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Abstract

We study deterministic voting mechanisms by considering an ordinal notion of

Bayesian incentive compatibility (OBIC). If the beliefs of agents are independent and

generic, we show that a mechanism is OBIC and satisfies an additional condition called

elementary monotonicity if and only if it is a dominant strategy incentive compatible

mechanism. Our result works in a large class of preference domains (that include the

unrestricted domain, the single peaked domain, the single dipped domain, and some

single crossing domains). We can significantly weaken elementary monotonicity in our

result in the single peaked domain if we assume unanimity and in a large class of do-

mains if we assume unanimity and tops-onlyness.
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1 Introduction

In standard models of voting, dominant strategy incentive compatibility (DSIC) is usually

too demanding. This is illustrated by the Gibbard-Satterthwaite theorem (Gibbard, 1973;

Satterthwaite, 1975), which shows that the only DSIC and unanimous deterministic voting

mechanism in the unrestricted domain is a dictatorship. 1 This motivates the study of weaker

solution concepts in these models. In this paper, we consider ordinal Bayesian incentive

compatibility (OBIC) introduced by d’Aspremont and Peleg (1988). A voting mechanism is

OBIC if for every agent, his interim/expected outcome probability vector from truth-telling

first-order stochastic-dominates any interim outcome probability vector obtained by deviat-

ing. In the unrestricted domain of preferences, Majumdar and Sen (2004) show that OBIC

with independent and generic priors is equivalent to DSIC under unanimity. 2 We investigate

the robustness of this result to the unrestricted domain assumption.

We construct a non-DSIC, unanimous, and anonymous mechanism that is OBIC with

respect to some generic priors when the domain of preferences is restricted to be the single

peaked domain. However, our main results suggest that the equivalence between OBIC and

DSIC voting mechanisms can be restored in various restricted domains under weak addi-

tional axioms. The main additional axioms that we use are elementary monotonicity and its

weaker versions along with unanimity. Elementary monotonicity, which we formally define

later, is a very mild form of Maskin monotonicity, and requires a mechanism to respond

positively to changes in the preferences of agents. It is satisfied by a variety of mechanisms.

Our core result says that OBIC and elementary monotonicity are equivalent to DSIC

in a large class of domains. In the single peaked domain, the equivalence between OBIC

and DSIC holds with a significantly weaker version of elementary monotonicity if we assume

unanimity. If we assume unanimity and tops-onlyness, the weakened version of elementary

monotonicity and OBIC are equivalent to DSIC in a large class of domains.

Our results provide a foundation for using dominant strategy voting mechanisms in vari-

ous restricted domains. An implication of our results is that if we want to design Bayesian in-

centive compatible voting mechanisms, we must consider randomized and/or cardinal mech-

anisms. All our results hold even if we weaken OBIC to only prevent manipulations of each

agent to his adjacent preferences - we call this requirement locally OBIC (LOBIC). Incentive

compatibility with local incentive constraints were recently studied in Carroll (2012) and

1Throughout the paper, we only consider deterministic voting mechanisms.
2We define a generic prior formally later - it is a generic subset of the set of independent priors.
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Sato (2013), who identified domains where local incentive constraints imply all incentive

constraints. All our proofs crucially use ideas from this literature. Thus, our results bring

together two different ideas (OBIC and local incentive compatibility) in strategic voting lit-

erature.

Our results extend the result in Majumdar and Sen (2004) by identifying the precise con-

nection between DSIC and OBIC mechanisms with (and without) unanimity in restricted

domains. Our results corroborate the different implications of OBIC with generic and uni-

form priors (a uniform prior requires that each preference in the domain is drawn with equal

probability). This is because Majumdar and Sen (2004) had shown that every neutral mech-

anism satisfying elementary monotonicity is OBIC under uniform priors in the unrestricted

domain - this covers many reasonable mechanisms. In contrast, our results show a very

different implication of elementary monotonicity with generic priors.

1.1 Relation to Literature

Our results parallel recent contributions in the single object auction quasilinear utility mod-

els (and some of its extensions) by Manelli and Vincent (2010) and Gershkov et al. (2013),

who establish a weaker version of equivalence between Bayesian incentive compatible and

DSIC mechanisms. The equivalence in these papers is in terms of interim outcome proba-

bilities. Besides, these papers look at cardinal mechanisms with quasilinearity, whereas ours

is a completely ordinal environment without transfer.

One way to interpret our results is that we are replacing DSIC by weaker axioms - LO-

BIC and some additional axioms. In a recent paper, such an approach of decomposing the

DSIC axiom is pursued in Muto and Sato (2014). They use three weaker axioms than DSIC

and show that they are equivalent to DSIC in the unrestricted domain. Though they do not

consider OBIC, some of their axioms (more precisely, some weakening of their axioms) are

implied by OBIC with generic priors. Their result only applies to the unrestricted domains,

while our results apply to restricted domains.

Besides Majumdar and Sen (2004), Bhargava et al. (2014) study OBIC voting mecha-

nisms with correlated priors in the unrestricted domain. They show that certain types

of correlation allows one to escape the Gibbard-Satterthwaite impossibility result. OBIC

mechanisms have been studied in the context of matching problems in Majumdar (2003);

Ehlers and Masso (2007, 2015). These papers study the implication of stability and OBIC in

two-sided matching problems. Though some of our results extend to private good allocation
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problems, most of our results are specific to voting environment.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3

formally states the unrestricted domain result and gives two counterexamples to show that

the result breaks down in a restricted domain or if the number alternatives is two. Section

4 formally defines all the domains we use in the paper. Section 5 contains all the results

and Section 5.5 gives specific examples of domains where our results can be applied. We end

with some discussions in Section 6.

2 The Model

We formally introduce our model in this section. Let A be a finite set of alternatives and

P be the set of all strict linear orders over A. Let D ⊆ P be some subset of strict linear

orders. We will refer to D as the domain. There are n agents. The set of agents is denoted

by N = {1, . . . , n}. The private preference/type of each agent i ∈ N is a strict linear order

Pi ∈ D.

A social choice function (scf) is a map f : Dn → A. 3

Definition 1 An scf f : Dn → A is dominant strategy incentive compatible (DSIC)

if for every i ∈ N , every P−i, and every Pi ∈ D, there exists no P ′
i ∈ D such that

f(P ′
i , P−i)Pif(Pi, P−i).

To introduce the notion of ordinal Bayesian incentive compatibility, we first define as-

sumption that we make about the priors in our model. We will assume that there are common

beliefs that each agent i independently draws his preference using a probability distribution

µi : D → [0, 1]. Hence, the belief of agent i that agents other than i have a preference pro-

file P−i will be denoted as µ(P−i) ≡ ×j 6=iµj(Pj). We will refer to {µi}i∈N as a profile of priors.

We make the following assumption about generic priors in the paper.

Definition 2 The profile of priors {µi}i∈N is generic if for every j ∈ N and for every

S, T ⊆ Dn−1 we have

[

∑

P−j∈S

µ(P−j) =
∑

P−j∈T

µ(P−j)
]

⇒ [S = T ].

3An scf is a direct revelation mechanism, and by the revelation principle, it is without loss of generality

to focus attention on such mechanisms.
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Genericity requires that if we consider an agent j and consider two distinct subsets of

profiles of preferences of agents in N \ {j}, then the probability that agents in N \ {j} have

preferences in these subsets cannot be the same. Mathematically, these priors are generic

in a topological sense (Majumdar and Sen, 2004) - to be precise, Majumdar and Sen (2004)

show this fact when D = P, but an identical proof works if D ⊆ P. 4 One notable prior

that is not generic is the uniform prior that assigns the same probability to all the preferences.

Given a social choice function f , we can compute the interim outcome probability of

each agent from this scf using the priors. For this, consider a profile of priors {µi}i∈N . For

each agent i ∈ N , define πf
i (a, Pi) as the interim outcome probability of the scf f choosing

alternative a when agent i reports Pi as his preference (and other agents report truthfully):

πf
i (a, Pi) =

∑

P−i∈Dn−1:f(Pi,P−i)=a

µ(P−i).

Note that πf
i depends on the priors, but we have suppressed it to make the notation less

complex.

For any alternative a ∈ A and any Pi ∈ D, let B(a, Pi) := {a} ∪ {b ∈ A : bPia}.

Definition 3 (d’Aspremont and Peleg (1988)) An scf f is ordinally Bayesian in-

centive compatible (OBIC) with respect to profile of priors {µi}i∈N if for every i ∈ N ,

for every Pi, P
′
i ∈ D, and for every a ∈ A, we have

∑

b∈B(a,Pi)

πf
i (b, Pi) ≥

∑

b∈B(a,Pi)

πf
i (b, P

′
i ).

An equivalent definition of OBIC is to require that for every i ∈ N , for every Pi, P
′
i ∈ D,

for every utility function u : A → R representing Pi, we have
∑

a∈A

u(a)πf
i (a, Pi) ≥

∑

a∈A

u(a)πf
i (a, P

′
i ).

A well known fact to note is that if an scf is OBIC with respect to all beliefs, then it is

DSIC.

Definition 4 An scf f is G-OBIC if there exists a profile of generic priors {µi}i∈N such

that f is OBIC with respect to {µi}i∈N .

G-OBIC requires OBIC with respect to some profile of generic priors (it may be just one

profile of generic priors), but need not be all profile of generic priors.

4 Denote by ∆ the unit simplex of dimension |D| − 1. The set of common independent beliefs is the n-th

order Cartesian product of unit simplices ∆, and is given by ∆n. The set of priors ruled out by genericity

are given by equations that define a finite set of hyperplanes in ∆n, which has Lebesgue measure zero in ∆n.
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3 The Unrestricted Domain Result

We now discuss the implication of G-OBIC along with unanimity in the unrestricted domain.

At any preference ordering P , we will denote by P (k) the k-th ranked alternative according

to P .

Definition 5 An scf f : Dn → A is unanimous if for every P ≡ (P1, . . . , Pn) with

P1(1) = . . . = Pn(1), we have f(P) = P1(1).

The following result extends the Gibbard-Satterthwaite theorem using G-OBIC in the

unrestricted domain.

Theorem 1 (Majumdar and Sen (2004)) Let |A| ≥ 3 and f : Pn → A be a unanimous

scf, where P is the unrestricted domain. Then, f is G-OBIC if and only if it is DSIC.

The proof of this result in Majumdar and Sen (2004) is direct. Instead of showing that ev-

ery unanimous and G-OBIC scf is DSIC, and then using the Gibbard-Satterthwaite theorem

to conclude dictatorship, they directly prove that G-OBIC and unanimity imply dictator-

ship. Hence, one does not obtain any intuition from their proof whether Theorem 1 will hold

in other domains.

3.1 A Two Alternatives Example

We give an example with two alternatives to show how Theorem 1 can break down. The

example gives insights on why G-OBIC and non-DSIC mechanism may exist when the as-

sumptions of Theorem 1 are relaxed.

Let A = {a, b} and N = {1, 2, 3}. We define an scf f̄ as follows. If all the agents have

the same top ranked alternative, then f̄ picks that alternative. Else, f̄ picks the alternative

which is top ranked for less number of agents.

