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1 Introduction

We consider two neighbouring countries represented by the real intervals [−1, 0] and [0, 1]. Each
country has to locate one public bad within its boundaries, a joint decision resulting in an element
of the set A = [−1, 0]× [0, 1]. For example, consider the coast line shared by India and Pakistan.
It is of interest to study how they can jointly decide upon the location of a windmill park for
each country along the coast line. The location problem at hand concerns public bads, therefore
residents’ preferences are considered to be single dipped1 on A . This means that a resident has
a single point, say his dip, in his own country being his worst possible location for such a bad.
Further, preference increases with the minimal distance between his dip and each of the locations
in a pair in A . Note that only the minimal distance is taken in to account here. So, if at two
pairs in A these distances are equal, then the pairs of locations are indifferent to the resident.

We assume that there are finitely many residents (say n) in the two countries combined. In
this situation, a social choice function will take the dips of all the residents of the two countries
(called a profile) as input, and give a pair in A as output. In this paper we characterise the class
of all social choice functions that simultaneously satisfy strategy proofness, non-corruptibility,
Pareto optimality and the far away condition. The notion of strategy proofness is exactly same as
introduced by Gibbard (1973) and Satterthwaite (1975). We use a version of Pareto optimality
that is stronger than the usual notion. More precisely, we impose Pareto optimality specific to
each country.

The non-corruptibility property is based on the similar notion introduced by Ritz (1984). We
modify this notion based on the literature on non-bossy condition. This property ensures that
after a unilateral deviation of a resident, if he remains indifferent between the old outcome and
the new outcome, according to his true preference and also according to his deviated preference,
then both of these outcomes must be the same. This means that a unilaterally deviating resident
cannot change the outcome and remain unaffected by this change; i.e.; a resident by unilateral
deviation cannot make some other residents better off or worse off without affecting himself.

The far away condition is defined in such a way that in case all the agents are indifferent,
the rule should select (−1, 1) as the outcome. More precisely, this condition states that if no
resident strictly opposes the decision of placing one bad at the extreme end of the corresponding
country, irrespective of the location of the other bad, then that bad should be placed at the
extreme end. This condition can be thought of as a tie breaking condition that ensures that the
outcome remains one of the corner points of A .

We show that the range of a social choice function satisfying these four properties consists
of the corner points of A ; i.e. ; such a function never places a public bad of any country in the
interior of that country. Now we provide an example of a non-dictatorial social choice function
that satisfies all the four properties. For simplicity, assume that agents cannot have dips at −0.5
or at 0.5; and the total number of agents (n) is odd. In such a scenario, the rule will select (−1, 1)
if there is a decisive coalition for (−1, 1). For simplicity assume that decisiveness of a coalition is
determined by simple majority. As we did not assume anonymity, the decisiveness of a coalition
may be defined in many different ways also. For example, a coalition could also be decisive if it
includes some specific agents. So, in this scenario, the rule will select (−1, 1) if there is a majority
of agents who prefer (−1, 1) to all other corner points of A . Now consider the case where there
is no decisive coalition for (−1, 1). In such a case, if there are agents with dips in [−1,−0.5),
but there are no agents with dips in (0.5, 1], then the rule selects (0, 1). For the symmetrically
opposite case where there are no agents with dips in [−1,−0.5), but there are agents with dips
in (0.5, 1], the rule selects (−1, 0). In all other cases, the rule will select (0, 0). Note that this

1More precisely, this is a single trenched preference. For example, suppose the dip of an agent in country A
be at −0.5. Then {−0.5} ×B is the trench in his preference.
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rule will satisfy all the four condition under the simplified scenario only. But we can generalise
this rule to consider all possible cases. The class of rules that satisfy these four properties is
characterised on the basis of a family of pairs of coalitions; one coalition consisting of agents who
strictly prefer (−1, 1) to all the other corner points of A , the other coalition consisting of agents
who are indifferent among all the corner points of A . This family can be described in terms of
two properties. The main property is monotonicity, which states that if a pair of coalitions (say
(S, T )) is in this family, then, any other pairs of coalitions, which are larger than (S, T ), will also
be in this family. The notion of a pair of coalition being larger than another pair of coalition is
defined later in the paper. The other condition is a technical condition that enforces the stronger
Pareto optimality and the far away condition. We show that if there exists a social choice
function that satisfies strategy proofness, non-corruptibility, Pareto optimality and the far away
condition, then we can construct a family of pairs of coalitions satisfying these two properties. On
the other hand, given any arbitrary family of pairs of coalitions satisfying these two properties,
we construct a social choice function that satisfies strategy proofness, non-corruptibility, Pareto
optimality and the far away condition.

This is a positive result as compared to the seminal impossibility theorem of Gibbard (1973)
and Satterthwaite (1975) which says that if there are three or more alternatives, then it is
impossible to find a non-dictatorial social choice function which is also strategy proof and pareto
optimal. One way out from this impossibility result is to consider restricted preference domains.
One possible restricted domain is the single dipped preference domain. Peremans and Storcken
(1999) has shown the equivalence between individual and group strategy proofness in sub domains
of single dipped preferences. Manjunath (2009) have characterised the class of all non dictatorial,
strategy proof and Pareto optimal social choice functions when preferences are single dipped over
an interval. Barberà, Berga and Moreno (2012) has characterised the class of all non dictatorial,
group strategy proof and Pareto optimal social choice functions when preferences are single
dipped over on a line. But there are impossibility results in this domain as well. Öztürk, Peters
and Storcken (2012) has shown two impossibility results. They have shown that there does not
exist any non dictatorial social choice function that is strategy proof and Pareto optimal when
preferences are single dipped over a disk, and over convex polytopes2. Also there are a lot of
literature regarding auction designs that determines the location of a noxious facility. They
assume side payments which we do not. The non dictatorial rule we described is similar to the
rule described by Manjunath and Barberà et al.

This paper is organised as follows. In Section 2, we formally introduce our model. In Section
3, we introduced notations that will be used throughout this paper. In Section 4, we formally
define the four properties. In Section 5, we prove that the range of a social choice function
satisfying these four properties consists of the corner points of A . In Section 6, we characterise
the class of social choice functions satisfying these four properties in terms of families of pairs of
coalitions. In Section 7, we show, by means of examples of social choice functions, that the four
properties are independent of each other. In Section 8, we conclude by perturbing our model in
three aspects and try to see whether our results still holds or not.

2In this case, for some particular polytopes, there exists non dictatorial, strategy proof, Pareto optimal social
choice functions.
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2 Model

Let A = [−1, 0] and B = [0, 1].
Set of alternatives - A = A×B. We shall denote any alternative (α, β) ∈ A as αβ if there are
no confusion among the two.
Set of agents - N = NA ∪NB , where,

• NA is the set of agents in country A and |NA| = nA

• NB is the set of agents in country B and |NB | = nB

• NA ∩NB = φ

Each agent i ∈ Nc has a single dipped preference Rx(i) over A which is characterised by a unique
point (dip) x(i) in c (for all c = A,B) defined as follows -
Any alternative (α1, β1) ∈ A is at least as good as another alternative (α2, β2) ∈ A according
to the dip at x(i) iff

• min{|α1 − x(i)|, |β1 − x(i)|} ≥ min{|α2 − x(i)|, |β2 − x(i)|}
Px(i) denotes the strict part of the preference and Ix(i) denotes the indifference part of the
preference.
A profile of preferences is defined as follows -

• z = (z(1), z(2), . . . , z(nA + nB)), where

– z(i) ∈ A ∪B is the dip of agent i ∈ N .

Note that z ∈ R := AnA ×BnB . For a profile z, let z|N−S be the dips of all agents in N − S for
any S ( N .

3 Notation

A social choice function f is defined as follows -
f : R −→ A
Define two functions f1 : R −→ A and f2 : R −→ B such that -

• For any z ∈ R, f(z) = (α, β)⇔ f1(z) = α and f2(z) = β

Take any two points x, y ∈ R. Define xy ∈ R as xy := 2y− x. In other words, for any two points
x, y ∈ R, the point xy ∈ R is defined to be that unique point on the other side of y compared to
x, such that the distance between x and y is same as that between y and xy. Note that, given
any x, y ∈ A ∪B, xy may not belong to A ∪B.

