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1 Introduction

Erdős-Rényi model for random graphs is one of the most popular models in graph
theory. They are named after mathematicians Paul Erdős and Alfréd Rényi, who
first introduced one of the models in 1959, while Edgar Gilbert introduced the other
model contemporaneously and independently of Erdős and Rényi. There are two
closely related variants of the Erdős–Rényi random graph model.

• In the G(n,M) model, a graph is chosen uniformly at random from the collection
of all graphs which have n nodes and M edges.

• In the G(n, p) model, a graph is constructed by connecting nodes randomly.
Each edge is included in the graph with probability p independent from every
other edge.

However, for the rest of this article, we shall be considering the G(n, p) model for our
purpose.

2 Degree Sequence of the Erdős-Rényi Random Graph

In this section, we would like to investigate the nature of the degree of a uniformly
selected vertex given an Erdős-Rényi random graph. Since the vertex to be selected
is arbitrary, its distribution will asymptotically be same as the empirical distribution
of all the vertices given the graph. Suppose the graph has n vertices and Di denote
the degree of vertex i. Then the empirical degree distribution will be

P
(n)
k =

1

n

∑
i∈[n]

1{Di=k}

Remark. Even if we fix a vertex and check its degree the distribution will be same,
but the choice should be arbitrary i.e. there is a fair possibility of occurrence of
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an isolated vertex. If we intentionally choose that one, the result will obviously not
follow.

Now, let’s do some simulations and try to figure out how the distributions will
look like.

2.1 Simulation of ER Random graphs with Different Parameters

For the simulation, we have used a R-package called ”igraph”. It allows us to generate
the graph right away and also can calculate the degree distribution with built-in
commands. Once the graph is generated, we have taken its degree distribution and
compared it to the poisson pmf side by side using ’barplot’.For some given parameter,
say ’n’ and ’λ/n’, we compare the degree distributopn with the pmf of Poisson(λ).
The code will look like the following:

> in s ta l l . packages ( ” igraph ” )
> l ibrary ( igraph )
> g = erdos . r eny i . game(n ,\ lambda/n , type=”gnp” , d i r e c t e d=FALSE,

loops=FALSE)
> l = length ( degree . d i s t r i b u t i o n ( g ) )
> barplot ( rbind ( degree . d i s t r i b u t i o n ( g ) , dpois ( c ( 0 : l −1) ,\ lambda ) )

, be s ide = TRUE, xlab = ”Degree” , ylab = ” Proport ion ” )

The followings are some of the simulations with proper parameters.

Figure 1: The degree distribution of ERn(λ/n) with n = 10000 and λ = 1 (in the left) and the
probability mass function of a Poisson random variable with parameter 1
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2.2 Main Theorems and Results

Now, we can have an intuition that the distributions follow power law which is the
following:

Definition 2.1 (Power Law). A Power Law is a function f(x) where the value y
is proportional to some power of the input x i.e. f(x) = y = x−α If the function
describes the probability of being greater than x, it is called a power law distribution
(or cumulative distribution function - CDF) and is denoted P (> x) = x−α

In this section we will mainly focus on proving the following theorem. In order to
be able to state the result, we first introduce some notation. We write

pk = e−λ
λk

k!

for the Poisson probability mass function with parameter λ.

Theorem 2.1 (Degree sequence of the Erdős-Rényi random graph). Fix λ > 0.
Then, for every εn such that nε2n →∞,

Pλ

(
max
k≥0
|P (n)
k − pk| ≥ εn

)
→ 0

Remark. The proof involves some ideas and results of coupling which we shall discuss
in the next section in details.

Proof. First, note that,

Eλ

[
P

(n)
k

]
= Eλ

 1

n

∑
i∈[n]

1{Di=k}

 = Pλ (D1 = k) =

(
n− 1

k

)(
λ

n

)k(
1− λ

n

)n−1
becauseD1 ∼ Bin(n−1, λ

n
) i.e. node 1 has n−1 edges to connect each with probability

λ
n
. Now,∑
k≥0

∣∣∣pk −Eλ[P (n)
k ]
∣∣∣ =

∑
k≥0

∣∣pk −Pλ (D1 = k)
∣∣ =

∑
k≥0

∣∣Pλ (X∗ = k)−Pλ (Xn = k)
∣∣

where X∗ ∼ Poi(λ) and Xn ∼ Bin
(
n− 1, λ

n

)
. We shall bound the difference by

a coupling argument as follows. Let Yn be a random variable following binomial
distribution with parameter n and p = λ

n
. Then, Yn can be written as Yn = Xn + In

where In ∼ Ber
(
λ
n

)
and Xn and In are independent. We can couple Yn and Xn such
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that the probability that they are different is bounded by,∑
k≥0

|P(Xn = k)−P(Yn = k)|

=
∑
k≥0

|P(Xn = k)−P(Xn = k, In = 0)−P(Xn = k − 1, In = 1)|

=
∑
k≥0

∣∣∣∣P(Xn = k)−
(

1− λ

n

)
P(Xn = k)− λ

n
P(Xn = k − 1)