Clearly, f̄ is unanimous. We next argue that f̄ is G-OBIC. Since there are only two

alternatives, we only need to show that πf̄
i (Pi(1), Pi) ≥ πf̄

i (Pi(1), P
′
i ) for all i ∈ N , for all

Pi, P
′
i . For simplicity, for every agent i ∈ N , we will denote the preference ordering where

a is top ranked as Pi and the preference ordering where b is top ranked as P ′
i . For every

i ∈ N , let the probability that agent i has type Pi be pi and the probability that he has type

P ′
i be (1−pi). Now, we can compute the interim allocation probabilities for agent 1 as follows.
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If agent 1 has type P1 (where a is top ranked), then the probability that b will be the

outcome in f̄ is the probability that agents 2 and 3 have different types. This probability is

exactly p2(1 − p3) + p3(1 − p2) = p2 + p3 − 2p2p3. Hence, if agent 1 has type P1, then the

probability that a will be the outcome in f̄ is 1− p2 − p3 + 2p2p3. An analogous calculation

can be used to compute interim outcome probabilities when agent 1 has type P ′
1. This is

summarized in Table 1.

P1 P ′
1

πf̄
1 (a, ·) 1− p2 − p3 + 2p2p3 p2 + p3 − 2p2p3

πf̄
1 (b, ·) p2 + p3 − 2p2p3 1− p2 − p3 + 2p2p3

Table 1: Interim outcome probabilities of agent 1 in f̄

The interim outcome probabilities of agents 2 and 3 can be computed in an analogous

manner. It is easily seen from Table 1 that OBIC constraints can be satisfied for agent 1

if and only if 1 − p2 − p3 + 2p2p3 ≥ p2 + p3 − 2p2p3, which is equivalent to requiring that

(1− 2p2)(1− 2p3) ≥ 0.

Collecting the OBIC constraints for all agents, we can then conclude that f̄ is OBIC if

and only if priors satisfy

(1− 2p2)(1− 2p3) ≥ 0

(1− 2p1)(1− 2p3) ≥ 0

(1− 2p1)(1− 2p2) ≥ 0

This is possible if and only if either p1, p2, p3 ∈ (0, 0.5) or p1, p2, p3 ∈ (0.5, 1). To see why

p1, p2, p3 can be picked such that the priors become generic, note that the set of priors satis-

fying either p1, p2, p3 ∈ (0, 0.5) or p1, p2, p3 ∈ (0.5, 1) is a subset of (0, 1)3 with a non-empty

interior. Hence, it will have a non-empty intersection with the set of generic priors. 5

Intuitively, if agent 1 has a as top, then the only profile where agent 1 gets a as outcome

are when the other two agents have the same preference. So, if the probability that any pair

of agents have the same preference is high enough, then interim outcome probability of a

will be high, and the mechanism will be OBIC. This is leading to the conditions we have

derived.

5For instance, one can verify that p1 = 0.49, p2 = 0.47, p3 = 0.43 results in generic priors.
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3.2 An Example in the Single Peaked Domain

We now extend the two alternatives example to the single peaked domain. Single peaked

domain is an important domain restriction in strategic voting literature with applications

in political economy and other disciplines. It is a domain where existence of anonymous,

unanimous, and DSIC scfs is guaranteed (Moulin, 1980), and thus, allows one to escape the

negative consequences of the Gibbard-Satterthwaite theorem. 6 In this domain, we give an

example of an scf with three alternatives and three agents that is G-OBIC, unanimous, and

anonymous but not DSIC. 7

The single peaked domain is defined as follows. Let ≻ be a strict linear order of the set

of alternatives A.

Definition 6 A preference ordering P is single peaked with respect to ≻ if for every b, c ∈ A

with P (1) ≻ b ≻ c or c ≻ b ≻ P (1), we have bP c.

We assume that A = {a, b, c} and N = {1, 2, 3}. Suppose the preferences are single

peaked with respect to the strict linear order ≻ given by a ≻ b ≻ c. The set of all single

peaked preference orderings with respect to ≻ is denoted by S. For this example, the domain

S is shown in Table 2, where each column is a preference in S.

a b b c

b a c b

c c a a

Table 2: The single peaked domain

Our scf considers the number of agents who prefer a to b and the number of agents who

prefer b to a. We say a is a loser in {a, b} at P if |{i ∈ N : aPib}| < |{i ∈ N : bPia}|. Else,

we say b is a loser in {a, b} at P. Now, the scf f ∗ is defined as follows. For any preference

profile P ∈ S3,

1. if all the agents have the same top ranked alternative then f ∗ chooses that alternative,

2. if all the agents do not have the same top ranked alternative but every agent prefers b

to a, then f ∗(P) = b,

6 Conversely, Chatterji et al. (2013) have shown that any domain that admits a “well-behaved” social

choice function must be roughly single peaked.
7Informally, anonymity requires that if we permute the preferences of agents and consider the new profile

of preferences, the outcome at the new profile must be the same as the old one.
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3. if both the above conditions fail, then f ∗ chooses the loser alternative at P.

The following proposition shows that f ∗ is G-OBIC.

Proposition 1 The scf f ∗ is unanimous, anonymous, and G-OBIC, but not DSIC.

The proof of Proposition 1 and all subsequent proofs are given in the Appendix. The intuition

for why Proposition 1 works is similar to that of the two alternatives example. In contrast

to the unrestricted domain, the set of preferences in the single peaked domain is less. This

allows us to extend the two alternatives example in a natural way to this domain. However,

in the unrestricted domain, there are too many manipulations to take care of, and these rules

fail to be G-LOBIC.

4 The Local Domains

We will now formally define the restricted domains that we investigate in this paper. For

each of these restricted domains, we show equivalence of G-OBIC and DSIC under some

additional conditions.

All our results work in a class of restricted domains that we call local domains. To

define these restricted domains, we first introduce the notion of local incentive compatibility.

Consider an agent i and two alternatives a, b ∈ A. Suppose Pi is a preference ordering such

that Pi(k) = a and Pi(k + 1) = b. Now, consider P ′
i such that P ′

i (k + 1) = a, P ′
i (k) = b,

and P ′
i (j) = Pi(j) for all j /∈ {k, k + 1}. In other words, a and b are consecutively ranked in

Pi, and P ′
i is constructed by swapping only their positions. In this case, we say that P ′

i is

a (a, b)-swap of Pi. Note that if P ′
i is an (a, b)-swap of Pi, then the position of b improves

from Pi to P ′
i . Hence, (a, b)-swap is different from (b, a)-swap.

Definition 7 An scf f is locally dominant strategy incentive compatible (LDSIC)

if for every i ∈ N , every P−i ∈ Dn−1, and every Pi ∈ D there exists no P ′
i ∈ D such that P ′

i

is an (a, b)-swap of Pi for some a, b ∈ A and

f(P ′
i , P−i)Pif(Pi, P−i).

Local DSIC only prevents manipulations across preferences which are swaps of each other.

Using the notion of LDSIC, we now define a class of domains.

Definition 8 A domain D is a local domain if every LDSIC f : Dn → A in that domain

is also DSIC.
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Many interesting domains like the unrestricted domain, the single peaked domain, and a

successive single crossing domain are known to be local domains (Carroll, 2012; Sato, 2013).

We formally define some of these domains in Section 5.5.

We now introduce a subclass of local domains where we have stronger results. These are

a class of local domains introduced in Sato (2013). Two preferences P and P ′ are adjacent

if there is x, y ∈ A such that P ′ is an (x, y)-swap of P .

Definition 9 A distinct sequence of preferences (P 0, P 1, . . . , P k, P k+1) in D is without

restoration if

• for every j ∈ {0, 1, . . . , k}, P j and P j+1 are adjacent,

• there exists no distinct j, j′ ∈ {0, 1, . . . , k} and x, y ∈ A such that P j+1 is a (x, y)-swap

of P j and P j′+1 is a (y, x)-swap of P j′.

A domain D is connected without restoration if for every P, P ′ ∈ D, there exists a

sequence of distinct preferences (P = P 0, P 1, . . . , P k, P k+1 = P ′) in D without restoration.

The without restoration property requires that no pair of alternatives is swapped more

than once along the sequence. Sato (2013) shows that if a domain is connected without

restoration, then it is a local domain. Further, he shows that the unrestricted domain and

the single peaked domain are connected without restoration.

We remark that besides the single peaked domain, there are other interesting domains

that are connected without restoration - see Sato (2013). We identify some specific domains

that are connected without restoration in Section 5.5.

For some of our results, we will impose the following richness condition.

Definition 10 A domain D is rich if for every alternative a, there exists a preference

ordering P ∈ D such that P (1) = a.

5 The Results

We will now present our results. Our results extend Theorem 1 to various restricted do-

mains we have discussed under additional conditions. We define and discuss the additional

conditions before stating the results. Though we use additional axioms, we use the following

weaker notion of incentive compatibility than G-OBIC.

10



Definition 11 An scf f is locally ordinally Bayesian incentive compatible (LO-

BIC) with respect to profile of priors {µi}i∈N if for every i ∈ N , for every Pi, P
′
i ∈ D such

that P ′
i and Pi are adjacent, and for every a ∈ A, we have

∑

b∈B(a,Pi)

πf
i (b, Pi) ≥

∑

b∈B(a,Pi)

πf
i (b, P

′
i ).

An scf f is G-LOBIC if there exists some profile of generic priors {µi}i∈N such that f is

LOBIC with respect to {µi}i∈N .

Clearly, if f is OBIC, then it is also LOBIC. In general, LOBIC is a very weak incentive

compatibility requirement since it requires only a small subset of incentive constraints to

hold. Further, LOBIC may not imply OBIC even in the local domain - local domain only

requires that LDSIC implies DSIC.

5.1 Equivalence in Local Domains

Our first result uses one of the following two axioms.

Definition 12 An scf f satisfies elementary monotonicity if for every i ∈ N , every

P−i ∈ Dn−1, and every Pi, P
′
i ∈ D such that P ′

i is a (a, b)-swap of Pi for some a, b ∈ A and

f(Pi, P−i) 6= a, we have f(P ′
i , P−i) 6= a.

The next axiom is similar in spirit to elementary monotonicity.

Definition 13 An scf f is positively responsive if for every agent i ∈ N , for every

preference profile P−i, and for every Pi, P
′
i , with f(Pi, P−i) = a and P ′

i (1) = a, we have

f(P ′
i , P−i) = a.

Both the axioms are one-agent axioms - we fix preferences of other agents at some P−i and

change the preference of agent i from Pi to P ′
i . These axioms require that the scf responds

in a positive manner if the change in preferences lifts the outcome. In case of elementary

monotonicity, the outcome is lifted from Pi to P ′
i by one position in a local way. In case of

positive responsiveness, the outcome is lifted to the top in P ′
i , but the ranking among other

alternatives are allowed to change. In both the cases, agent i is providing positive support

to the current outcome by lifting its position. In case of positive responsiveness, the support

is more natural because it is lifted to the top.

These are relatively weak axioms and satisfied by many well know social choice functions.

We refer to discussions on them in Moulin (1983); Majumdar and Sen (2004). We provide a

brief discussion on them in Section 6. We are now ready to state our first main result.
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Theorem 2 Let f : Dn → A be an scf. Consider the following statements

1. f is DSIC.

2. f is G-LOBIC and elementary monotone.

3. f is G-LOBIC and positively responsive.