Take two points x, y ∈ A ∪ B. Define µ(x, y) := x+y
2 as the middle point of the line joining x

and y.

A social choice function f is monotone if f(z) = f(z
′
) for any two profiles z and z

′
, such that

for some i ∈ N
z
′
(i) ≤ z(i) ≤ f1(z) ≤ f2(z) or

f1(z) ≤ z(i) ≤ z′(i) ≤ µ(f1(z), f2(z)) ≤ f2(z) or
f1(z) ≤ µ(f1(z), f2(z)) ≤ z′(i) ≤ z(i) ≤ f2(z) or
f1(z) ≤ f2(z) ≤ z(i) ≤ z′(i) holds,
while z

′
(j) = z(j) for all j 6= i.

So, f is monotone if outcomes do not change when agents increase their minimal distance to
these bads while not changing the minimum one and not jumping across any of these bads.
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Remark 1. In this context, the lower contour set of an agent i with dip at z(i), given an out
come (α, β) ∈ A is defined as L((α, β), z(i)) = {(γ, δ) ∈ A : (α, β)Rz(i)(γ, δ)}, and a social

choice function f is said to be Maskin monotone if f(z) = f(z
′
) for all z, z

′ ∈ R such that
L(f(z), z(i)) ⊆ L(f(z), z

′
(i)) for all i ∈ N .

The monotonicity condition introduced in this paper is weaker than Maskin monotonicity. For
example consider a profile z, such that there exists atleast one agent i ∈ NA with z(i) = −1.
Suppose for an arbitrary social choice function f , we have f(z) = (α, β), where α ∈ (−1, 0) and
β ∈ [0, 1]. Now consider another profile z

′
such that z

′
(i) = µ(−1, α) but z

′
(j) = z(j) for all

j ∈ N − {i}. Notice that in this deviation, agent i decreases the distance to his closest bad.
So imposing our monotonicity condition on f , do not put any restriction on f(z

′
). Now notice

that L(f(z), z(i)) = {(γ, δ) ∈ A : γ ∈ [−1, α], δ ∈ [0, 1]} = L(f(z), z
′
(i)). For all j ∈ N −{i}, we

have L(f(z), z(j)) = L(f(z), z
′
(j)). So, if we assume that f satisfies Maskin monotonicity, then

we get f(z
′
) = f(z).

Remark 2. Suppose f is a monotone social choice function and f(z) = (α, β) for some profile
z ∈ R. Without loss of generality, assume that µ(α, β) ∈ A. Now consider another profile

z∗ = (−1S , µ(α, β)
NA−S , 0T , 1NB−T ) ∈ R, where

• S := {i ∈ NA : z(i) ≤ α}.

• T := {i ∈ NB : z(i) ≤ β}.
As f is monotone, it follows that f(z∗) = (α, β).

4 Properties

For a profile z ∈ R, we define another profile z
′ ∈ R as a unilateral deviation from z if

z
′

= (z
′
(i), z|N−{i}) for some agent i ∈ N , where z(i) 6= z

′
(i). We denote this agent i as

the unilaterally deviating agent.

1. Strategy proofness : A social choice function f is strategy proof if for all profile z ∈ R
and for any unilateral deviation from z, say z

′ ∈ R, with any unilaterally deviating agent
i ∈ N ; we have f(z)Rz(i)f(z

′
).

2. Non-corruptibility : We say that f is non-corruptible if for all profile z ∈ R and any
unilateral deviation from z, say z

′ ∈ R, with any unilaterally deviating agent i ∈ N we
have that f(z) = f(z

′
) whenever both f(z)Iz(i)f(z

′
) and f(z)Iz′ (i)f(z

′
).

3. Country specific Pareto optimality :
A social choice function f is Pareto optimal for country A if for any profile z ∈ R,
there does not exist any α ∈ A such that, (α, f2(z))Rz(i)f(z) holds for all i ∈ NA with
(α, f2(z))Pz(k)f(z) for at least one k ∈ NA.
A social choice function f is Pareto optimal for country B if for any profile z ∈ R,
there does not exist any β ∈ B such that, (f1(z), β)Rz(j)f(z) holds for all j ∈ NB with
(f1(z), β)Pz(k)f(z) for at least one k ∈ NB .
A social choice function f is country specific Pareto optimal if it is both Pareto optimal
for country A and Pareto optimal for country B.

4. Far away condition : We say that f satisfies far away condition if for all profiles z

(a) If (f1(z), 1)Rz(i)f(z) for all i ∈ N , then f2(z) = 1

(b) If (−1, f2(z))Rz(i)f(z) for all i ∈ N , then f1(z) = −1
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5 Implication of Strategy Proofness, Non-corruptibility,
Country Specific Pareto Optimality and the Far Away
Condition

Fix a profile z. Let f be a social choice function and suppose f(z) = (α, β). We are going
to prove that if a social choice function satisfies strategy proofness, non-corruptibility, country
specific Pareto optimality and the far away condition, then the outcome of that function must
be one of the corner points of A . Formally,

Theorem 1. If f is a strategy proof, country specific Pareto optimal, non-corruptible social
choice function that satisfies the far away condition, then for any profile z ∈ R,
f(z) ∈ {(−1, 1), (0, 0), (−1, 0), (0, 1)}.

We prove this theorem with the help of the following four lemmas.
The first lemma shows that monotonicity is implied by strategy proofness and non-corruptibility.

Lemma 1. If f is strategy proof and non-corruptible, then f is monotone.

Proof. Let z
′

be an unilateral deviation from z and suppose the unilaterally deviating agent is i.
That is z

′
= (z

′
(i), z|N−{i}) and either z

′
(i) < z(i) ≤ α ≤ β or α ≤ z(i) < z

′
(i) ≤ µ(α, β) < β.

It is sufficient to prove f(z) = f(z
′
). Let f(z

′
) = (α

′
, β
′
). Now consider the two cases as follows

• Case 1 : z
′
(i) < z(i) ≤ α ≤ β

Note that, in this case, |α− z′(i)| < |β − z′(i)|. Then strategy proofness implies that

1. Either α
′

or β
′

must be in [αz(i), α]. This corresponds to strategy proofness restriction

for deviation from z to z
′
.

2. Neither α
′

nor β
′

can be in (αz′ (i), α). This corresponds to strategy proofness restric-

tion for deviation from z
′

to z.

Note that, since z
′
(i) < z(i) ≤ α ≤ β, so we can say that [αz(i), α) ( (αz′ (i), α). So this

yields that either α
′

= α or β
′

= α.

– Sub Case 1 : α
′

= α
Then, using the condition from strategy proofness, we can say that
β
′ ∈ [0, 1] − (αz′ (i), α). This means that α

′
is the closest to both z(i) and z

′
(i)

in {α′ , β′}. Since, we have assumed that α is the closest bad to z(i), so we get
f(z)Iz(i)f(z

′
) and f(z)Iz′ (i)f(z

′
) and non-corruptibility implies f(z) = f(z

′
).

– Sub Case 2 : β
′

= α
Then, using the conditions from strategy proofness, we can say that
α
′ ∈ [−1, 0] − (αz′ (i), α). This means that β

′
is the closest to both z(i) and z

′
(i)

in {α′ , β′}. Since, we have assumed that α is the closest bad to z(i), so we get
f(z)Iz(i)f(z

′
) and f(z)Iz′ (i)f(z

′
) and non-corruptibility implies f(z) = f(z

′
).

• Case 2 : α ≤ z(i) < z
′
(i) ≤ µ(α, β) < β

Note that, in this case, |α− z′(i)| ≤ |β − z′(i)|. Then strategy proofness implies that

1. Either α
′

or β
′

must be in [α, αz(i)]. This corresponds to strategy proofness restriction

for deviation from z to z
′
.
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2. Neither α
′

nor β
′

can be in (α, αz′ (i)). This corresponds to strategy proofness restric-

tion for deviation from z
′

to z.