∣∣∣∣
=
λ

n

∑
k≥0

|P(Xn = k)−P(Xn = k − 1)|

≤ 2λ

n

Therefore, for all k ≥ 0, we have,∑
k≥0

|P(Xn = k)−P(X∗ = k)|

=
∑
k≥0

|P(Xn = k)−P(Yn = k)|+
∑
k≥0

|P(X∗ = k)−P(Yn = k)|

≤ 2λ

n
+
∑
k≥0

|P(X∗ = k)−P(Yn = k)| ≤ 2λ+ λ2

n

The last part of the equation seems strange as we have used a result due to coupling
there which we shall discuss in the following section.

Now, since λ fixed, for sufficiently large n, we shall get 2λ+λ2

n
≤ εn

2
and thus we

have shown that for sufficiently large n, the sum
∑

k≥0 |P(Xn = k)−P(X∗ = k)| is
bounded by εn

2
. Therefore we have gathered the results needed to prove the actual

theorem.
From triangle inequality, it follows that,∣∣∣P (n)

k − pk
∣∣∣ ≤ ∣∣∣P (n)

k −Eλ
[
P

(n)
k

]∣∣∣+
∣∣∣Eλ [P (n)

k

]
− pk

∣∣∣
=⇒

∣∣∣P (n)
k − pk

∣∣∣ ≤ ∣∣∣P (n)
k −Eλ

[
P

(n)
k

]∣∣∣+
∑
k≥0

∣∣∣Eλ [P (n)
k

]
− pk

∣∣∣
=⇒

∣∣∣P (n)
k − pk

∣∣∣ ≤ ∣∣∣P (n)
k −Eλ

[
P

(n)
k

]∣∣∣+
εn
2

=⇒ max
k≥0

∣∣∣P (n)
k − pk

∣∣∣ ≤ max
k≥0

∣∣∣P (n)
k −Eλ

[
P

(n)
k

]∣∣∣+
εn
2

=⇒ Pλ

(
max
k≥0
|P (n)
k − pk| ≥ εn

)
≤ Pλ

(
max
k≥0

∣∣∣P (n)
k −Eλ

[
P

(n)
k

]∣∣∣ ≥ εn
2

)
Thus, it is enough to show that,

Pλ

(
max
k≥0

∣∣∣P (n)
k −Eλ

[
P

(n)
k

]∣∣∣ ≥ εn
2

)
= o(1)
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Now, we shall use Boole’s Identity that gives us,

Pλ

(
max
k≥0

∣∣∣P (n)
k −Eλ

[
P

(n)
k

]∣∣∣ ≥ εn
2

)
≤
∑
k≥0

Pλ

(∣∣∣P (n)
k −Eλ

[
P

(n)
k

]∣∣∣ ≥ εn
2

)
Then, for a fixed k ≥ 0, by Chebychev’s Inquality, we get,

Pλ

(∣∣∣P (n)
k −Eλ

[
P

(n)
k

]∣∣∣ ≥ εn
2

)
≤ 4Varλ(P

(n)
k )

ε2n

Thus, all that is left to show is that the right hand side of the above inequality
goes to 0. So, we start calculating the variance. Now, we have to keep in mind that
Di’s are identically distributed, but not independent. Hence,

Varλ(P
(n)
k ) = Varλ

 1

n

∑
i∈[n]

1{Di=k}


=

1

n2

∑
i∈[n]

Varλ
(
1{Di=k}

)
+
∑
i 6=j

Covλ
(
1{Di=k},1{Dj=k}

)
=

1

n

[
Pλ(D1 = k)−Pλ(D1 = k)2

]
+
n− 1

n

[
Pλ(D1 = D2 = k)−Pλ(D1 = k)2

]
Here, we again use a coupling argument. Let, X1, X2

i.i.d∼ Bin(n − 2, λ/n), and
I1, I2 are two independent Bernoulli random variables with success probability λ/n.
Then, the distribution of (D1, D2) is the same as the one of (X1 + I1, X2 + I1) while
(X1 + I1, X2 + I2) are two independent copies of D1. Thus,