Statements (1) and (2) are equivalent if D is a local domain. Statements (1), (2), and

(3) are equivalent if D is a rich connected domain without restoration.

Note that Theorem 2 does not assume unanimity. It also does not require any condition on

the range of the scf. An immediate corollary of Theorem 2 gives an indirect characterization

of local domains.

Corollary 1 Suppose D is any domain. Every scf on Dn satisfying elementary mono-

tonicity and G-LOBIC is DSIC if and only if D is a local domain.

Proof : Theorem 2 already establishes one direction. For the other direction, fix a domain

D where every scf satisfying elementary monotonicity and G-LOBIC is DSIC. By Lemma

5 every LDSIC scf satisfies elementary monotonicity and G-LOBIC. So, every LDSIC scf is

also DSIC. Hence, the domain is a local domain. �

Another corollary of Theorem 2 is about the n = 2 agents case. We show that Theorem 1

extends to n = 2 agents case (independent of number of alternatives) in every rich connected

domain without restoration.

Corollary 2 Suppose D is a rich connected domain without restoration and n = 2. Let

f : Dn → A be a unanimous scf. Then, f is DSIC if and only if it is G-LOBIC.

Corollary 2 explains why the scf in Proposition 1 had three agents.

5.2 Equivalence in Single Peaked Domain

We will now investigate subdomains where unanimity allows us to weaken elementary mono-

tonicity (or positive responsiveness). Our strongest result comes in the single peaked domain,

where we weaken elementary monotonicity as follows.

Fix a domain D. A profile of preferences P ∈ Dn is a top-2 profile if for every i, j ∈ N ,

Pi(k) = Pj(k) for all k > 2. At a top-2 profile, agents differ in their ranking of alternatives

only for the top two alternatives. Further, if (Pi, P−i) and (P ′
i , P−i) are two top-2 profiles,

then P ′
i is a (Pi(1), Pi(2))-swap of Pi. Let D

n(2) be the set of all top-2 profiles in D.
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P1 P2 P3 P ′
1 P2 P3

a a b b a b

b b a a b a

c c c c c c

d d d d d d

Table 3: Weak elementary monotonicity

Definition 14 An scf f : Dn → A satisfies weak elementary monotonicity if f re-

stricted to Dn(2) satisfies elementary monotonicity.

Note that weak elementary monotonicity is also a weakening of positive responsiveness

property since in the subdomain Dn(2), elementary monotonicity and positive responsiveness

is the same. Weak elementary monotonicity applies to very specific preference profiles. First,

it requires that P ′
i is a (Pi(1), Pi(2))-swap of Pi. Second, it requires that every agent in N\{i}

must have either Pi or P
′
i as his preference. A typical pair of preference profiles where weak

elementary monotonicity can be applied is shown in Table 3. We assume A = {a, b, c, d} and

a ≻ b ≻ c ≻ d and n = 3. Profiles (P1, P2, P3) and (P ′
1, P2, P3) in Table 3 differ in agent 1’s

preference and P ′
1 is a (a, b)-swap of Pi. Also, notice that a and b are neighbors in ≻, and

P2 = P1, P3 = P ′
1 (hence, P2 6= P3). Weak elementary monotonicity applies to such profiles

and requires that if f(P1, P2, P3) = b, then f(P ′
1, P2, P3) = b.

We now state our result for the single peaked domain.

Theorem 3 Suppose f : Sn → A is a unanimous scf, where S is the single peaked domain.

Then, the following statements are equivalent.

1. f is G-LOBIC and satisfies weak elementary monotonicity.

2. f is DSIC.

Since weak elementary monotonicity is a relatively weak condition, this result shows how

little is required on top of unanimity to get the counterpart of Theorem 1 in the single peaked

domain. In other words, though Theorem 1 breaks down in the single peaked domain, the

nature of the break down is very nuanced.

The result in Theorem 3 can also be extended to some extensions of single peaked domain.

For instance, Demange (1982) defines a notion of single peakedness on a tree graph, which

requires single peakedness along paths of a tree graph whose vertices are alternatives. Our

result can be easily extended to such a domain. Similarly, it can also be extended to multiple

single peaked domain discussed in Reffgen (2015).
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5.3 Equivalence in a Large Class of Local Domains

We now provide a generalization of Theorem 3 to a larger class of local domains with the

help of an additional axiom.

Definition 15 An scf f is tops-only if for every pair of profiles P and P′ in its domain

with Pi(1) = P ′
i (1) for all i ∈ N , we have f(P) = f(P′).

Tops-only property requires that the scf is only sensitive to the top ranked alternatives of

each agent. This is a well-studied axiom is social choice theory. In many domains, DSIC and

unanimity implies the tops-only property (Weymark, 2008; Saporiti, 2009; Chatterji and Sen,

2011). One of the motivations for using voting mechanisms which satisfy this axiom is

computational. Imagine a setting where agents are voting to choose a partition of a set of

objects - for instance, geographical districts are partitioned into electoral districts, a society is

partitioned into groups of individuals (Fishburn and Rubinstein, 1986; Chambers and Miller,

2011). The number of possible partitions of a finite set of objects is exponential in the number

of objects. In such a case, an scf satisfying the tops-only axiom is an attractive option. Tops-

onlyness and unanimity allows us to weaken positive responsiveness in Theorem 2.

Theorem 4 Suppose f : Cn → A is a tops-only and unanimous scf, where C is any connected

domain without restoration. Then, the following statements are equivalent.

1. f is G-LOBIC and satisfies weak elementary monotonicity.

2. f is DSIC.

The proof of Theorem 4 is given in the Appendix. The tops-only property is required in

the above theorem as the following example illustrates.

Example 1

Suppose A = {a, b, c, d} and N = {1, 2, 3}. Consider the domain of preferences shown in

Table 4. Note that it is a connected domain without restoration - in fact, it is a successive

single crossing domain (Carroll, 2012), which we formally define in Section 5.5.

We now describe an scf for the domain in Table 4. The scf chooses an alternative if it is

the top ranked alternative of all the three agents. In all other profiles, either a or d is chosen

depending on the following two cases.

• If a is preferred to d by all the agents, then a is chosen. If d is preferred to a by all the

agents, then d is chosen.

14



P 1 P 2 P 3 P 4 P 5 P 6 P 7

a b b b b d d

b a c c d b c

c c a d c c b

d d d a a a a

Table 4: A domain where Theorem 4 fails without tops-onlyness.

• If exactly two agents prefer a to d then d is chosen. If exactly two agents prefer d to a

then a is chosen.

We denote this scf by f̄ .

Lemma 1 The scf f̄ defined on the domain in Table 4 is G-LOBIC, unanimous, and satisfies

weak elementary monotonicity. However, it is not DSIC and fails tops-onlyness.

The proof is in the Appendix. The intuition behind Lemma 1 is more complicated - the

structure of the domain plays an important role.

5.4 Equivalence in Unrestricted Domain

We now come to the final result of the paper, which is a strengthening of Theorem 1.

Theorem 5 Suppose |A| ≥ 3 and f : Pn → A is a G-LOBIC scf, where P is the unrestricted

domain. If f satisfies unanimity, then it satisfies elementary monotonicity. Hence, if f is

G-LOBIC and unanimous, then it is DSIC.

Theorem 5 is a strengthening of Theorem 1 since we use G-LOBIC instead of G-OBIC.

However, one can still deduce the result of Theorem 5 from existing results in the literature as

follows. Carroll (2012) notes that his results also hold if we consider Bayesian incentive com-

patibility. Since he shows local incentive compatibility implies full incentive compatibility in

the unrestricted domain, we can conclude that if f is LOBIC (with respect to some prior)

then it is OBIC. We can then use Theorem 1 to conclude that if f is G-LOBIC and unan-

imous, then it must be a dictatorship. Since the proof of Theorem 1 in Majumdar and Sen

(2004) directly establishes dictatorship (using induction on the number of agents), our proof

provides an alternate and stronger version of their result.

5.5 Connected Domains without Restoration

In this section, we identify some domains that are connected without restoration to show

that the results in Theorems 2 and 4 apply to a large class of domains. As we noted earlier,
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Sato (2013) has already shown that the unrestricted domain and the single peaked domain

are connected without restoration. We present two more domains that are connected without

restoration.

Definition 16 A preference ordering P is single dipped with respect to an ordering ≻

over alternatives if for every a, b ∈ A with a ≻ b ≻ P (|A|) or P (|A|) ≻ b ≻ a, we have aPb.

The single dipped domain is important in studying various practical problems includ-

ing the problem of locating a public “bad”. It admits various interesting DSIC mecha-

nisms (Klaus et al., 1997; Peremans and Storcken, 1999; Barberà et al., 2012; Manjunath,

2014). Notice that there are only two alternatives (the maximal and the minimal alterna-

tives in ≻) which can be top ranked in any single dipped preference. The set of all single

dipped preferences is denoted by S̄.

Lemma 2 The domain S̄ is a connected domain without restoration.

Proof : Take any preference ordering P , and denote by P̄ the reverse of the preference

ordering P , i.e., P̄ (j) = P (|A|−j+1) for all j. Note that P is single dipped with respect to ≻

if and only if P̄ is single peaked with respect to ≻. Now, consider two single dipped preference

orderings P and P ′. Since the single peaked domain is connected without restoration, there

is a sequence of distinct single peaked preferences without restoration between P̄ and P̄ ′. By

taking the reverse of each preference ordering in this sequence, we get the desired sequence

without restoration between P and P ′. �

Another important class of domains that can be shown to be connected without restora-

tion is a successive single crossing domains in Carroll (2012).

Definition 17 A set of preferences D is a single crossing domain if there exists a strict

linear order ≻ on the set of alternatives and a strict linear order ⊳ on the set of preferences

D such that for all a, b ∈ A and for all P, P ′ ∈ D,

• a ≻ b, P ⊳ P ′, and aPb implies aP ′b

• a ≻ b, P ⊳ P ′, and bP ′a implies bPa.

Single crossing domains are a well studied domain in voting and political economy since

they ensure existence of a Condorcet winner (Saporiti, 2009).

For any ordering P over A and any ordering≻ over A, letX(P,≻) := {(a, b) : a ≻ b, aP b}.

Clearly, a set of preferences D is a single crossing domain if and only if there exists a strict
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P 1 P 2 P 3 P 4

a a c c

b c a b

c b b a

Table 5: A successive single crossing domain

linear order ≻ on the set of alternatives and a strict linear order ⊳ on the set of preferences

D such that for any P, P ′ ∈ D with P ⊳ P ′, we have X(P,≻) ( X(P ′,≻) (notice the strict

inclusion). We will denote a single crossing domain as D≻,⊳.

A single crossing domain D≻,⊳ := {P 1, . . . , P l} with P 1 ⊳ . . . ⊳ P l is a successive

single crossing domain if for every j ∈ {1, . . . , l − 1}, |X(P j,≻)| + 1 = |X(P j+1,≻)|.

Successive single crossing domains were introduced in Carroll (2012).

Let A = {a, b, c}. Table 5 gives an example of a successive single crossing domain. This

domain is single crossing with respect to c ≻ b ≻ a and P 1 ⊳ P 2 ⊳ P 3 ⊳ P 4. By comparing

with the single peaked domain in Table 2, one sees that these two domains can be quite

different - see more discussions on this in Saporiti (2009).