Note that, since α ≤ z(i) < z
′
(i) ≤ µ(α, β) < β, so we can say that (α, αz(i)] ( (α, αz′ (i)).

So this yields that either α
′

= α or β
′

= α.

– Sub Case 1 : α
′

= α
Then, using the condition from strategy proofness, we can say that
β
′ ∈ [0, 1] − (α, αz′ (i)). This means that α

′
is the closest to both z(i) and z

′
(i)

in {α′ , β′}. Since, we have assumed that α is the closest bad to z(i), so we get
f(z)Iz(i)f(z

′
) and f(z)Iz′ (i)f(z

′
) and non-corruptibility implies f(z) = f(z

′
).

– Sub Case 2 : β
′

= α
Then, using the conditions from strategy proofness, we can say that
α
′ ∈ [−1, 0] − (α, αz′ (i)). This means that β

′
is the closest to both z(i) and z

′
(i)

in {α′ , β′}. Since, we have assumed that α is the closest bad to z(i), so we get
f(z)Iz(i)f(z

′
) and f(z)Iz′ (i)f(z

′
) and non-corruptibility implies f(z) = f(z

′
).

From here onwards, we shall assume that f satisfies strategy proofness, non-corruptibility, coun-
try specific Pareto optimality and the far away condition.

The second lemma shows that if one of the two bads is located at 0, then the other one cannot
be located at an interior point of its country.

Lemma 2. α = 0 implies β ∈ {0, 1} and β = 0 implies α ∈ {−1, 0}.

Proof. Due to symmetry, it is sufficient to prove that α = 0 implies β ∈ {0, 1}.
Suppose α = 0 and β > 0. It is sufficient to prove that β = 1. Because of monotonicity, we may
assume that z(i) = −1 for all agents i ∈ NA and z(j) ≥ µ(0, β) for all agents j ∈ NB . If there
were agents j ∈ NB such that z(j) > µ(0, β), then we get, (0, 0)Pz(j)(α, β), which is a violation
of country specific Pareto optimality. So z(j) = µ(0, β) for all agents j ∈ NB . Hence the far
away condition yields β = 1.

The third lemma shows that if one of the two bads is located at the extreme end, then the other
one cannot be located at an interior point of its country.

Lemma 3. α = −1 implies β ∈ {0, 1} and β = 1 implies α ∈ {−1, 0}.

Proof. Due to symmetry, it is sufficient to prove that α = −1 implies β /∈ (0, 1).
Suppose α = −1, but to the contrary, β ∈ (0, 1).
Notice that, in this case, µ(−1, β) ∈ (−0.5, 0).

Using Remark 2, we may assume that - z = (µ(−1, β)
NA , 0T , 1NB−T ), where T ⊆ NB .

Notice that -

• NB − T 6= φ
If NB − T = φ, then we would get that T = NB and then at the profile z, we get
(−1, 1)P0(−1, β). This violates country specific Pareto optimality.

• T 6= φ
If T = φ, we get NB − T = NB and then at the profile z, we get (−1, 0)P1(−1, β). This
violates country specific Pareto optimality.
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Consider profile z∗ ∈ R, where z∗(i) = z(i) = µ(−1, β) for all i ∈ NA, arbitrary otherwise.

Claim 1. f1(z∗) = −1.

Proof. Suppose f1(z∗) 6= −1; i.e. ; f1(z∗) > −1. Now consider the following cases.

1. | − 1− µ(−1, β)| < |µ(−1, β)− f2(z∗)|.
In this case, f2(z∗) ∈ (−1µ(−1,β), 1]. Then (−1, f2(z∗))Pz∗(i)f(z∗) for any
f2(z∗) ∈ (−1µ(−1,β), 1] for all i ∈ NA. This is a violation of Pareto optimality for country A.

2. | − 1− µ(−1, β)| ≥ |µ(−1, β)− f2(z∗)|.
In this case, f2(z∗) ∈ [0,−1µ(−1,β)]. Then (−1, f2(z∗))Rz∗(i)f(z∗) for any
f2(z∗) ∈ (−1µ(−1,β), 1] for all i ∈ N . This is a violation of the far away condition.

Combining these two cases, we conclude the proof of Claim 1.

Now we are going to construct z
′

= (µ(−1, β)
NA , µ(0, β)

T
, µ(β, 1)

NB−T ) in two ways.

• In this method, first we are going to construct z1 = (µ(−1, β)
NA , µ(0, β)

T
, 1NB−T ) from

z by moving all the agents in T from 0 to µ(0, β). Let f(z1) = (α1, β1). We know from
Claim 1, that α1 = −1. Then strategy proofness implies that β1 ∈ {0, β}.
Suppose β1 = β. But this violates country specific Pareto optimality as (−1, 0)P1(−1, β)
and (−1, β)Iµ(0,β)(−1, 0). So β1 = 0 and f(z1) = (−1, 0).

Next we move all the agents in NB − T from 1 in the profile z1 to µ(β, 1) to get z
′
. Let

f(z
′
) = (α

′
, β
′
). From Claim 1, we know that α

′
= −1. Then strategy proofness implies

β
′

= 0. So we get f(z
′
) = (−1, 0).

• In this method, first we are going to construct z2 = (µ(−1, β)
NA , 0T , µ(β, 1)

NB−T ) from z
by moving all the agents in NB −T from 1 to µ(β, 1). Let f(z2) = (α2, β2). From Claim 1,
we know that α2 = −1. Then strategy proofness implies β2 ∈ {β, 1}.
Suppose β2 = β. But, this violates the far away condition as (−1, 1)Rz2(i)(−1, β) for all
i ∈ N . So β2 = 1 and f(z2) = (−1, 1).
Now we move all the agents in T from 0 in the profile z2 to µ(0, β) to get z

′
. Suppose

f(z
′
) = (α

′
, β
′
). From Claim 1, we know α

′
= −1. Then strategy proofness would imply

that β
′

= 1. So, we get f(z
′
) = (−1, 1).

These two ways of construction yields contradictory outcome.

The fourth lemma shows that none of the two bads can be in the interior of their respective
countries simultaneously.

Lemma 4. (α, β) /∈ (−1, 0)× (0, 1)

Proof. Suppose not. So, α ∈ (−1, 0) and β ∈ (0, 1). Without loss of generality, assume that

µ(α, β) ∈ A. Using Remark 2, we may assume that, z = (−1S , µ(α, β)
NA−S , 0T , 1NB−T ), where

S ⊆ NA and T ⊆ NB .
Note that -

• S 6= φ.
If S = φ, then (−1, β)Rµ(α,β)(α, β), (−1, β)R0(α, β) and (−1, β)R1(α, β). So f(z) = (α, β)
would violate the far away condition.
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• NB − T 6= φ.
IfNB−T = φ, then (α, 1)Rµ(α,β)(α, β), (α, 1)R0(α, β) and (α, 1)R−1(α, β). So f(z) = (α, β)
would violate the far away condition.

• NA − S 6= φ
If NA − S = φ, then we get (0, β)P−1(α, β). So f(z) = (α, β) would violate Pareto
optimality for country A.

• T 6= φ
If T = φ, then we get (α, 0)P1(α, β). So f(z) = (α, β) would violate Pareto optimality for
country B.

Now, from z, we are going to construct the following profiles-

1. z1 = (µ(−1, α)
S
, µ(α, β)

NA−S , 0T , µ(β, 1)
NB−T ).

2. z2 = (−1S , µ(α, 0)
NA−S , µ(0, β)

T
, 1NB−T ).

3. z3 = (µ(−1, α)
S
, µ(α, 0)

NA−S , µ(0, β)
T
, µ(β, 1)

NB−T )

Firstly, we shall construct z1 and z2 from z. Then we shall construct z3 from z1 and z2, which
will lead to a contradiction with respect to outcome at profile z3.
Construction of z1 from z -
We are going to prove that f(z1) = (−1, 1). Consider the following two methods.

