Game Theory - Problem Set 2

September 13, 2008

1. Find the set of rationalizable strategies of each player in the games below. In the last game $\alpha \in (0, 1)$.

	A	B	C	D
A	0,7	2, 5	7,0	0, 1
В	5, 2	3, 3	5, 2	0, 1
C	7,0	2, 5	0,7	0, 1
D	0,0	0, -2	0,0	10, -1
	A	B	C	D
A	2,9	4,7	9, 2	2, 3
B	7,4	5,5	7, 4	2, 3
C	9, 2	2, 4, 7	2, 9	2, 3
D	2,2	2, 0	2, 2	12, 1
		H	T	
	H	1, -1	-1,	1
B -1, 1		1, -1		
	C	lpha, 0	$\alpha, 0$)

2. Consider the two-person game $\Gamma = (\{1, 2\}, S_1, S_2, \pi_1, \pi_2)$ where $\pi_i(s_i, s_j) = s_i(30 - 3s_1 - 3_2)$. Determine the set of rationalizable strategies for each player. 3. Consider an *n* firm quantity setting game where the cost function for firm *i* is given by $C_i(x_i) = c_i \cdot x_i$ where $c_i \ge 0$. The inverse demand function is given P(X) = a - bX where a, b > 0 and $X = x_1 + \ldots + x_n$. The payoff function for firm *i* is therefore $\pi_i(x_1, \ldots, x_n) = (a - b(\sum_j x_j)x_i - c_i \cdot x_i)$.

(i) Compute a (pure strategy) Nash equilibrium for the game. Compute also the equilibrium price.

(ii) What happens to the equilibrium quantity choice of firm j if there is an increase in firm i's cost; i.e in c_i ? What happens to equilibrium price?

4. Consider a firm where there is an employer and a worker. The employer provides capital K and the worker, labour L to produnce output $Y = \sqrt{KL}$ which they share equally. The two parties determine their investment levels (i.e. the employer's K and the worker's L) simultaneously. The per-unit costs of providing capital and labour are $r \geq \frac{1}{4}$ and $c \geq \frac{1}{4}$ respectively. The worker cannot provide more than $\overline{L} > 0$ units of labour. The payoffs to the employer and worker are therefore $\frac{1}{2}\sqrt{KL} - rK$ and $\frac{1}{2}\sqrt{KL} - cL$ respectively. Find all rationalizable strategies for the two players.

5. Find all pure and mixed strategy Nash equilibria in the games below. (i) ъ*г* ъ

(ii)

$$\begin{array}{ccccccc} L & M & R \\ U & 1,3 & 0,0 & 2,-1 \\ M & 0,0 & 4,2 & 0,-2 \\ D & 0,1 & 0,1 & 0,0 \end{array}$$

6. Find all pure and mixed strategy Nash equilibria in the three person game below where players choose rows, columns and matrices.

$$\begin{pmatrix} 1,1,1 & 0,0,0 \\ 0,0,0 & 0,0,0 \end{pmatrix} \qquad \begin{pmatrix} 0,0,0 & 0,0,0 \\ 0,0,0 & 2,2,2 \end{pmatrix}$$

7. Prove that in a 2×2 game (2 players each of whom has 2 strategies) cannoy have exactly 1 pure strategy and 1 completely mixed strategy Nash equilibrium.

8. Assume that the inverse demand function facing an industry producing a homogenous good is given by $P(X) = \sqrt{(\frac{1}{X} - 1)}$. Consider the duopoly quantity setting game where each player's strategy set is $[0, \frac{1}{2}]$. Prove that the payoff function of each player is concave with respect to her strategy. Compute the best reply function of each player and the Nash equilibrium outcome.

9. Players 1 and 2 choose an element of the set $\{1, ..., K\}$. If the players choose the same number, then player 2 pays 1 to player 1; otherwise no payment is made. Find all pure and mixed strategy Nash equilibria of this game.

10. A group of n students go to a restaurant. Each person will simultaneously choose his own meal but the total bill will be shared amongst all the students. If a student chooses a meal of price p and contributes x towards paying the bill, then his payoff is $\sqrt{p} - x$. Compute all pure strategy Nash equilibria of this game. Is the equilibrium unique? Symmetric? Discuss the limiting cases of n = 1 and $n \to \infty$.

11. Consider the class of symmetric two person games described below.

$$\begin{array}{ccc} H & T \\ H & a, a & 0, 0 \\ B & 0, 0 & b, b \end{array}$$

Derive the set of all (pure and mixed) Nash equilibria for all games where $a \neq b, a \neq 0$ and $b \neq 0$. Which of these games admit asymmetric equilibria? (We say s^* is a symmetric equilibrium if $s_1^* = s_2^*$).

12. Each of $n \geq 2, i = 1, ..., n$ can make contributions $s_i \in [0, w]$ (w > 0)to the production of some public good. Their payoff functions are given by $\pi_1(s_1,..,s_n)=n\min\{s_1,..,s_n\}-s_i.$ Find all pure strategy Nash equilibria in the game.

13. Consider the two person game below.

$$\begin{array}{ccccccc} A & B & C \\ A & 0,0 & 5,4 & 4,5 \\ B & 4,5 & 0,0 & 5,4 \\ C & 5,4 & 4,5 & 0,0 \end{array}$$

Show that the probability distribution over $\{A, B, C\}^2$ which assigns 0 to the diagonal elements and $\frac{1}{6}$ to all off-diagonal elements is a correlated equilibrium.