Lemma 3 A successive single crossing domain is connected without restoration.

Proof : Let D≻,⊳ := {P 1, . . . , P l} be a successive single crossing domain with P 1 ⊳ P 2 ⊳

. . . ⊳ P l. Pick P j, P k ∈ D≻,⊳ with j < k. The sequence of preferences (P j, P j+1, . . . , P k)

satisfies the fact that for any j′ ∈ {j, j+1, . . . , k−1}, P j′ and P j′+1 are adjacent - this follows

from the definition of a successive single crossing domain. Now, assume for contradiction,

there is some pair of alternatives x, y ∈ A such that they are swapped more than once in this

sequence. But the single crossing property requires that if x ≻ y, once xP k′y for some P k′ in

the sequence, it must remain xP l′y for all l′ > k′. Hence, getting swapped more than once

will violate the single crossing property. This means that every successive single crossing

domain is connected without restoration. �

Note that not every connected domain without restoration satisfies richness. The single

dipped domain is not a rich domain. Further, the successive single crossing domain in Table

5 is not rich. However, there are rich successive single crossing domains (Mishra et al., 2015).
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6 Discussions on Elementary Monotonicity

The crucial condition in Theorem 2 is elementary monotonicity. The scf f ∗ discussed in

Proposition 1 is an example of an scf that satisfies G-LOBIC but fails elementary mono-

tonicity. Hence, we cannot hope to drop elementary monotonicity in Theorem 2.

As discussed in the literature, elementary monotonicity is satisfied by variety of scfs (Moulin,

1983; Majumdar and Sen, 2004). However, it is admittedly a strong enough condition along

with G-LOBIC to imply DSIC in local domains. The positive responsiveness property is

equivalent to elementary monotonicity in a large class of local domains. Both these conditions

are weaker versions of Maskin monotonicity, which is known to be necessary and sufficient

for dominant strategy incentive compatibility in the unrestricted domain (Kalai and Muller,

1977). To see why elementary monotonicity or positive responsiveness is much weaker than

Maskin monotonicity, note that these axioms are satisfied by a large class of scfs but Maskin

monotonicity and unanimity implies dictatorship in the unrestricted domain.

Since all the additional axioms that we have used are weak, they are useful to rule out scfs

that are not G-LOBIC in many domains. We give two examples. Consider the status-quo

scf, which is specified by a status-quo alternative. It chooses the status-quo alternative at

all the preference profiles except when everyone’s top ranked alternative is the same. When

everyone’s top ranked alternative is the same, then that alternative is chosen. This scf clearly

satisfies positive responsiveness, elementary monotonicity, and unanimity. However, it is not

DSIC in many domains (including the single peaked domain). We can then conclude from

our results that the status-quo scf cannot be G-LOBIC in those domains.

Similarly, some scoring rules cannot be G-LOBIC. It is easy to see that all scoring rules

satisfy elementary monotonicity. But scoring rules may not be DSIC in many interesting

domains. To see this, consider the single peaked domain in Table 2. Consider a scoring

rule in this domain where the top ranked alternative gets a score of 2, the second ranked

alternative gets a score of 1, and the last ranked alternative gets a score of 0. If there is a tie

in the score, we break the tie using a linear order ⊲, where a ⊲ b ⊲ c. Now, suppose agent

1 has preference where a is top ranked, b is second ranked, and c is third ranked. Further,

agents 2 and 3 have identical preference, where c is top, b is second, and a is third. The

outcome of the scoring rule at this profile is c. But agent 1 can get the outcome b if he

reports a preference ordering where b is top. Hence, this scoring rule is not DSIC. Using our

results, we can conclude that such a scoring rule is not G-LOBIC in the single peaked domain.
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We also point out that elementary monotonicity plays an important role in the analysis

of OBIC scfs with uniform priors and correlated priors. Majumdar and Sen (2004) show

that when agents have uniform priors, every neutral scf satisfying elementary monotonicity

is OBIC in the unrestricted domain. Thus, they show that a large class of scfs that are not

DSIC are OBIC with uniform priors in the unrestricted domain. A similar result is shown

with correlated priors in Bhargava et al. (2014). In contrast, Theorem 2 shows a negative

implication of elementary monotonicity under independent generic priors.

Appendix

Proof of Proposition 1

Clearly, f ∗ is unanimous and anonymous. However, f ∗ is not DSIC. To see this, consider a

profile P such that for all agents i 6= 3, we have Pi(1) = a - note that since a is the leftmost

alternative, there is a unique preference ordering where a is top ranked. For agent 3, pick

any preference ordering where b is preferred to a. As a result, f ∗(P) = b. A possible profile

is shown in Table 6 - note that aP1b. Now, fixing the preference profile of all agents except

agent 1, if agent 1 reports a preference ordering P ′
1 such that P ′

1(1) = b, P ′
1(2) = a, then f ∗

will choose a - see Table 6. Hence, agent 1 can manipulate.

P1 P2 P3 P ′
1 P2 P3

a a b b a b

b b a a b a

c c c c c c

Table 6: Failure of DSIC of f ∗

However, we show that f ∗ is G-OBIC. Let the prior of each agent i be given by the map

µi : S → (0, 1). To show that f ∗ is OBIC with respect to {µi}i∈N such that these are generic

priors, we will compute the interim outcome probabilities of every agent in {1, 2, 3}.

If an agent i ∈ {1, 2, 3} has preference Pi then define

Of∗

i (Pi) := {x ∈ A : f ∗(Pi, P−i) = x for some P−i}.

By definition of f ∗, for every i ∈ {1, 2, 3} and for every Pi ∈ S, Of∗

i (Pi) ⊆ {a, b, Pi(1)},

and if Pi(1) 6= c, then Of∗

i (Pi) = {a, b}. Let P̄ be the unique preference ordering where

the leftmost alternative a is top ranked. Denote the probability that agent i has preference

P̄ as qi ≡ µi(P̄ ). Similarly, denote by q̂i ≡ µi(P̂ ), where P̂ is the unique ordering where
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alternative c is top ranked. We fix an agent i ∈ {1, 2, 3} and denote the other two agents in

{1, 2, 3} as j and k. We consider three possible cases.

Case 1. Suppose Pi = P̄ . Note that Of∗

i (Pi) = {a, b}. Then his interim outcome probability

for alternative a can be computed as follows. Note that f ∗(Pi, Pj, Pk) 6= a if Pj and Pk are

such that either (aPjb and bPka) or (aPkb and bPja). The probability of this event is

qj(1− qk) + qk(1− qj).

Here, we used the fact that the probability that agent j has preference Pj such that bPja is

just (1− qj) and, similarly, the probability that agent k has preference Pk such that bPka is

(1 − qk). Since f ∗(Pi, Pj, Pk) ∈ {a, b}, the interim outcome probability of choosing a at Pi

for agent i is

1− qj − qk + 2qjqk,

and the interim outcome probability of choosing b at Pi for agent i is

qj + qk − 2qjqk.

Case 2. Suppose Pi is such that Pi(1) = b - this is possible for two preference orderings.

Note that Of∗

i (Pi) = {a, b}. Then, his interim outcome probability for alternative b can be

computed as follows. Note that f ∗(Pi, Pj, Pk) 6= b if Pj and Pk are such that either (aPjb

and bPka) or (aPkb and bPja). The probability of this event is

qj(1− qk) + qk(1− qj).

Hence, the interim outcome probability of choosing b at Pi for agent i is

1− qj − qk + 2qjqk.

Since Of∗

i (Pi) = {a, b}, the interim outcome probability of choosing a at Pi for agent i is

qj + qk − 2qjqk.

Case 3. Suppose Pi is such that Pi(1) = c, i.e., Pi = P̂ . Then, Of∗

i (Pi) = {a, b, c}.

His interim outcome probability for alternative c can be computed straightforwardly - c is

chosen if and only if Pj(1) = Pk(1) = Pi(1) = c. This is possible if and only if both agents

j and k have the preference P̂ . The probability of this event is q̂j q̂k. Hence, the interim

outcome probability for alternative Pi(1) at Pi for agent i is q̂j q̂k. Next, the interim outcome
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probability for agent i for alternative a can be computed as follows. For this, note that

cPibPia. Hence, f
∗(Pi, Pj, Pk) = a if Pj and Pk are such that either (aPjb and bPka) or (aPkb

and bPja) - notice that these events ensure that tops of all agents are not the same and a is

not dominated by b. The probability of this event is

qj(1− qk) + qk(1− qj).

Hence, the interim outcome probability of choosing a at Pi for agent i is

qj + qk − 2qjqk.

Since Of∗

i (Pi) = {a, b, Pi(1)}, the interim outcome probability of choosing b at Pi for agent

i is

1− qj − qk + 2qjqk − q̂j q̂k.

We enumerate all the interim outcome probabilities in Table 7 by considering the three

cases for an agent i ∈ {1, 2, 3} by denoting the other two agents as j and k.

Case 1: Pi = P̄ Case 2: Pi(1) = b Case 3: Pi = P̂

πf∗

i (a, Pi) 1− qj − qk + 2qjqk qj + qk − 2qjqk qj + qk − 2qjqk

πf∗

i (b, Pi) qj + qk − 2qjqk 1− qj − qk + 2qjqk 1− qj − qk + 2qjqk − q̂j q̂k

πf∗

i (c, Pi) 0 0 q̂j q̂k

Table 7: Interim outcome probabilities

Now, notice from Table 7 that if agent i has preference Pi ≡ P̄ , the only OBIC constraint

to satisfy is

1− qj − qk + 2qjqk ≥ qj + qk − 2qjqk.

Alternatively, we must have

(1− 2qj)(1− 2qk) ≥ 0. (1)

This prevents any manipulation of agent i to a preference in Case 2 or Case 3. Also, In-

equality 1 ensures OBIC constraints when agent i has a preference Pi such that Pi(1) = b.

Finally, Inequality 1 also ensures OBIC constraints when agent i has a preference Pi such

that Pi(1) = c - this can be verified by checking from Table 7 that the truthtelling lottery

first-order stochastic dominates other lotteries as long as Inequality 1 is satisfied.

Hence, f ∗ is OBIC if and only if the priors of agents 1,2, and 3 satisfy

(1− 2q2)(1− 2q3) ≥ 0,

(1− 2q1)(1− 2q3) ≥ 0,

(1− 2q1)(1− 2q2) ≥ 0.
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This is satisfied if and only if q1, q2, q3 ∈ (0, 0.5) or q1, q2, q3 ∈ (0.5, 1). It also puts no

restriction on the probabilities of orderings in S \ {P̄}. Hence, the set of priors of all agents

satisfying q1, q2, q3 ∈ (0, 0.5) or q1, q2, q3 ∈ (0.5, 1) is a full dimensional subset of the set of

all independent priors. As a result, it must have a non-empty intersection with the set of

independent generic priors.

Proof of Theorem 2

The proof is done by establishing two important lemmas. We start by identifying a property

that is implied by G-LOBIC.

Definition 18 An scf f satisfies swap monotonicity if for every i ∈ N , for every Pi, P
′
i ∈

D, where P ′
i is an (a, b)-swap of Pi, we have for every P−i ∈ Dn−1,

• f(P ′
i , P−i) = f(Pi, P−i) if f(Pi, P−i) /∈ {a, b},

• f(P ′
i , P−i) ∈ {a, b} if f(Pi, P−i) ∈ {a, b}.