• Method 1 :
First move all agents in S from −1 to µ(−1, α).

Let z11 = (µ(−1, α)
S
, µ(α, β)

NA−S , 0T , 1NB−T ), and let f(z11) = (α1
1, β

1
1). Due to strategy

proofness, we can say that α1
1 ∈ {−1, α}. Now if α1

1 = α, then we get (α, β)I−1(α, β1
1)

for all β1
1 ∈ [0, 1], and (α, β)Iµ(−1,α)(α, β

1
1) for all β1

1 ∈ [0, 1]. So, non-corruptibility would
imply that f(z11) = (α, β). But in the profile z11 , we have (−1, β)Rz11(i)(α, β) for all i ∈ N .

So f(z11) = (α, β) violates the far away condition. So, α1
1 = −1. By Lemma 3 we get

β1
1 ∈ {0, 1}. So, f(z11) = (−1, β1

1), where β1
1 ∈ {0, 1}.

Now we move all agents in NB − T from 1 in z11 to µ(β, 1) to get the profile z1. Let
f(z1) = (α1, β1). Now if β1

1 = 1, then due to monotonicity, we have f(z1) = (−1, 1).
If β1

1 = 0, then strategy proofness implies β1 = 0. Then we get (−1, 0)I1(α1, 0) for all
α1 ∈ [−1, 0], and (−1, 0)Iµ(β,1)(α1, 0) for all α1 ∈ [−1, 0]. So, non-corruptibility implies
f(z1) = (−1, 0).
So, in this method, we get f(z1) ∈ {(−1, 0), (−1, 1)}.

• Method 2 :
In this method, first move all the agents in NB − T from 1 to µ(β, 1). Then we move all
the agents in S from −1 to µ(−1, α). Because of similar reasons as described in method 1,
we can say that f(z1) ∈ {(0, 1), (−1, 1)}.

So, combining these two methods, we conclude that f(z1) = (−1, 1).

Construction of z2 from z -
We are going to prove that f(z2) = (0, 0) in two steps as follows -
First move all the agents in T from 0 to µ(0, β).

Let z12 = (−1S , µ(α, β)
NA−S , µ(0, β)

T
, 1NB−T ), and suppose f(z12) = (α1

2, β
1
2). Strategy proofness

implies one of these two bads must be in {β}∪ [−β, 0]. Now we consider the following cases based
on the location of α1

2 and β1
2 in {β} ∪ [−β, 0].
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1. Suppose β1
2 = β.

Then, for all α1
2 ∈ [−1, 0] we get (α1

2, 0)Iz12(i)(α
1
2, β) for all i ∈ T and (α1

2, 0)Pz12(i)(α
1
2, β)

for all i ∈ NB − T . This violates Pareto optimality for country B.

2. Suppose β1
2 = 0.

Using Lemma 2, we can say that, α1
2 ∈ {0,−1}. So Pareto optimality for country A implies

α1
2 = 0.

3. Suppose α1
2 = 0.

Using Lemma 2, we can say that, β1
2 ∈ {0, 1}. So, Pareto optimality for country B implies

β1
2 = 0.

4. Suppose α1
2 ∈ [−β, 0).

Suppose β1
2 = 0. As α ≤ −β, so for any α1

2 ∈ [−β, 0), we have (0, 0)P−1(α1
2, 0) and

(0, 0)Rµ(α,β)(α
1
2, 0). This violates Pareto optimality for country A. So β1

2 ∈ (0, 1]. Now
suppose α1

2 ∈ [0µ(α,β), 0). Then for any β1
2 ∈ (0, 1], we have (0, β1

2)P−1(α1
2, β

1
2) and

(0, β1
2)Rµ(α,β)(α

1
2, β

1
2). Clearly, this is a violations of Pareto optimality for country A.

So α1
2 ∈ [−β, 0µ(α,β)). Now if β1

2 ∈ (0, β], then for any α1
2 ∈ [−β, 0µ(α,β)), we have

(α1
2, 0)P1(α1

2, β
1
2) and (α1

2, 0)Rµ(0,β)(α
1
2, β

1
2). This is a violation of Pareto optimality for

country B. So, β2
1 ∈ (β, 1].

So, f(z12) = (0, 0) or α1
2 ∈ [−β, 0µ(α,β)) and β1

2 ∈ (β, 1]. Now we will prove that f(z2) = (0, 0).
Now consider the following cases -

1. f(z12) = (0, 0).
Now we move all the agents in NA − S from µ(α, β) in z12 to µ(α, 0) to get the profile z2.
Due to monotonicity, we can say that f(z2) = 00.

2. f(z12) = (α1
2, β

1
2), where α1

2 ∈ [−β, 0µ(α,β)) and β1
2 ∈ (β, 1].

Notice that, α1
2 is closest to both µ(α, β) and µ(α, 0) in {α1

2, β
1
2}. Now we move all the

agents in NA − S from µ(α, β) in z12 to µ(α, 0) to get the profile z2. Let f(z2) = (α2, β2).
Then strategy proofness implies that one of the bads must be in either [α1

2, α
1
2µ(α,β)] or

{α1
2}∪[α1

2µ(α,0), α
1
2µ(α,β)] depending on whether α1

2 ∈ [µ(α, 0), 0µ(α,β)) or α1
2 ∈ [−β, µ(α, 0)).

Notice that, both of these sets are contained in the interval [α, β] as α ≤ −β and µ(α, β) ≤ 0.
Now if α2 is in one of these sets, then using country specific Pareto optimality, we can say
that α2 = 0. Then using Lemma 2 we get β2 ∈ {0, 1}. Then country specific Pareto
optimality implies β2 = 0. Similar arguments follow for the case when β2 is in one of these
sets. So, in this case also, we get f(z2) = (0, 0).

Combining all the cases, we can conclude that f(z2) = (0, 0).

Construction of z3 -

• From z2 = (−1S , µ(α, 0)
NA−S , µ(0, β)

T
, 1NB−T ) -

We know f(z2) = (0, 0).
Now we move all agents in S from −1 in profile z2 to µ(−1, α). Let this profile be

z22 = (µ(−1, α)
S
, µ(α, 0)

NA−S , µ(0, β)
T
, 1NB−T ). Let f(z22) = (α2

2, β
2
2). Strategy proofness

implies α2
2 = 0. Then (0, 0)I−1(0, β2

2) for all β2
2 ∈ [0, 1] and (0, 0)Iµ(−1,α)(0, β

2
2) for all

β2
2 ∈ [0, 1]. So non corruptibility implies that f(z22) = (0, 0).

Now we move all the agents in NB − T from 1 in the profile z22 to µ(β, 1) to get the profile
z3. Let f(z3) = (α3, β3). Strategy proofness implies β3 = 0. Then (0, 0)I1(α3, 0) for all
α3 ∈ [−1, 0] and (0, 0)Iµ(β,1)(α3, 0) for all α3 ∈ [−1, 0]. So non corruptibility implies that
f(z3) = (0, 0).
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• From z1 = (µ(−1, α)
S
, µ(α, β)

NA−S , 0T , µ(β, 1)
NB−T ) -

We know that f(z1) = (−1, 1).
Now we move all the agents in NA − S from µ(α, β) in the profile z1 to µ(α, 0). Let this

profile be z31 = (µ(−1, α)
S
, µ(α, 0)

NA−S , 0T , µ(0, β)
NB−T ). Let f(z31) = (α3

1, β
3
1). Strategy

proofness implies that α3
1 = −1. Lemma 3 implies β3

1 ∈ {0, 1}. Strategy proofness implies
β3
1 ∈ [−1µ(α,0), 1]. As −1µ(α,0) > 0, so f(z31) = (−1, 1). Now we move all the agents in
T from 0 in the profile z31 to µ(0, β) to get the profile z3 Let f(z3) = (α3, β3). Strategy
proofness implies that β3 = 1. Lemma 3 implies α3 ∈ {0,−1}. Strategy proofness implies
α3 ∈ [−1, 1µ(0,β)]. As 1µ(0,β) < 0, so f(z3) = (−1, 1).

