

f(0) = 1,

where the sum ranges over all partitions π = {B1, B2, · · · , Bk} of the finite set X. Then,

F (x) = H(G(x)).

(Here, G(x) =
∑
n≥1

g(n)
xn

n!
, since g is defined on positive integers only. )

Example 1.8. Let f(n) be the number of ways for n persons to form into non-empty
lines and then arrange the lines in a circular order. There are g(j) = j! ways to arrange j
people in a line and h(k) = (k − 1)! ways to circularly arrange k(> 0) lines. Thus,

G(x) =
∑
n≥1

n!
xn

n!
=

x

1− x

H(x) = 1 +
∑
n≥1

(n− 1)!
xn

n!
= 1 +

1

log(1− x)
.
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Hence,

F (x) = H(G(x))

= 1 + log

(
1− x

1− x

)−1

= 1 + log(1− 2x)−1 − log(1− x)−1

= 1 +
∑
n≥1

(2n − 1)(n− 1)!
xn

n!
.

Thus, f(n) = (2n − 1)(n− 1)!. This result can be verified by direct combinatorial
argument.

1.3 Exponential Generating Function for Rooted Labelled Trees

Let t(n) denote the number of rooted labelled trees on an n-element set. We also assume
t(0) = 0, i.e., the empty tree is not counted as a labelled tree. Then the corresponding
exponential generating function is,

T (x) =
∑
n≥1

t(n)
xn

n!
.

Now, we observe that a rooted forest structure consists of smaller rooted forests each of
whose roots are joined to the root of the entire forest. So, let us name some smaller
structures. Say, g-structure = singleton set, h-structure = set. Then, G(x) = x and
H(x) = ex. Then, using the multiplication and composition principles,

T (x) = G(x)H(T (x)) = xeT (x). (14)

Using the above identity, T (x)e−T (x) = x. Here, substituting T−1(x) in place of x yields
T−1(x) = xe−x. In order to obtain an explicit formula for t(n), we shall have to find a
power series expansion for T (x). Lagrange Inversion Formula helps us obtain the power
series expansion. The inversion formula is discussed in detail in a Subsection 5.2. The
proof is given in short in Subsection 6.2.
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