Our first claim shows the necessity of swap monotonicity.

Lemma 4 If an scf is G-LOBIC, then it satisfies swap monotonicity.

Proof : Let f be an LOBIC scf with respect to independent generic priors {µi}i∈N . For

this, consider agent i ∈ N , and pick two preference orderings Pi and P ′
i such that P ′

i is an

(a, b) swap of Pi. By definition Pi(k) = a, Pi(k + 1) = b and P ′
i (k + 1) = a, P ′

i (k) = b for

some k and Pi(j) = P ′
i (j) for all j /∈ {k, k + 1}. We will do the proof in three steps.

Step 1. Consider an alternative x ∈ A \ {a, b} such that Pi(k
′) = P ′

i (k
′) = x, where k′ < k.

We will show that {P−i ∈ Dn−1 : f(Pi, P−i) = x} = {P−i ∈ Dn−1 : f(P ′
i , P−i) = x}. We

do this using induction on k′. If k′ = 1, by observing that Pi(k
′′) = P ′

i (k
′′) for all k′′ < k,

LOBIC implies that

∑

P−i:f(Pi,P−i)=Pi(1)

µ(P−i) ≥
∑

P−i:f(P ′

i
,P−i)=Pi(1)

µ(P−i)

∑

P−i:f(P ′

i
,P−i)=P ′

i
(1)

µ(P−i) ≥
∑

P−i:f(Pi,P−i)=P ′

i
(1)

µ(P−i).

Combining these inequalities, we get

∑

P−i:f(Pi,P−i)=Pi(1)

µ(P−i) =
∑

P−i:f(P ′

i
,P−i)=Pi(1)

µ(P−i).
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Since priors are generic, we get that

{P−i : f(Pi, P−i) = Pi(1)} = {P−i : f(P
′
i , P−i) = Pi(1)}.

Now, suppose the claim is true for all k′′ < k′. Notice that the top k′ alternatives in Pi and

P ′
i are the same - denote this set as B. Now, we apply LOBIC to top k′ alternatives in Pi

and P ′
i to get

∑

P−i:f(Pi,P−i)∈B

µi(P−i) ≥
∑

P−i:f(P ′

i
,P−i)∈B

µi(P−i)

∑

P−i:f(P ′

i
,P−i)∈B

µi(P−i) ≥
∑

P−i:f(Pi,P−i)∈B

µi(P−i).

Using genericity of µi gives us

{P−i : f(Pi, P−i) ∈ B} = {P−i : f(P
′
i , P−i) ∈ B}.

Using the induction hypothesis, we have for all k′′ < k′,

{P−i : f(Pi, P−i) = Pi(k
′′)} = {P−i : f(P

′
i , P−i) = Pi(k

′′)}.

Hence, we get

{P−i : f(Pi, P−i) = Pi(k
′)} = {P−i : f(P

′
i , P−i) = Pi(k

′)}.

Step 2. In this step, we show that {P−i : f(Pi, P−i) ∈ {a, b}} = {P−i : f(P
′
i , P−i) ∈ {a, b}}.

Applying LOBIC, we get
∑

P−i:f(Pi,P−i)∈B(b,Pi)

µi(P−i) ≥
∑

P−i:f(P ′

i
,P−i)∈B(b,Pi)

µi(P−i)

∑

P−i:f(P ′

i
,P−i)∈B(a,P ′

i
)

µi(P−i) ≥
∑

P−i:f(Pi,P−i)∈B(a,P ′

i
)

µi(P−i).

Since B(b, Pi) = B(a, P ′
i ), by genericity we get

{P−i : f(Pi, P−i) ∈ B(b, Pi)} = {P−i : f(P
′
i , P−i) ∈ B(b, Pi)}.

By Step 1, this implies that {P−i : f(Pi, P−i) ∈ {a, b}} = {P−i : f(P
′
i , P−i) ∈ {a, b}}.

Step 3. Consider an alternative x ∈ A \ {a, b} such that Pi(k
′) = P ′

i (k
′) = x, where

k′ > k + 1. Using the facts in Steps 1 and 2, we can mimic the method in Step 1 to show

that {P−i ∈ Dn−1 : f(Pi, P−i) = x} = {P−i ∈ Dn−1 : f(P ′
i , P−i) = x}.

Steps 1, 2, and 3 show that f satisfies swap monotonicity. �

Note that Lemma 4 holds in any arbitrary domain. We now use this to prove the following

result.
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Lemma 5 Suppose D is any domain and f : Dn → A is an scf on this domain. Then, the

following statements are equivalent.

1. f is G-LOBIC and satisfies elementary monotonicity.

2. f is LDSIC.

Proof : First, we show that a LDSIC scf f satisfies elementary monotonicity. To see this,

consider i ∈ N and P−i. Let Pi and P ′
i be two preferences in D such that P ′

i is an (a, b)-swap

of Pi and f(Pi, P−i) = b. Assume for contradiction that f(P ′
i , P−i) = c 6= b. If cPib, then i

can manipulate from Pi to P ′
i . If bPic, then, by construction, bP ′

i c, and again, agent i can

manipulate from P ′
i to Pi. This is a contradiction.

Further, an LDSIC scf is LOBIC with respect to all priors, and hence, it is G-LOBIC.

Now, we show that if f : Dn → A is G-LOBIC and satisfies elementary monotonicity, then it

is LDSIC. Fix an agent i and P−i. Now, pick two preference orderings Pi and P ′
i such that P ′

i

is an (a, b)-swap of Pi, where Pi(k) = a, Pi(k + 1) = b and P ′
i (k + 1) = a, P ′

i (k) = b for some

k. Suppose f(Pi, P−i) = x and f(P ′
i , P−i) = y. Suppose Pi(k

′) = x. If k′ < k or k′ > k + 1,

then by Lemma 4, we have y = x (swap monotonicity). So, agent i cannot manipulate from

Pi to P ′
i . If k′ = k, then x = a, and by swap monotonicity f(P ′

i , P−i) ∈ {a, b}. Since aPib,

agent i cannot manipulate from Pi to P ′
i . The other possibility is k′ = k + 1. In that case,

x = b, and elementary monotonicity ensures that f(P ′
i , P−i) = b. Hence, agent i cannot

manipulate from Pi to P ′
i . This shows that f is LDSIC. �

Proof of Theorem 2:

Equivalence of (1) and (2). This equivalence follows from Lemma 5 because in local

domains an LDSIC scf is DSIC.

Equivalence of (2) and (3). If D is a rich connected domain without restoration, we first

show that a G-LOBIC f satisfying elementary monotonicity also satisfies positive respon-

siveness. To see this, fix agent i ∈ N , P−i ∈ Dn−1 and Pi, P
′
i ∈ D such that f(Pi, P−i) = a

and P ′
i (1) = a. Since D is connected without restoration there is a connected sequence

(P 0 ≡ Pi, P
1, . . . , P k ≡ P ′

i ). Consider P
j and P j+1 in this sequence. By construction, P j+1

is a (xj , yj)-swap of P j for some pair of alternatives xj , yj. If f(P j, P−i) /∈ {xj , yj}, then

f(P j, P−i) = f(P j+1, P−i) by Lemma 4. By elementary monotonicity, if f(P j, P−i) = yj,

then f(P j+1, P−i) = yj = f(P j, P−i). We argue that f(P j, P−i) 6= xj , and we will be done.
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To see this, note that since D is a connected domain without restoration, no swap along

the sequence (P 0 ≡ Pi, P
1, . . . , P k ≡ P ′

i ) is repeated. Since P ′
i (1) = a, connectedness with-

out restoration implies that the rank of a along this sequence can never go down. Hence,

a 6= xj for any j. Hence, f(P 0, P−i) 6= x0. This implies that f(P 1, P−i) = a. Using induc-

tion, if we assume f(P j, P−i) = a and since a 6= xj , we get f(P j+1, P−i) = a, and we are done.

For the converse, suppose f is G-LOBIC and satisfies positive responsiveness. We will

show that f satisfies elementary monotonicity. Fix agent i ∈ N , P−i ∈ Dn−1 and Pi, P
′
i ∈ D

such that P ′
i is an (a, b)-swap of Pi with f(Pi, P−i) = b. Note that bP ′

ia. Assume for con-

tradiction that f(P ′
i , P−i) 6= b. By Lemma 4, f(P ′

i , P−i) = a. Since D is rich, there is a

preference ordering P ′′
i with P ′′

i (1) = b. Further, since the domain is connected without

restoration, there is a connected sequence (P 0 ≡ P ′
i , P

1, . . . , PK ≡ P ′′
i ).

For any P j in this sequence, define as before B(b, P j) = {x ∈ A : xP jb or x = b}. We

show that for any P j in this sequence, f(P j, P−i) /∈ B(b, P j). Since f(P 0, P−i) = a, the

claim is true for j = 0. Suppose the claim is true for all the preferences in the sequence till

P k. Suppose P k+1 is a (x, y)-swap of P k.

Consider the case when {x, y} ⊆ B(b, P k). Since f(P k, P−i) /∈ B(b, P k), Lemma 4 implies

that f(P k, P−i) = f(P k+1, P−i), which further implies that f(P k+1, P−i) /∈ B(b, P k+1).

Now, consider the case when {x, y} ⊆ (A \ B(b, P k)). By Lemma 4, f(P k+1, P−i) /∈

B(b, P k+1).

The only case that remains is x = b and y /∈ B(b, P k), i.e., y is just below b in P k. Since

D is connected without restoration and the connected sequence (P 0 ≡ P ′
i , P

1, . . . , P k ≡ P ′′
i )

satisfies P ′′
i (1) = b, the rank of b can never go down along this sequence. Hence, b 6= x.

Hence, this case is not possible.

Hence, by induction f(P ′′
i , P−i) /∈ B(b, P ′′

i ) = {b}. But the fact that f(Pi, P−i) = b and

P ′′
i (1) = b implies that f does not satisfy positive responsiveness, a contradiction.

Proof of Corollary 2

We say an scf f is Pareto efficient if at every profile of preferences P with aPib for all i ∈ N ,

we have f(P) 6= b. We first show that if the domain is rich connected without restoration,

then a unanimous and G-LOBIC scf f is Pareto efficient. Note here that since f is G-LOBIC,
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it satisfies swap monotonicity (Lemma 4). To show this, let P be a profile with aPib for all

i ∈ N and f(P) = b.

Now, chosse any i ∈ N . By richness, there is a preference ordering P ′
i for every i such

that P ′
i (1) = a. Moreover, by connectedness without restoration, there is a sequence of

preferences (Pi = P 0
i , P

1
i , . . . , P

K
i ≡ P ′

i ). We argue that f(P j
i , P−i) /∈ B(a, P j

i ) for all P
j
i in

the sequence. Since f(P 0
i , P−i) = b and aP 0

i b, the claim is true for P 0
i . Now, assume that the

claim is true for some preference P k
i in the sequence. Note that by the without restoration

property, the rank of a can never go down along this sequence. Hence, if P k+1
i is a (x, a)-swap

of P k
i , then x ∈ B(a, P k

i ). By our induction hypothesis, x 6= f(P k
i , P−i). By swap mono-

tonicity, f(P k
i , P−i) = f(P k+1

i , P−i). If the swap from P k
i to P k+1

i involves a pair of alterna-

tives which belong to B(a, P k
i ), swap monotonicity again gives f(P k

i , P−i) = f(P k+1
i , P−i).