This method contradicts f(z3) = (0, 0).

Proof of Theorem 1. Follows from Lemma 2, 3 and 4.
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6 Rules

In this section, we are going to characterise the class of rules that satisfy country specific Pareto
optimality, strategy proofness, non-corruptibility and far away condition. Notice that, from
Theorem 1 it follows that the set of possible alternatives is B = {−11,−10, 01, 00}. Now consider
two different profiles z and z

′
in R. We say that z|B = z

′ |B iff the following four conditions
hold.

1. {i ∈ N : z(i) ∈ [−1,−0.5)} = {i ∈ N : z
′
(i) ∈ [−1,−0.5)}.

2. {i ∈ N : z(i) ∈ {−0.5, 0.5}} = {i ∈ N : z
′
(i) ∈ {−0.5, 0.5}}.

3. {i ∈ N : z(i) ∈ (−0.5, 0.5)} = {i ∈ N : z
′
(i) ∈ (−0.5, 0.5)}.

4. {i ∈ N : z(i) ∈ (0.5, 1]} = {i ∈ N : z
′
(i) ∈ (0.5, 1]}.

In other words z|B = z
′ |B implies that the preference of every agent with respect to B are equal

in z and z
′
. Now restricted to B, there are only four possible single dipped preferences, which

are given in the following table.

Dips Preferences
z(i) ∈ [−1,−0.5)⇒ i ∈ NA 00Iz(i)01Pz(i) − 10Iz(i) − 11
z(i) ∈ {−0.5, 0.5} 00Iz(i)01Iz(i) − 10Iz(i) − 11
z(i) ∈ (−0.5, 0.5) −11Pz(i) − 10Iz(i)00Iz(i)01
z(i) ∈ (0.5, 1]⇒ i ∈ NB 00Iz(i) − 10Pz(i)01Iz(i) − 11

Lemma 5. f(z) = f(z
′
) for all social choice functions f that satisfies all the four properties

and for all z, z
′ ∈ R, with z|B = z

′ |B.

Proof. Suppose f(z) 6= f(z
′
). Without loss of generality, let z

′
be a unilateral deviation of an

agent i ∈ N from z. Then we have either f(z)Pz(i)f(z
′
), or f(z

′
)Pz(i)f(z), or f(z)Iz(i)f(z

′
).

Among these cases, f(z
′
)Pz(i)f(z) violates strategy proofness for the deviation from z to z

′
.

Since z|B = z
′ |B and f(z) ∈ B for all z ∈ R, so we can say that

• f(z)Pz(i)f(z
′
)⇒ f(z)Pz′ (i)f(z

′
).

• f(z)Iz(i)f(z
′
)⇒ f(z)Iz′ (i)f(z

′
).

Now f(z)Pz′ (i)f(z
′
) violates strategy proofness for the deviation from z

′
to z. Also since

f(z)Iz(i)f(z
′
) and f(z)Iz′ f(z

′
) holds, so f(z) 6= f(z

′
) violates the non-corruptibility condi-

tion.

Remark 3. Any one of these four preferences consists of at most two indifference classes. So,
the single dipped preferences restricted to B constitutes a dichotomous preference domain.
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We are going to prove that the class of all social choice functions that satisfies the four properties
are voting between −11 and 00 for all cases except when there is no winning coalition for −11
but selecting 00 as the outcome would violate the far away condition. In these cases the rule
selects, because of the far away condition, either −10 or 01.

We define W ⊂ 2N × 2N as decisive if it satisfies the following properties.

1. Monotonicity : Consider any (U, V ) ∈ 2N × 2N , if (U, V ) ∈ W , then (U
′
, V
′
) ∈ W for any

other (U
′
, V
′
) ∈ 2N × 2N , such that U ⊆ U ′ and U ∪ V ⊆ U ′ ∪ V ′ .

2. Boundary Conditions :

(a) (φ,N) ∈ W .
This property, along with monotonicity of W implies that
(X,N −X) ∈ W for all X ⊆ N .

(b) (U, V ) /∈ W for all (U, V ) ∈ 2N × 2N such that -

• Either NA ⊆ U ∪ V, U ∩NB = φ, NB 6⊆ V .

• Or NB ⊆ U ∪ V, U ∩NA = φ, NA 6⊆ V .

This property, along with monotonicity of W implies that
(φ,X) /∈ W for all X ( N .

3. Disjoint : If (U, V ) ∈ W , then U ∩ V = φ

Let f be any social choice function. We define a pair (X,Y ) ∈ 2N ×2N as a winning pair if there
exists a profile z ∈ R such that -

• X = {i ∈ N : z(i) ∈ (−0.5, 0.5)}.

• Y = {i ∈ N : z(i) ∈ {−0.5, 0.5}}.

• f(z) = −11

We define the set of all winning pairs in 2N × 2N as

• Wf := {(X,Y ) ∈ 2N × 2N : (X,Y ) is a winning pair }.

Lemma 6. Let f satisfy strategy proofness, non-corruptibility, country specific Pareto optimality
and the far away condition. Then Wf is decisive.

Proof. Let z, z
′

be profiles such that {i ∈ N : z(i) ∈ (−0.5, 0.5)} = {i ∈ N : z
′
(i) ∈ (−0.5, 0.5)}

and {i ∈ N : z(i) ∈ {−0.5, 0.5}} = {i ∈ N : z
′
(i) ∈ {−0.5, 0.5}}. Then z|B = z

′ |B, and as
f satisfies all the four properties, so from Lemma 5, f(z) = f(z

′
). So, it follows that Wf well

defined.
Now we show that Wf satisfies the following properties -

• Proof of monotonicity -

Proof. Let (X,Y ) ∈ Wf and a underlying profile for the pair (X,Y ) be z. Consider

another pair (X
′
, Y
′
) ∈ 2N × 2N such that X ⊆ X

′
and X ∪ Y ⊆ X

′ ∪ Y ′ . Let a
underlying profile of the pair (X

′
, Y
′
) be z

′
. Then either z|B = z

′ |B, or z and z
′

satisfy
the monotonicity conditions as described in section 2. So, using Lemma 1 or Lemma 5, we
can say f(z

′
) = −11 and (X

′
, Y
′
) ∈ Wf .
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• Proof of boundary condition a -

Proof. Consider the pair (φ,N) ∈ 2N × 2N . Note that, the underlying profile for this pair
is unique : z = (−0.5NA , 0.5NB ). As f satisfies the far away condition, we get f(z) = −11
and (φ,N) ∈ Wf . Monotonicity of Wf implies (X,N −X) ∈ Wf for all X ⊆ N .

• Proof of boundary condition b -

Proof. Consider any pair (X,Y ) ∈ 2N × 2N such that -

– either NA ⊆ X ∪ Y, X ∩NB = φ, NB 6⊆ Y .

– Or NB ⊆ X ∪ Y, X ∩NA = φ, NA 6⊆ Y .

In such a case, a underlying profile must be

– either z, where z(i) ≥ −0.5 for all i ∈ NA and z(i) ≥ 0.5 for all i ∈ NB and z(i) 6= 0.5
for all i ∈ NB .

– or z
′
, where z

′
(i) ≤ 0.5 for all i ∈ NB and z(i) ≤ −0.5 for all i ∈ NA and z(i) 6= −0.5

for all i ∈ NB .

respectively. Due to country specific Pareto optimality, f(z) 6= −11 and f(z
′
) 6= −11 and

(X,Y ) /∈ Wf . Consider (X
′
, Y
′
) ∈ 2N × 2N such that X

′
= φ and Y

′ 6= N . Note that,
for any such pair, there exists another pair (X,Y ) ∈ 2N × 2N , not necessarily unique, with
either NA ⊆ X ∪ Y, X ∩ NB = φ, NB 6⊆ Y , or NB ⊆ X ∪ Y, X ∩ NA = φ, NA 6⊆ Y ,
such that X

′ ⊆ X and X
′ ∪ Y ′ ⊆ X ∪ Y . Because (X,Y ) /∈ Wf , monotonicity implies

(X
′
, Y
′
) /∈ Wf .