Pλ(D1 = D2 = k) = Pλ((X1 + I1, X2 + I1) = (k, k))

Pλ(D1 = k)2 = Pλ((X1 + I1, X2 + I2) = (k, k))

So, we have,

Pλ(D1 = D2 = k)−Pλ(D1 = k)2

= Pλ((X1 + I1, X2 + I1) = (k, k))−Pλ((X1 + I1, X2 + I2) = (k, k))

≤ Pλ
(
(X1 + I1, X2 + I1) = (k, k)), (X1 + I1, X2 + I2) 6= (k, k)

)
It can happen only when I1 6= I2. If, I1 = 0, then I2 = 1 and X1 = k and when,
I1 = 1. then I2 = 0 and X2 = k − 1. Thus,

Varλ(P
(n)
k ) ≤ 1

n
Pλ(D1 = k) +

λ

n
[Pλ(X1 = k) +Pλ(X2 = k − 1)]
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Thus, from the previous inequality we get,

Pλ

(
max
k≥0

∣∣∣P (n)
k −Eλ

[
P

(n)
k

]∣∣∣ ≥ εn
2

)
≤ 4

ε2n

∑
k≥0

[
1

n
Pλ(D1 = k) +

λ

n
Pλ(X1 = k) +Pλ(X2 = k − 1)

]
=

4(2λ+ 1)

ε2nn
→ 0

since nε2n →∞.

3 Coupling

Coupling is a very useful tool for proving results in statistics and probability theory.
In this section, we shall discuss what a coupling is, and prove some results that we
have used previously in the previous theorem. Two random variables, let say X and
Y are said to be coupled, if they are defined on the same probability space, but have
specific marginal distribution. The random variables are defined on same probability
space means that, there exist a joint distribution of X and Y say, P such that,
P(X ∈ E , Y ∈ F) for all events E and F .

Definition 3.1 (Coupling of Random Variables). The random variables (X̂1, X̂2, . . . , X̂n)

are a coupling of the random variables X1, X2, . . . , Xn, when (X̂1, X̂2, . . . , X̂n) are de-

fined on the same probability space and are such that the marginal distribution of X̂i

is same as that of Xi for all i = 1, 2, . . . , n that is for all measurable set E ∈ R,

P(X̂i ∈ E) = P(Xi ∈ E)

Remark. While the random variables X1, X2, . . . , Xn may not be defined on one prob-
ability space, the coupled random variables (X̂1, X̂2, . . . , X̂n) are defined on the same

probability space. The coupled random variables (X̂1, X̂2, . . . , X̂n) are related to the
original random variables X1, X2, . . . , Xn by the fact that the marginal distributions
of (X̂1, X̂2, . . . , X̂n) are equal to those of the random variables X1, X2, . . . , Xn.

Couplings are useful to prove that random variables are related. We now describe
a general coupling between two random variables that makes them equal with high
probability. Let, X and Y be two discrete random variables with the following prob-
ability mass functions

P(X = x) = px P(Y = y) = qy x ∈ X , y ∈ Y

Now, a convenient distance between discrete probability distributions (px)x∈X and
(qy)y∈Y is the total variation distance between the discrete probability mass functions
(px)x∈X and (qy)y∈Y .
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Definition 3.2 (total variation distance). For two probability measures µ and ν, the
total variation distance between them is defined as

dTV (µ, ν) = sup
A⊆R
|µ(A)− ν(A)|

where, µ(A) and ν(A) are the probabilities of the event A under the measures and
the supremum is taken over all the possible Borel Subsets A of R.

For discrete probability mass functions,according to the above example we have,

µ(A) =
∑
a∈A

pa ν(A) =
∑
a∈A

ya A = X ∪ Y

and the total variation distance between them will be

dTV (p, q) = sup
A∈R

∣∣∣∣∣∑
a∈A

(pa − ya)

∣∣∣∣∣ = max

{∑
x

(px − (px ∧ qx)),
∑
x

(qx − (px ∧ qx))

}

=
1

2

∑
x

|px − qx|

For continuous random variables, the expressions are analogical. If F and G are two
distribution functions corresponding to two continuous densities f = (f(x))x∈X and
g = (g(y))y∈Y respectively, then the total variation distance will be,

dTV (f, g) =
1

2

∫ ∞
−∞
|f(x)− g(x)|dx

Theorem 3.1 (Maximal coupling). For any two discrete random variables X and Y

, there exists a coupling (X̂, Ŷ ) of X and Y such that,

P(X̂ 6= Ŷ ) = dTV (p, q)

while, for any other coupling, we have,

P(X̂ 6= Ŷ ) ≥ dTV (p, q)