If the swap from P k
i to P k+1

i involves a pair of alternatives which lie outside B(a, P k
i ),

swap monotonicity again gives f(P k+1
i , P−i) /∈ B(a, P k+1

i ). Hence, in all cases, we have

f(P k+1
i , P−i) /∈ B(a, P k+1

i ). This, f(P ′
i , P−i) /∈ B(a, P ′

i ) = {a}.

We repeat this procedure for all the agents to reach a preference profile P′ such that

P ′
i (1) = a and f(P′) = a, which contradicts unanimity.

Now, since n = 2, fix i ∈ {1, 2} and suppose P ′
i is a (a, b)-swap of Pi. Further, for the

other agent j 6= i, choose a preference Pj such that f(Pi, Pj) = b. Since aPib, by Pareto

efficiency, bPja. But bP ′
ia implies f(P ′

i , Pj) 6= a. By swap monotonicity, f(P ′
i , Pj) = b.

Hence, f satisfies elementary monotonicity, and by Theorem 2, we are done.

Proof of Theorem 3

Let f be a unanimous and G-LOBIC scf satisfying weak elementary monotonicity. The proof

goes in many steps.

Step 1. We start by stating a fact from Sato (2013).

Fact 1 (Sato (2013)) The single peaked domain is connected without restoration.

We now prove a claim using this fact.

Claim 1 Suppose Pi ∈ S is a preference ordering such that aPib. Then, there exists a

preference ordering P ′
i ∈ S such that P ′

i (1) = a and B(b, Pi) = B(b, P ′
i ). Moreover, for all

P−i ∈ Sn−1 with f(Pi, P−i) = b, we have f(P ′
i , P−i) = b.
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Proof : The first part of the claim follows from the single peaked domain - if aPib, then we

can always lift a to the top and keep all the alternatives that are above b in Pi between a and b

and all others below b in the new preference ordering. Let P ′
i be such an ordering. By Fact 1,

we know that there is a distinct sequence of preferences (Pi = P 0, P 1, P 2, . . . , P k, P k+1 = P ′
i )

without restoration such that consecutive preferences in the sequence are swaps of each

other. Since B(b, Pi) = B(b, P ′
i ) and the sequence is without restoration, none of these

swaps involve b. By repeatedly applying swap monotonicity along the sequence, we get

f(P ′
i , P−i) = f(Pi, P−i) = b. �

Step 2. In this step, we show that if an scf is G-LOBIC and unanimous, then it must be

Pareto efficient. For this consider a profile P with f(P) = b. Assume for contradiction that

there exists a 6= b such that aPib for all i ∈ N . By repeated application of Claim 1, there

exists a preference profile P′ such that f(P′) = b and P ′
i (1) = a for all i ∈ N . This is a

contradiction since unanimity implies that f(P′) = a.

Step 3. Now, consider an agent i ∈ N and P−i ∈ Sn−1. Let Pi, P
′
i ∈ S be such that P ′

i

is an (a, b)-swap of Pi and f(Pi, P−i) = b. We will show that f(P ′
i , P−i) = b. This will

show that f satisfies elementary monotonicity and we will be done by Theorem 2. Note

that if agents in P−i have the same ranking of a and b then the claim is obvious. Hence,

we assume that agents in P−i do not have the same ranking of a and b. We consider two cases.

Case 3-1. Suppose Pi(k) = a and k > 1, i.e., the swap from Pi to P ′
i is not happening at

the top of the preference ordering. Since a and b are consecutively ranked in Pi and P ′
i and

neither of them are top ranked in Pi and P ′
i , it must be that a and b are not neighbors (in

≻). This is because if a and b are neighbors then they can only be swapped if they are at

the top.

Hence, consider a neighbor c of a such that c is between a and b in ≻ (i.e., if a ≻ b, then

a ≻ c, c ≻ b and if b ≻ a then b ≻ c, c ≻ a). By single peakedness, cPia and cP ′
i b. Further,

for any other agent j 6= i, there are four possible rankings between a, b, c in Pj: (1) cPjaPjb,

(2) cPjbPja, (3) bPjcPja, and (4) aPjcPjb. The two profiles (Pi, P−i) and (P ′
i , P−i) are shown

in Table 8. Table 8 shows that there are four possible groups of agents in P−i with different

rankings between a, b, c. We now modify the profile (Pi, P−i) in a sequence of steps to reach

the profile (P ′
i , P−i).

Step 3-1-a. In this step, we modify the preferences of agents in P−i who rank a better than

c better than b. For each such agent j, we construct P ′
j such that P ′

j(1) = a, P ′
j(2) = c and

B(b, P ′
j) = B(b, Pj). Notice that since a and c are neighbors, single peakedness implies that
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Pi P−i P ′
i P−i

· . . . . . . . . . . . . · . . . . . . . . . . . .

c c . . . c . . . b . . . a . . . c c . . . c . . . b . . . a . . .

· . . . . . . . . . . . . . . . . . . . . . . . . . . .

a a . . . b . . . c . . . c . . . b a . . . b . . . c . . . c . . .

b . . . . . . . . . . . . a . . . . . . . . . . . .

· b . . . a . . . a . . . b . . . · b . . . a . . . a . . . b . . .

· . . . . . . . . . . . . · . . . . . . . . . . . .

Table 8: Profiles (Pi, P−i) and (P ′
i , P−i)

such a P ′
j can be constructed such that it is single peaked. Further, using a reasoning similar

to Claim 1, we can argue that we can go from Pj to P ′
j using a without restoration sequence

and since B(b, P ′
j) = B(b, Pj), b will not be involved in any swaps. As a result, the outcome

at the new profile will be b. The new profile is shown in Table 9.

Pi Other agents

· . . . . . . . . . a . . .

c c . . . c . . . b . . . c . . .

· . . . . . . . . . . . .

a a . . . b . . . c . . . . . .

b . . . . . . . . . . . .

· b . . . a . . . a . . . b . . .

· . . . . . . . . . . . .

Table 9: Profile in Step 3-1-a.

Step 3-1-b. In this step, we modify the profile in Table 9 as follows. For every agent, who

ranks a at the top, c second, we perform the (a, c)-swap. Notice that this leads to a feasible

single peaked preference ordering since a and c are neighbors. The new profile is shown in

Table 10. By swap monotonicity, the outcome at the new profile is b.

Step 3-1-c. In this step, we perform (a, b)-swap of Pi to reach P ′
i . The new profile is shown

in Table 11. By swap monotonicity, the outcome at the new profile is in {a, b}. Note that

at the new profile cPja for all j ∈ N . Hence, by Pareto efficiency the outcome at the new

profile is b.

Step 3-1-d. We can now consider the profile in Table 11 and alter the preferences of last

28



Pi Other agents

· . . . . . . . . . c . . .

c c . . . c . . . b . . . a . . .

· . . . . . . . . . . . .

a a . . . b . . . c . . . . . .

b . . . . . . . . . . . .

· b . . . a . . . a . . . b . . .

· . . . . . . . . . . . .

Table 10: Profile in Step 3-1-b.

P ′
i Other agents

· . . . . . . . . . c . . .

c c . . . c . . . b . . . a . . .

· . . . . . . . . . . . .

b a . . . b . . . c . . . . . .

a . . . . . . . . . . . .

· b . . . a . . . a . . . b . . .

· . . . . . . . . . . . .

Table 11: Profile in Step 3-1-c.

(fifth) column of agents by performing a (c, a)-swap and then doing a sequence of without

restoration swaps to go to their preference at the start of Step 3-1-A (see preferences in Table

8). The new profile is shown in Table 12.

P ′
i Other agents

· . . . . . . . . . . . .

c c . . . c . . . b . . . a . . .

· . . . . . . . . . . . .

b a . . . b . . . c . . . c . . .

a . . . . . . . . . . . .

· b . . . a . . . a . . . b . . .

· . . . . . . . . . . . .

Table 12: Profile in Step 3-1-d.

Since none of these swaps involve alternative b, the outcome at this new profile is b due

to swap monotonicity. But this profile is exactly (P ′
i , P−i). Hence, f(P

′
i , P−i) = b.
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Case 3-2. The other case is Pi(k) = a and k = 1, i.e., the swap from Pi to P ′
i is occurring

at the top. The profile (Pi, P−i) is shown below in Table 13. We now do the proof in many

steps.

Pi P−i

a . . . . . .

b a . . . b . . .

· . . . . . .

· b . . . a . . .

· . . . . . .

Table 13: Profile in Case 3-2.

Step 3-2-a. Now, consider every agent j 6= i such that aPjb (agents in second column of

Table 13). By Claim 1, we can construct a preference ordering from Pj such that a is top

ranked and the outcome remains b. We change the preferences of all the agents in the profile

of Table 13 who prefer a to b in this manner to arrive at the new profile. The new profile is

shown in Table 14 and the outcome at the new profile is b.

Pi Other agents

a a . . . . . .

b . . . b . . .

· . . . . . .

· b . . . a . . .

· . . . . . .

Table 14: Profile in Step 3-2-a.

Step 3-2-b. Now, for every agent j 6= i such that a is top tanked in the profile of Table 14,

we consider a preference ordering where a is top ranked and b is second ranked. The new

profile is shown in Table 15.

By Sato (2013), such a preference ordering can be reached by swaps without restoration.

Hence, a will not be involved in such swaps. Swap monotonicity implies that the outcome

at the new profile is not a.

Step 3-2-c. Now, consider every agent j 6= i such that b is preferred to a in the preference

profile in Step 3-2-b (agents in third column of Table 15). By Claim 1, we can construct a
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Pi Other agents

a a . . . . . .

b b . . . b . . .

· . . . . . .

· . . . a . . .

· . . . . . .

Table 15: Profile in Step 3-2-b.

preference ordering from this preference ordering such that b is top ranked and the alterna-

tives that were below a do not change. The new profile is shown in Table 16. By definition,

we can go to this new profile by doing a sequence of without restoration swaps that do not

involve a. Hence, by swap monotonicity, the outcome at the new profile is not a. Then, by

Pareto efficiency, the outcome at this new profile must be b.

Pi Other agents

a a . . . b . . .

b b . . . . . .

· . . . . . .

· . . . a . . .

· . . . . . .

Table 16: Profile in Step 3-2-c.

Step 3-2-d. In this step, we consider all the agents who have b top-ranked in the profile

in Step 3-2-c (agents in the third column in Table 16). For every such agent, we consider

another preference ordering where b is top-ranked and a is second ranked. The new profile

is shown in Table 17. By Sato (2013), we can go to this new preference ordering by doing

a sequence of without restoration swaps. Hence, by swap monotonicity, the outcome at the

new profile is b.

Now, consider any agent who ranks a at the top in the profile in Step 3-2-d. If his

preference ordering is not the same as Pi, then we can transform it to Pi by a sequence of

without restoration swaps. Since this will not involve any swaps of b, by swap monotonicity

the outcome will remain b at the new profile. A similar argument can be made to transform

the preference ordering of every agent who ranks b at the top to the preference ordering P ′
i .