• Proof of disjoint condition -

Proof. For every z ∈ R, {i ∈ N : z(i) ∈ (−0.5, 0.5)} ∩ {i ∈ N : z(i) ∈ {−0.5, 0.5}} = φ. So
this condition is satisfied trivially.

So Wf is decisive.

Now suppose we have a V ⊆ 2N × 2N . For any profile z ∈ R, define

• S(z) := {i ∈ N : z(i) ∈ (−0.5, 0.5)}.

• T (z) := {i ∈ N : z(i) ∈ {−0.5, 0.5}}.

• Using V , we may define a social choice function as follows

gV (z) =



−11 if (S(z), T (z)) ∈ V

−10 if (S(z), T (z)) /∈ V and NA ⊆ S(z) ∪ T (z)
and NB 6⊆ S(z) ∪ T (z)

01 if (S(z), T (z)) /∈ V and NB ⊆ S(z) ∪ T (z)
and NA 6⊆ S(z) ∪ T (z)

00 otherwise
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Note that, gV is well-defined, as the four cases are exclusive.

Remark 4. Consider two profiles z, z
′ ∈ R such that z|B = z

′ |B. Then it follows that
S(z) = S(z

′
) and T (z) = T (z

′
), so gV (z) = gV (z

′
).

Lemma 7. Let V be decisive. Then gV (z) is country specific Pareto optimal, strategy proof,
non-corruptible and satisfies the far away condition for all z ∈ R.

Proof. First we show that gV (z) satisfies strategy proofness for all z ∈ R. Let z and z
′

be
a unilateral deviation of an agent i ∈ N . We have to show gV (z)Rz(i)g

V (z
′
). Without loss of

generality, suppose i ∈ NA and gV (z) 6= gV (z
′
). So, from Remark 4, we can say that z|B 6= z

′ |B.
Now consider the following cases.

• z(i) = −0.5
Note that gV (z) ∈ B for all z ∈ R. So, in this case, we can say that gV (z)Rz(i)g

V (z
′
).

• z(i) ∈ [−1,−0.5)
Note that, as z|B 6= z

′ |B, we have S(z) ⊆ S(z
′
) and S(z) ∪ T (z) ⊆ S(z

′
) ∪ T (z

′
).

As we have assumed that gV (z) 6= gV (z
′
) and V is monotone, so we can say that

(S(z), T (z)) /∈ V . Also as z(i) ∈ [−1,−0.5), so we can say NA 6⊆ S(z) ∪ T (z). So we
can conclude gV (z) ∈ {(0, 0), (0, 1)}. So, in this case, we can say that gV (z)Rz(i)g

V (z
′
).

• z(i) ∈ (−0.5, 0]
Note that, as z|B 6= z

′ |B, we have S(z
′
) ⊆ S(z) and S(z

′
) ∪ T (z

′
) ⊆ S(z) ∪ T (z).

Now if (S(z), T (z)) ∈ V , then we get gV (z) = (−1, 1) and gV (z)Pz(i)g
V (z

′
). Other-

wise (S(z), T (z)) /∈ V . As V is monotone, so we can say that (S(z
′
), T (z

′
)) /∈ V . So we

can say gV (z) 6= (−1, 1) 6= gV (z
′
), and hence we can conclude that gV (z)Rz(i)g

V (z
′
).

Combining these cases we can say that gV satisfies strategy proofness.

Now we show that gV (z) satisfies non-corruptibility for all z ∈ R. Let z and z
′

be a unilateral
deviation of an agent i ∈ N . Let gV (z)Iz(i)g

V (z
′
) and gV (z)Iz′ (i)g

V (z
′
). To the contrary,

suppose gV (z) 6= gV (z
′
). So, from Remark 4, we can say that z|B 6= z

′ |B. Without loss of
generality, let i ∈ NA. As z|B 6= z

′ |B, so we can say

• z(i) ∈ [−1,−0.5)⇒ z
′
(i) ∈ [−0.5, 0].

• z(i) = −0.5⇒ z
′
(i) ∈ [−1, 0]− {−0.5}.

• z(i) ∈ (−0.5, 0]⇒ z
′
(i) ∈ [−1,−0.5].

Since we have assumed that gV (z)Iz(i)g
V (z

′
) and gV (z)Iz′ (i)g

V (z
′
), so we get the following

cases.

• Case 1 : gV (z) = (−1, 1) and gV (z
′
) = (−1, 0)

In this case, we get (S(z), T (z)) ∈ V , (S(z
′
), T (z

′
)) /∈ V and NA ⊆ S(z

′
) ∪ T (z

′
) and

NB 6⊆ S(z
′
)∪ T (z

′
). Since gV (z)Iz(i)g

V (z
′
) and gV (z)Iz′ (i)g

V (z
′
), so we must have either

z(i) ∈ [−1,−0.5) and z
′
(i) = −0.5, or z(i) = −0.5 and z

′
(i) ∈ [−1,−0.5). Note that, the

later case cannot happen as we have NA ⊆ S(z
′
) ∪ T (z

′
). The former case implies that

S(z) = S(z
′
) and S(z) ∪ T (z) ( S(z

′
) ∪ T (z

′
), which contradicts the monotonicity of V .
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• Case 2 : gV (z) = (0, 0) and gV (z
′
) = (0, 1)

In this case, we get (S(z
′
), T (z

′
)) /∈ V and NB ⊆ S(z

′
) ∪ T (z

′
) and NA 6⊆ S(z

′
) ∪ T (z

′
).

Since z and z
′

are unilateral deviation of an agent in NA, so we can say that
NB ⊆ S(z) ∪ T (z). Now, if (S(z), T (z)) ∈ V , then gV (z) = (−1, 1), a contradiction. Now
suppose (S(z), T (z)) /∈ V . In this case, if NA ⊆ S(z) ∪ T (z), then we can find a partition
X of N such that S(z) = X and T (z) = N −X. This is a violation of the the boundary
condition (a) of V . So in this case NA 6⊆ S(z) ∪ T (z). Then gV (z) = (0, 1), another
contradiction.

• Case 3 : gV (z) = (0, 0) and gV (z
′
) = (−1, 0)

In this case, we get (S(z
′
), T (z

′
)) /∈ V and NA ⊆ S(z

′
) ∪ T (z

′
) and NB 6⊆ S(z

′
) ∪ T (z

′
).

Since gV (z)Iz(i)g
V (z

′
) and gV (z)Iz′ (i)g

V (z
′
), so we must have either z(i) ∈ (−0.5, 0] and

z
′
(i) = −0.5, or z(i) = −0.5 and z

′
(i) ∈ (−0.5, 0]. Since z and z

′
are unilateral deviation

of an agent in NA, so we can say that NA ⊆ S(z) ∪ T (z) and NB 6⊆ S(z) ∪ T (z). Now,
if (S(z), T (z)) ∈ V , then gV (z) = (−1, 1), a contradiction; and if (S(z), T (z)) /∈ V , then
gV (z) = (−1, 0), another contradiction.

Combining these cases we can say that gV satisfies non-corruptibility.

Now we show that gV (z) satisfies country specific Pareto optimality and the far away condition
for all z ∈ R. Consider the following cases.

• Case 1 : z ∈ R such that (S(z), T (z)) ∈ V
In this case, we have gV (z) = (−1, 1). So, as the outcome in this case is (−1, 1), we can
say that in this case gV satisfies the far away condition. Now consider the following sub
cases.

– Sub case 1 : S(z) 6= φ
Then for all agent in S(z), (−1, 1) is the unique best outcome.

– Sub case 2 : S(z) = φ
Since (S(z), T (z)) ∈ V , then using boundary condition a, we can say T (z) = N .
Then notice that (−1, 1) is one of the country specific Pareto optimal outcome for
this profile.

Combining these sub cases, we can conclude that in this case gV satisfies the country
specific Pareto optimality condition.