Proof. We start by defining the coupling that achieves the equality. For this, we
define the random vector (X̂, Ŷ ) by,

P(X̂ = Ŷ = x) = px ∧ qx

P(X̂ = x, Ŷ = y) =
(px − (px ∧ qx))(qy − (py ∧ qy))

1
2

∑
z |pz − qz|

, x 6= y

First of all, observe that,∑
x

(px − (px ∧ qx)) = 1−
∑
x

(px ∧ qx) =
∑
x

(qx − (px ∧ qx))

= 1− 1

2

∑
x

(|px + qx| − |px − qx|) =
1

2

∑
x

|px − qx|
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Thus, the joint distribution defined above is indeed a probability distribution. Also
note that,

P(X̂ = x) = px P(Ŷ = y) = qy

Then,

P(X̂ 6= Ŷ ) = 1−P(X̂ = Ŷ ) = 1−
∑
x

(px ∧ qx) =
1

2

∑
x

|px − qx|

This proves the first part of the theorem.
For the latter part, we proceed as follows. For all x, and any coupling (X̂, Ŷ ) of X
and Y , we must have,

P(X̂ = Ŷ = x) ≤ P(X̂ = x) = P(X = x) = px

and also,
P(X̂ = Ŷ = x) ≤ P(Ŷ = x) = P(Y = x) = qx

which implies that,

P(X̂ = Ŷ = x) ≤ (px ∧ qx)

=⇒ P(X̂ = Ŷ ) =
∑
x

P(X̂ = Ŷ = x) ≤
∑
x

(px ∧ qx)

=⇒ P(X̂ 6= Ŷ ) = 1−P(X̂ = Ŷ ) ≥ 1−
∑
x

(px ∧ qx) =
1

2

∑
x

|px − qx|

The coupling above attains this equality, which makes it the best coupling possible,
in the sense that it maximizes P(X̂ = Ŷ ).

The following theorem is going to explain the result we used earlier in the preceding
section.

Theorem 3.2 (Poisson limit for binomial random variables). Let (Ii)
n
i=1 be indepen-

dent with Ii ∼ Ber(pi), and let λ =
∑n

i=1 pi. Let X =
∑n

i=1 Ii and Y be a Poisson

random variable with parameter λ. Then there exists a coupling (X̂, Ŷ ) of random
variables X and Y such that

P(X̂ 6= Ŷ ) ≤
n∑
i=1

p2i

Consequently, for any λ ≥ 0 and n ∈ N, there exists a coupling (X̂, Ŷ ) of random
variables X and Y where X ∼ Bin(n, λ/n) and Y ∼ Poi(λ) such that

P(X̂ 6= Ŷ ) ≤ λ2

n

Proof. Let us define random variables Ji ∼ Poi(pi) for all i = 1, 2, . . . , n and they are
independent. Moreover we write their p.m.fs as

pi,x = P(Ii = x) = pi1{x=1} + (1− pi)1{x=0}
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qi,x = P(Ji = x) = e−pi
pxi
x!

Let, (Îi, Ĵi) be a coupling of Ii and Ji where (Îi, Ĵi) are independent for different i.

Now, for each pair Ii,Ji, the maximal coupling (Îi, Ĵi) described above satisfies

P(Îi = Ĵi = x) = pi,x ∧ qi,x =


1− pi x = 0

pie
−pi x = 1

0 x ≥ 2

Thus, we obtain,

P(Îi = Ĵi) = 1−P(Îi 6= Ĵi) = 1− (1− pi)− (pie
−pi) = pi(1− e−pi) ≤ p2i

Now, let X̂ =
∑n

i=1 Îi and Ŷ =
∑n

i=1 Ĵi. Then X̂ has the same distribution as

X =
∑n

i=1 Ii and Ŷ has the same distribution as Y =
∑n

i=1 Ji ∼ Poi(p1+p2+· · ·+pn).
Finally, by Boole’s Inequality, we obtain

P(X̂ 6= Ŷ ) ≤ P

(
n⋃
i=1

{Îi 6= Ĵi}

)
≤

n∑
i=1

P

(
Îi 6= Ĵi

)
≤

n∑
i=1

p2i

For the later part, we choose pi = λ/n and the result follows.
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