As a consequence, the profile in Table 17 can be transformed to a profile where every agent

j 6= i has preference ordering Pi or P
′
i and the outcome at this profile is b. Denote this profile

as (Pi, P̄−i). This, we conclude that f(Pi, P̄−i) = b.

31



Pi Other agents

a a . . . b . . .

b b . . . a . . .

· . . . . . .

· . . . . . .

· . . . . . .

Table 17: Profile in Step 3-2-d.

Now, assume for contradiction f(P ′
i , P−i) = a. We now repeat the above procedure

at the profile (P ′
i , P−i) to arrive at the profile (P ′

i , P̄−i) and the outcome at this profile is

f(P ′
i , P̄−i) = a. But (P ′

i , P̄−i), (Pi, P̄−i) ∈ Dn(2). Hence, f(Pi, P̄−i) = b and f(P ′
i , P̄−i) = a is

a contradiction.

Proof of Theorem 4

Let f be a tops-only, unanimous, G-LOBIC scf satisfying weak elementary monotonicity.

We will show that f satisfies elementary monotonicity and we will be done by Theorem 2.

Consider an agent i ∈ N and a preference profile (Pi, P−i). Let P ′
i be an (a, b)-swap of Pi

and f(Pi, P−i) = b. By swap monotonicity, f(P ′
i , P−i) ∈ {a, b}. Assume for contradiction

that f(P ′
i , P−i) = a. By tops-only property Pi(2) = P ′

i (1) = b and Pi(1) = P ′
i (2) = a.

Notation: For any pair of adjacent preferences, P and P ′, we say P ′ is a top-swap of

P if P ′ is a (P (1), P (2))-swap of P . We now do the proof in several steps, where each step

achieves some technical milestone towards the eventual claim.

Step 1. The profile (Pi, P−i) consists of agents who rank a above b and agents who rank b

above a - see Table 18.

Pick an agent j 6= i such that aPjb. Since the domain is connected without restoration,

there exists a sequence of preferences without restoration (P 1, . . . , P k) such that P 1 ≡ Pj

and P k ≡ Pi. By the without restoration property, for every P ℓ in the sequence aP ℓb, and

hence, P ℓ(1) 6= b. This also implies that b is never involved in a top-swap along the sequence.

By tops-only property and swap monotonicity, we conclude that f(P k, P−j) = b. Repeating

this argument for all agents j 6= i such that aPjb, we reach a profile shown in Table 19, where

the outcome of f is b.

Step 2. Now, we consider an agent j such that bPja. Since the domain is connected without

restoration, there exists a sequence of preferences without restoration (P 1, . . . , P k) such that
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Pi P−i

a . . . . . .

b . . . . . .

· a . . . b . . .

· . . . . . .

· . . . . . .

· b . . . a . . .

· . . . . . .

· . . . . . .

Table 18: Profile (Pi, P−i)

Pi Agents with preference Pi Other agents

a a . . . . . .

b b . . . . . .

· . . . b . . .

· . . . . . .

· . . . . . .

· . . . a . . .

· . . . . . .

· . . . . . .

Table 19: Profile reached at the end of Step 1.

P 1 ≡ Pj and P k ≡ P ′
i . Note that P

′
i (1) = b and P ′

i (2) = a. Also, if Pj(1) = b, then Pj = P ′
i ,

and this sequence has exactly one preference. Else, this is a sequence without restoration, and

b will be involved in a top-swap at most once along the sequence. Let P ℓ(1) = x, P ℓ(2) = b

and P ℓ+1(1) = b, P ℓ+1(2) = x for some P ℓ along the sequence. Since this is a sequence

without restoration, we conclude that b is always ranked higher than a along the sequence,

and hence, x 6= a.

Now, for every j such that bPja, we change the preference along the sequence to P ℓ.

Since these changes do not involve top-swap of b, the outcome at the new profile is b. The

new profile is shown in Table 20.

Step 3. Now, we consider all the agents in the third column of the preference profile in

Table 20 and change their preference to P ℓ+1. The new profile is shown in Table 21. By

swap monotonicity the outcome of f at this profile is either x or b. We argue that it is b.

Assume for contradiction that it is x. Then, we can change the preferences of agent i and
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Pi Agents with preference Pi Other agents

a a . . . x . . .

b b . . . b . . .

· . . . . . .

· . . . a . . .

· . . . . . .

· . . . . . .

Table 20: Profile at the end of Step 2.

all the agents in the second column of the preference profile in Table 21 to P ′
i (note that

all these agents have preference Pi at the profile in Table 21). By swap monotonicity, the

outcome of f is at this new profile is still x, which will contradict unanimity.

Pi P̂−i

a a . . . b . . .

b b . . . x . . .

· . . . . . .

· . . . a . . .

· . . . . . .

· . . . . . .

Table 21: Profile in Step

Step 4. Finally, we can change the preference of all the agents in the third column of the

profile in Table 21 along the sequence (P ℓ+1, . . . , P k), where P k = P ′
i . The new profile is

shown in Table 22. Since no swaps along this sequence involves b, swap monotonicity ensures

that the outcome at this top-2 profile is b. Denote this preference profile as (Pi, P̂−i). An

analogous argument starting from the profile (P ′
i , P−i) and ending at (P ′

i , P̂−i) can be made

to show that f(P ′
i , P̂−i) = a. But f(Pi, P̂−i) = b contradicts weak elementary monotonicity.

Proof of Lemma 1

The scf f̄ is clearly unanimous. To see that it satisfies weak elementary monotonicity,

consider the top-2 profiles when (a) a non-empty subset of agents have preference P 1 and

the remaining non-empty subset of agents have preference P 2 and (b) a non-empty subset

of agents have preference P 5 and the remaining non-empty set of agents have preference P 6.
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Pi Agents with preference Pi Agents with preference P ′
i

a a . . . b . . .

b b . . . a . . .

· . . . . . .

· . . . . . .

Table 22: Profile in Step - A top-2 profile

In both the cases, the outcome of f̄ at such a profile cannot be b and if it is a or d, then it

clearly continues to remain the same across the two profiles (this is because relative ranking

of a and d for any agent does not change across these profiles).

Thus, f̄ satisfies weak elementary monotonicity.

To see that f̄ does not satisfy tops-onlyness, note that f(P1, P3, P4) = d but f(P1, P4, P4) =

a and the tops of the agents at these two profiles do not change. Since aP3d, this also shows

that agent 2 can manipulate at profile (P1, P3, P4) by reporting P4. Hence, f̄ is not DSIC.

Finally, we show that f̄ is G-LOBIC. Fix any generic prior {µi}i∈N . Denote the domain

of preferences given in Table 4 as D. For notational simplicity, we will denote by qℓi ≡ µi(P
ℓ)

the probability that agent i ∈ {1, 2, 3} has preference ordering P ℓ for every P ℓ ∈ D. Further,

for every i ∈ N , we denote by q123i ≡ q1i + q2i + q3i , q23i ≡ q2i + q3i , q45i ≡ q4i + q5i , and

q2345i ≡ q23i + q45i .

We will compute the interim outcome probability of f̄ using these priors. We consider

various cases. We denote an arbitrary agent as i ∈ {1, 2, 3} and the other two agents as j

and k.

Case 1 - P 1. If agent i has preference P 1, then the outcome in f̄ can be only a and d. The

outcome is a if both j and k have preference in {P 1, P 2, P 3} or both have their preference

in {P 4, P 5, P 6, P 7}. This probability is given by

πf̄
i (a, P

1) = q123j q123k + (1− q123j )(1− q123k )

= 1− q123j (1− q123k )− q123k (1− q123j ).

From this we can compute πf̄
i (d, P

1) as

πf̄
i (d, P

1) = q123j (1− q123k ) + q123k (1− q123j ).

Case 2 - P 2, P 3. If preference of agent i is P 2 or P 3, then f̄ can only choose b or d or

a. Alternative b is chosen if both j and k have b at the top, i.e., both have preference in

{P 2, P 3, P 4, P 5}. Hence, we can write

πf̄
i (b, P

2) = πf̄
i (b, P

3) = q2345j q2345k
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Alternative d is chosen if exactly two agents prefer a to d. This happens if exactly one

agent besides i has preference in {P 1, P 2, P 3} and the other agent has preference outside

{P 1, P 2, P 3} but the preferences of both these agents should not lie in {P 2, P 3, P 4, P 5}. The

probability of this event is

πf̄
i (d, P

2) = πf̄
i (d, P

3) = q123j (1− q123k ) + q123k (1− q123j )− q23j q45k − q23k q45j .

This also means that the interim outcome probability of alternative a is given by

πf̄
i (a, P

2) = πf̄
i (a, P

3) = 1− q123j (1− q123k )− q123k (1− q123j ) + q23j q45k + q23k q45j − q2345j q2345k .

Case 3 - P 4, P 5. This case is similar to Case 2 with interim outcome probabilities of a and

d switched.

πf̄
i (b, P

4) = πf̄
i (b, P

5) = q2345j q2345k

πf̄
i (a, P

4) = πf̄
i (a, P

5) = q123j (1− q123k ) + q123k (1− q123j )− q23j q45k − q23k q45j .

πf̄
i (d, P

4) = πf̄
i (d, P

5) = 1− q123j (1− q123k )− q123k (1− q123j ) + q23j q45k + q23k q45j − q2345j q2345k .

Case 4 - P 6, P 7. In this case, only d and a can be outcome of the scf. Alternative a is the

outcome if exactly one of the agents in {j, k} has preference in {P 1, P 2, P 3} but the other

agent has preference outside {P 1, P 2, P 3}. The probability of this event is

πf̄(a, P 6) = πf̄(d, P 7) = q123j (1− q123k ) + q123k (1− q123j )

Hence, the interim outcome probability of alternative d is

πf̄(d, P 6) = πf̄(a, P 7) = 1− q123j (1− q123k )− q123k (1− q123j )

Now, we find conditions on priors that guarantee f̄ is G-LOBIC. From the calculations

above, we can do this by considering the following cases about the possible true preference

orderings of agent i.

Case 1 - P 1. In this case, agent i does not manipulate if πf̄
i (a, P

1) ≥ πf̄
i (a, P

j) for any

P j ∈ D. Note that πf̄
i (a, P

1) > πf̄
i (a, P

2) = πf̄
i (a, P

3) since q2345j q2345k > q23j q45k +q45j q23k . Now,

πf̄
i (a, P

1) ≥ πf̄
i (a, P

4) = πf̄
i (a, P

5) if and only if

q123j (1− q123k ) + q123k (1− q123j ) ≤
1

2
+

1

2

[

q23j q45k + q45j q23k
]

.

Note that this can be generically satisfied by choosing values of q123j and q123k close to zero.

Finally, we need πf̄
i (a, P

1) ≥ πf̄
i (a, P

6) = πf̄
i (a, P

7). This is possible if and only if

q123j (1− q123k ) + q123k (1− q123j ) ≤
1

2
.
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Note that this can be generically satisfied by choosing values of q123j and q123k close to zero.

Case 2 - P 2, P 3. In this case, note that πf̄
i (b, P

2) = πf̄
i (b, P

3) ≥ πf̄
i (b, P

j) for all j. Hence,

G-OBIC only requires the following inequality to hold for all j:

πf̄
i (b, P

2) + πf̄
i (a, P

2) = πf̄
i (b, P

3) + πf̄
i (a, P

3) ≥ πf̄
i (b, P

j) + πf̄
i (a, P

j).