• Case 2 : z ∈ R such that (S(z), T (z)) /∈ V and NA ⊆ S(z) ∪ T (z) and NB 6⊆ S(z) ∪ T (z)
In this case, we have gV (z) = (−1, 0). Since (S(z), T (z)) /∈ V , so using boundary condition
b, we can say that X := {i ∈ N : z(i) ∈ (0.5, 1]} 6= φ. Note that, (−1, 0) and (0, 0) are
the best alternatives for all agents in X, but in this case, (−1, 0)Rz(i)(0, 0) for all i ∈ N .

So, we can conclude that in this case gV satisfies the country specific Pareto optimality
condition and the far away condition.

• Case 3 : z ∈ R such that (S(z), T (z)) /∈ V and NB ⊆ S(z) ∪ T (z) and NA 6⊆ S(z) ∪ T (z)
Similar to case 2.

• Case 4 : z ∈ R such that (S(z), T (z)) /∈ V and NA 6⊆ S(z) ∪ T (z) and NB 6⊆ S(z) ∪ T (z)
In this case, we have gV (z) = (0, 0) and X := {i ∈ N : z(i) ∈ (0.5, 1]} 6= φ and
Y := {i ∈ N : z(i) ∈ [−1,−0.5)} 6= φ. Note that, (−1, 0) and (0, 0) are the best alterna-
tives for all agents in X; and (0, 1) and (0, 0) are the best alternatives for all agents in Y .
So for all agent in X ∪ Y, (0, 0) is the only common alternative that is the best for all such
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agents. Notice that, as X 6= φ and Y 6= φ, so we can say, (−1, 0)Rz(i)(0, 0) do not hold
for all i ∈ N , and (0, 1)Rz(i)(0, 0) do not hold for all i ∈ N . So, we can conclude that

in this case gV satisfies the country specific Pareto optimality condition and the far away
condition.

Combining all these cases, we get the required proof.

Theorem 2. A social choice function f satisfies strategy proofness, non-corruptibility, country
specific Pareto optimality and the far away condition if and only if f = gV for some decisive
V ⊂ 2N × 2N .

Proof. Suppose f is a social choice function that satisfies strategy proofness, non-corruptibility,
country specific Pareto optimality and the far away condition. Then from Lemma 6, we get Wf

is decisive, and it is easy to show that f(z) = gWf (z) for all z ∈ R.

Now suppose V ⊂ 2N × 2N is decisive. Then Lemma 7 shows that gV satisfies all the four
properties.

Remark 5. Notice that gV is not Maskin monotonic as defined in Remark 1. We show this
by means of an example. First fix any decisive V ⊂ 2N × 2N . Now consider a profile z where
z(i) = −1 for all i ∈ NA and z(j) = 1 for all i ∈ NB. Then (S(z), T (z)) = (φ, φ), and it
follows that gV (z) = 00. Now consider another profile z

′
, where z

′
(i) = −0.5 for all i ∈ NA and

z
′
(j) = 0.5 for all i ∈ NB. Then (S(z

′
), T (z

′
)) = (φ,N), and it follows that gV (z

′
) = −11. But

L(f(z), z(i)) = A = L(f(z), z
′
(i)) for all i ∈ N . This is a violation of Maskin monotonicity.

Also note that for any decisive V , Lemma 7 shows that gV is strategy proof and non-corruptible.
So Lemma 1 would imply that gV is monotone as defined in this paper.
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7 Examples

In this section, we provide four examples of social choice functions to show that the four as-
sumptions are independent. In each example, only one assumption is violated, while all other
assumptions are satisfied.

1. Example that violates only country specific Pareto optimality :
The constant rule that assigns (−1, 1) to every profile violates only country specific Pareto
optimality.

2. Example that violates only the far away condition :
We define V ⊂ 2N × 2N as follows

• V := {(X,N −X) : φ 6= X ⊆ N}.

Having such a V , we define a social choice function as follows

• For any profile z ∈ R

(a) S(z) := {i ∈ N : z(i) ∈ (−0.5, 0.5)}.
(b) T (z) := {i ∈ N : z(i) ∈ {−0.5, 0.5}}.

• For every profile z ∈ R, we may define a social choice function as follows.

gV (z) =



−11 if (S(z), T (z)) ∈ V

−10 if (S(z), T (z)) /∈ V and NA ⊆ S(z) ∪ T (z)
and NB 6⊆ S(z) ∪ T (z)

01 if (S(z), T (z)) /∈ V and NB ⊆ S(z) ∪ T (z)
and NA 6⊆ S(z) ∪ T (z)

00 otherwise

As the four cases are distinct, so gV is well defined.

Now we show that gV (z) satisfies strategy proofness for all z ∈ R. Let z and z
′

be a
unilateral deviation of an agent i ∈ N . We have to show gV (z)Rz(i)g

V (z
′
). Without loss

of generality, suppose i ∈ NA and gV (z) 6= gV (z
′
). Now consider the following cases.

• z(i) = −0.5
Note that gV (z) ∈ B for all z ∈ R. So, in this case, we can say that gV (z)Rz(i)g

V (z
′
).

• z(i) ∈ [−1,−0.5)
In this case, gV (z) ∈ {(0, 0), (0, 1)}. So, in this case, we can say that gV (z)Rz(i)g

V (z
′
).

• z(i) ∈ (−0.5, 0]
Suppose (S(z), T (z)) ∈ V . Then we get gV (z) = (−1, 1) and gV (z)Pz(i)g

V (z
′
).

Otherwise (S(z), T (z)) /∈ V . As z
′

is a unilateral deviation of agent i, so, it follows
that (S(z

′
), T (z

′
)) /∈ V . So we can say gV (z) 6= (−1, 1) 6= gV (z

′
), and hence we can

conclude that gV (z)Rz(i)g
V (z

′
).

Combining these cases we can say that gV satisfies strategy proofness.
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Now we show that gV (z) satisfies non-corruptibility for all z ∈ R. Let z and z
′

be a
unilateral deviation of an agent i ∈ N . Let gV (z)Iz(i)g

V (z
′
) and gV (z)Iz′ (i)g

V (z
′
). To the

contrary, suppose gV (z) 6= gV (z
′
). As gV is well defined, it follows that S(z) 6= S(z

′
) or

T (z) 6= T (z
′
). Without loss of generality, let i ∈ NA. As this is a unilateral deviation of

agent i, so we can say

• z(i) ∈ [−1,−0.5)⇒ z
′
(i) ∈ [−0.5, 0].

• z(i) = −0.5⇒ z
′
(i) ∈ [−1, 0]− {−0.5}.

• z(i) ∈ (−0.5, 0]⇒ z
′
(i) ∈ [−1,−0.5].

Since we have assumed that gV (z)Iz(i)g
V (z

′
) and gV (z)Iz′ g

V (z
′
), so we get the following

cases.

• Case 1 : gV (z) = (−1, 1) and gV (z
′
) = (−1, 0)

In this case, we get (S(z), T (z)) ∈ V , (S(z
′
), T (z

′
)) /∈ V and NA ⊆ S(z

′
) ∪ T (z

′
) and

NB 6⊆ S(z
′
) ∪ T (z

′
). Since gV (z)Iz(i)g

V (z
′
) and gV (z)Iz′ g

V (z
′
), so we must have

either z(i) ∈ [−1,−0.5) and z
′
(i) = −0.5, or z(i) = −0.5 and z

′
(i) ∈ [−1,−0.5). Note

that, the later case cannot happen as we have NA ⊆ S(z
′
)∪T (z

′
) and the former case

contradicts (S(z), T (z)) ∈ V .

• Case 2 : gV (z) = (0, 0) and gV (z
′
) = (0, 1)

In this case, we get (S(z
′
), T (z

′
)) /∈ V andNB ⊆ S(z

′
)∪T (z

′
) andNA 6⊆ S(z

′
) ∪ T (z

′
).

Since z and z
′

are unilateral deviation of an agent in NA, so we can say that
NB ⊆ S(z) ∪ T (z). Now, if (S(z), T (z)) ∈ V , then gV (z) = (−1, 1), a contradiction.
Then (S(z), T (z)) /∈ V . In this case, if NA ⊆ S(z)∪T (z), then we can find a partition
X of N such that S(z) = X and T (z) = N −X. This implies (S(z), T (z)) ∈ V , an-
other contradiction. So in this case NA 6⊆ S(z) ∪ T (z). Then gV (z) = (0, 1), another
contradiction.