Clearly this is true if P j = P 1. If P j ∈ {P 4, P 5}, then the above inequality holds if and only

if

q123j (1− q123k ) + q123k (1− q123j ) ≤
1

2
+ q23j q45k + q45j q23k −

1

2
q2345j q2345k .

This can be satisfied generically if we pick values of qℓj for all ℓ ∈ {1, 2, 3, 4, 5} close to

zero. As a result, the RHS will be close to 1
2
and the LHS will be close to zero. Finally, if

P j ∈ {P 6, P 7}, G-OBIC holds if and only if

q123j (1− q123k ) + q123k (1− q123j ) ≤
1

2
+

1

2

(

q23j q45k + q45j q23k
)

.

This can be satisfied generically if we pick (as in Case 1) values of q123j and q123k close to zero.

Case 3 - P 4, P 5. Like in Case 2, πf̄
i (b, P

4) = πf̄
i (b, P

5) ≥ πf̄
i (b, P

j) for all j. Hence, G-OBIC

only requires the following inequality to hold for all j:

πf̄
i (b, P

4) + πf̄
i (d, P

4) = πf̄
i (b, P

5) + πf̄
i (d, P

5) ≥ πf̄
i (b, P

j) + πf̄
i (d, P

j).

Clearly, this is true if P j ∈ {P 6, P 7}. If P j = P 1, then this is equivalent to requiring

q123j (1− q123k ) + q123k (1− q123j ) ≤
1

2
+

1

2

[

q23j q45k + q45j q23k
]

.

This can be generically satisfied by picking values of q123j and q123k close to zero. If P j ∈

{P 2, P 3}, the G-OBIC inequality is equivalent to requiring

q123j (1− q123k ) + q123k (1− q123j ) ≤
1

2
+ q23j q45k + q45j q23k −

1

2
q2345j q2345k .

This can be satisfied generically if we pick values of qℓj close to zero for all ℓ ∈ {1, 2, 3, 4, 5}.

Case 4 - P 6, P 7. In this case, agent i does not manipulate if πf̄
i (d, P

1) ≥ πf̄
i (d, P

j) for

any P j ∈ D. This is clearly true if P j ∈ {P 4, P 5}. If P j = P 1, then this is equivalent to

requiring

q123j (1− q123k ) + q123k (1− q123j ) ≤
1

2
,
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which can be satisfied generically by choosing qℓj close to zero for all ℓ ∈ {1, 2, 3}. If P j ∈

{P 2, P 3}, this is equivalent to requiring

q123j (1− q123k ) + q123k (1− q123j ) ≤
1

2
+

1

2

[

q23j q45k + q45j q23k
]

,

which can be satisfied generically by choosing qℓj close to zero for all ℓ ∈ {1, 2, 3}.

This completes all the cases. Summarizing, if the probabilities of the preferences in

{P 1, . . . , P 5} are small enough and the remaining probabilities are high enough, then OBIC

holds for f̄ . Since this can be done generically f̄ is G-OBIC.

Proof of Theorem 5

We first show that if f : Pn → A is G-LOBIC and unanimous, then it is Pareto efficient.

Suppose f is G-LOBIC and unanimous but assume for contradiction that it is not Pareto

efficient. For this, we consider a profile P such that f(P) = b but there exists a ∈ A

such that aPib for all i ∈ N . Consider an agent i ∈ N such that Pi(k) = a and k 6= 1.

Suppose Pi(k − 1) = x. Consider P ′
i which is a (x, a)-swap of Pi. By swap monotonicity,

f(P ′
i , P−i) = b. We can repeat such swaps to reach a preference ordering P ′′

i for agent i such

that P ′′
i (1) = a and f(P ′′

i , P−i) = b. Now, we can repeat this procedure for every agent j

such that Pj(k) = a and k 6= 1 to arrive at a profile P′′ such that f(P′′) = b. But this will

contradict unanimity since P ′′
j (1) = a for all j ∈ N .

Hence, we show that any f : Pn → A that is G-LOBIC and Pareto efficient must satisfy

elementary monotonicity. By Theorem 2, we will be done.

To do so, we consider an agent i ∈ N , a preference profile P−i of other agents, and Pi, P
′
i

such that P ′
i is an (a, b)-swap of Pi and f(Pi, P−i) = b. The two profiles are shown in Table

23. Notice that there are some agents in P−i who prefer a to b and some prefer b to a.

Pi P−i P ′
i P−i

· . . . . . . · . . . . . .

· . . . . . . · . . . . . .

a b . . . a . . . b b . . . a . . .

b . . . . . . a . . . . . .

· a . . . b . . . · a . . . b . . .

· . . . . . . · . . . . . .

Table 23: Profiles (Pi, P−i) and (P ′
i , P−i)

We will now show that f(P ′
i , P−i) = b. By swap monotonicity, f(P ′

i , P−i) ∈ {a, b}. As-

sume for contradiction that f(P ′
i , P−i) = a. Now, we do the proof in several steps.
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Step 1. We modify the profile (Pi, P−i) to bring one of the alternatives not in {a, b} (such

an alternative exists since |A| ≥ 3) just below {a, b} for all the agents. Let x /∈ {a, b} be

some alternative. If aPjx and bPjx for some j ∈ N , then we can do a series of swaps to

lift x up such that it is just below b if aPjb or just below a if bPja (note that none of these

swaps will involve b). By swap monotonicity, the outcome at the new profile continues to

be b. Using a similar argument, if bPjx and xPja for some j ∈ N , then we can come to a

preference ordering where x is just below a maintaining the outcome to be b.

Now, consider j ∈ N , such that xPjb. If x and b are not consecutive in Pj, then again we

can do a series of swaps to come to a preference ordering such that x is just above b (note

again that none of these swaps will involve b). By swap monotonicity, the outcome at the

new profile continues to be b. Let us denote this new profile by P̄.

P̄

. . . . . . . . . . . .

. . . . . . . . . . . .

a b a x

. . . . . . . . . b

. . . . . . . . . . . .

b a x . . .

x x b a

. . . . . . . . . . . .

. . . . . . . . . . . .

Table 24: Profile P̄

So, we have reached a profile P̄, where for every j ∈ N , either x is just above b in P̄j or

[x is just below b if aP̄jb and x is just below a if bP̄ja]. Table 24 shows the profile P̄.

Now, for every j ∈ N such that x is just above b in P̄j (Columns 3 and 4 in Table 24).

We do a (x, b)-swap. By swap monotonicity the outcome at the new profile is either x or

b. But b is preferred to x by all the agents, and hence, Pareto efficiency implies that the

outcome at this profile is b. For every j belonging to Column 4 in Table 24, we then do a

sequence of swaps to get x just below a. Denote this new preference ordering by P̄ ′
j . By

swap monotonicity the outcome at the new profile is b. Denote the new profile as P̄′ and

note that f(P̄′) = b.

Now, consider the (a, b)-swap of P̄ ′
i and denote this preference ordering as P̄ ′′

i . Since

f(P ′
i , P−i) = a, an analogous argument will show that f(P̄ ′′

i , P̄
′
−i) = a. The two profiles

(P̄ ′
i , P̄

′
−i) and (P̄ ′′

i , P̄
′
−i) are shown in Table 25.
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P̄ ′
i P̄ ′

−i P̄ ′′
i P̄ ′

−i

· . . . . . . · . . . . . .

· . . . . . . · . . . . . .

a b . . . a . . . b b . . . a . . .

b . . . . . . a . . . . . .

x a . . . b . . . x a . . . b . . .

· x . . . x . . . · x . . . x . . .

· . . . . . . · . . . . . .

Table 25: Profiles (P̄ ′
i , P̄

′
−i) and (P̄ ′′

i , P̄
′
−i)

Step 2. In this step, we modify the profile (P̄ ′
i , P̄

′
−i) in a particular way. First, we look at

an agent j ∈ N , such that aP̄ ′
jb and bP̄ ′

jx. We perform a (b, x) swap for each of these agents.

The new profile is shown in Table 26. By swap monotonicity, the outcome at the new profile

must be in {b, x}. But since a is ranked higher than x for all the agents, Pareto efficiency

implies the outcome at the new profile must be b.

Agent i Other agents

· . . . . . .

· . . . . . .

a b . . . a . . .

x . . . . . .

b a . . . x . . .

· x . . . b . . .

· . . . . . .

Table 26: New profile in Step 2

Step 3. In this step, we modify the profile in Table 26 further. In particular, we lift x

just above a. For agent i and for all j 6= i such that x is just below a, this can be done by

a (a, x)-swap. For all other agents, this requires a series of swaps - note that these swaps

can be done by without involving b. The new profile is shown in Table 27. Since none of

the swaps involve b, swap monotonicity implies that the outcome at the new profile remains b.

Step 4. In this step, we modify the profile in Step 3 by changing only agent i’s preference

ordering. We do this by doing an (a, b)-swap of the preference ordering of agent i in the

profile shown in Table 27. The new profile is shown in Table 28. By swap monotonicity,

the outcome at the new profile is in {a, b}. But x is better than a for all agents, and hence,
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Agent i Other agents

· . . . . . .

· . . . . . .

x b . . . x . . .

a . . . a . . .

b x . . . . . .

· a . . . b . . .

· . . . . . .

Table 27: New profile in Step 3

Pareto efficiency implies the outcome at the new profile is b.

Agent i Other agents

· . . . . . .

· . . . . . .

x b . . . x . . .

b . . . a . . .

a x . . . . . .

· a . . . b . . .

· . . . . . .

Table 28: New profile in Step 4

Step 5. In this step, we modify the profile in Step 4 by changing the preferences of those

agents who prefer x to a and a to b (the third column of agents in Table 28). We perform a

series of swaps to bring x just one position above b. The new profile is shown in Table 29.

By swap monotonicity, the outcome at this profile remains b.

Step 6. Now, we perform an (x, b)-swap of preferences of those agents who rank x just

above b in the profile in Step 5 - this will be agent i and agents in the third column in Table

29. The new profile is shown in Table 30. By swap monotonicity, the outcome at the new

profile is in {x, b}. But b is preferred to x for all the agents. Hence, Pareto efficiency implies

the outcome at the new profile remains b.

Step 7. Finally, we perform a (x, a)-swap for the preferences of all agents in the profile in

Step 6 who rank x just above a - this will include agent i and agents in the second column

of Table 30. The new profile is shown Table 31. By swap monotonicity, the outcome at this
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Agent i Other agents

· . . . . . .

· . . . . . .

x b . . . a . . .

b . . . . . .

a x . . . x . . .

· a . . . b . . .

· . . . . . .

Table 29: New profile in Step 5

Agent i Other agents

· . . . . . .

· . . . . . .

b b . . . a . . .

x . . . . . .

a x . . . b . . .

· a . . . x . . .

· . . . . . .

Table 30: New profile in Step 6

profile remains b.

But the profile shown in Table 31 is exactly the profile (P̄ ′′
i , P̄

′
−i) (see Table 25) and we

had assumed that f(P̄ ′′
i , P̄

′
−i) = a. This is a contradiction.

Agent i Other agents

· . . . . . .

· . . . . . .

b b . . . a . . .

a . . . . . .

x a . . . b . . .

· x . . . x . . .

· . . . . . .

Table 31: New profile in Step 7
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