• Case 3 : gV (z) = (0, 0) and gV (z
′
) = (−1, 0)

In this case, we get (S(z
′
), T (z

′
)) /∈ V andNA ⊆ S(z

′
)∪T (z

′
) andNB 6⊆ S(z

′
) ∪ T (z

′
).

Since gV (z)Iz(i)g
V (z

′
) and gV (z)Iz′ g

V (z
′
), so we must have either z(i) ∈ (−0.5, 0]

and z
′
(i) = −0.5, or z(i) = −0.5 and z

′
(i) ∈ (−0.5, 0]. Since z and z

′
are uni-

lateral deviation of an agent in NA, so we can say that NA ⊆ S(z) ∪ T (z) and
NB 6⊆ S(z) ∪ T (z). Now, if (S(z), T (z)) ∈ V , then gV (z) = (−1, 1), a contradiction;
and if (S(z), T (z)) /∈ V , then gV (z) = (−1, 0), another contradiction.

Combining these cases we can say that gV satisfies non-corruptibility.

Now we show that gV (z) satisfies country specific Pareto optimality for all z ∈ R. Consider
the following cases.

• Case 1 : z ∈ R such that (S(z), T (z)) ∈ V
In this case, we have gV (z) = (−1, 1). So, in this case S(z) 6= φ and for all agent
in S(z), (−1, 1) is the unique best outcome. So, in this case gV satisfies the country
specific Pareto optimality condition.

• Case 2 : z ∈ R such that (S(z), T (z)) /∈ V andNA ⊆ S(z)∪T (z) andNB 6⊆ S(z) ∪ T (z).
In this case, we have gV (z) = (−1, 0). Since NB 6⊆ S(z) ∪ T (z), we can say that
X := {i ∈ N : z(i) ∈ (0.5, 1]} 6= φ. Note that, (−1, 0) and (0, 0) are the best alterna-
tives for all agents in X. So, we can conclude that in this case gV satisfies the country
specific Pareto optimality condition.
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• Case 3 : z ∈ R such that (S(z), T (z)) /∈ V andNB ⊆ S(z)∪T (z) andNA 6⊆ S(z) ∪ T (z).
Similar to case 2.

• Case 4 : z ∈ R such that (S(z), T (z)) /∈ V andNA 6⊆ S(z)∪T (z) andNB 6⊆ S(z) ∪ T (z).
In this case, we have gV (z) = (0, 0) and X := {i ∈ N : z(i) ∈ (0.5, 1]} 6= φ and
Y := {i ∈ N : z(i) ∈ [−1,−0.5)} 6= φ. Note that, (−1, 0) and (0, 0) are the best alter-
natives for all agents in X; and (0, 1) and (0, 0) are the best alternatives for all agents
in Y . So for all agent in X ∪ Y, (0, 0) is the only common alternative that is the best
for all such agents. So, we can conclude that in this case gV satisfies the country
specific Pareto optimality condition.

Combining all these cases, we get the required proof.

Notice that gV (z) = (0, 0) when (S(z), T (z)) = (φ,N) is a violation of the far away
condition.
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3. Example that violates only non-corruptibility :
We define subsets of 2N × 2N as follows

(a) N1 := {(U, V ) ∈ 2N × 2N : U = φ, V ( N}
(b) N := (2N × 2N )−N1

(c)

V1 :=

{
(U, V ) ∈ N :

∃ φ 6= N1 ( NA and φ 6= N2 ( NB such that N1 ⊂ NA − (U ∪ V ),

N2 ⊂ NB − (U ∪ V ) and |U ∪ V | > |N | − |U ∪ V |

}

(d)

V2 :=

{
(U, V ) ∈ N :

NA ⊂ U ∪ V and ∃ φ 6= N2 ( NB such that

N2 ⊂ NB − (U ∪ V ) and |U ∪ V | > |N | − |U ∪ V |

}
(e)

V3 :=

{
(U, V ) ∈ N :

NB ⊂ U ∪ V and ∃ φ 6= N1 ( NA such that

N1 ⊂ NA − (U ∪ V ) and |U ∪ V | > |N | − |U ∪ V |

}

(f) V4 := {(U, V ) ∈ 2N × 2N : U ∪ V = N}
(g) V := V1 ∪ V2 ∪ V3 ∪ V4

Note that for all i 6= j,Vi ∩ Vj = φ where i, j ∈ {1, 2, 3}.

Using this V , we define a social choice function as follows

• For any profile z ∈ R

(a) S(z) := {i ∈ N : z(i) ∈ (−0.5, 0.5)}.
(b) T (z) := {i ∈ N : z(i) ∈ {−0.5, 0.5}}.

• For every profile z ∈ R, we may define a social choice function as follows.

gV (z) =



−11 if (S(z), T (z)) ∈ V

−10 if (S(z), T (z)) /∈ V and NA ⊆ S(z) ∪ T (z) and NB 6⊆ S(z) ∪ T (z)

01 if (S(z), T (z)) /∈ V and NB ⊆ S(z) ∪ T (z) and NA 6⊆ S(z) ∪ T (z)

00 otherwise

As the four cases are distinct, so gV (z) is well defined.

Now we show that gV (z) satisfies strategy proofness for all z ∈ R. Let z and z
′

be a
unilateral deviation of an agent i ∈ N . We have to show gV (z)Rz(i)g

V (z
′
). Without loss

of generality, let i ∈ NA and gV (z) 6= gV (z
′
). So, we may assume that S(z) 6= S(z

′
) or

T (z) 6= T (z
′
). Now consider the following cases.

• z(i) = −0.5
Note that gV (z) ∈ B for all z ∈ R. So, in this case, we can say that gV (z)Rz(i)g

V (z
′
).
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• z(i) ∈ [−1,−0.5)
Let us define Y := {i ∈ N : z(i) ∈ (0.5, 1]}. In this case if (S(z), T (z)) ∈ V then
gV (z) = −11. Otherwise gV (z) = 01 if Y = φ, or gV (z) = 00 if Y 6= φ. So, suppose
gV (z) = −11 and (S(z), T (z)) ∈ V . Then we can say |S(z) ∪ T (z)| > |N | − |S(z) ∪ T (z)|.
Notice that i ∈ N − (S(z) ∪ T (z)). As we have assumed that gV (z) 6= gV (z

′
), so it

follows that i /∈ N − (S(z
′
) ∪ T (z

′
)). This implies that

|S(z
′
) ∪ T (z

′
)| > |S(z) ∪ T (z)| > |N | − |S(z) ∪ T (z)| > |N | − |S(z

′
) ∪ T (z

′
)|.

As (S(z), T (z)) ∈ V and z(i) ∈ [−1,−0.5), so it follows that either (S(z), T (z)) ∈ V1

or (S(z), T (z)) ∈ V3. Suppose (S(z), T (z)) ∈ V3. Then if agent i was the only
agent with dip in [−1,−0.5), the it follows that (S(z

′
), T (z

′
)) ∈ V4 otherwise we get

(S(z
′
), T (z

′
)) ∈ V3. Now assume (S(z), T (z)) ∈ V1. Then if agent i was the only

agent with dip in [−1,−0.5), the it follows that (S(z
′
), T (z

′
)) ∈ V2 otherwise we get

(S(z
′
), T (z

′
)) ∈ V1. Combining we get (S(z

′
), T (z

′
)) ∈ V which violates our assump-

tion that gV (z) 6= gV (z
′
). So we have gV (z) = 01 or gV (z) = 00 and we can say

gV (z)Rz(i)g
V (z

′
).

• z(i) ∈ (−0.5, 0]
Let us define

(a) X := {i ∈ N : z(i) ∈ [−1,−0.5)}.
(b) Y := {i ∈ N : z(i) ∈ (0.5, 1]}.
In this case if (S(z), T (z)) ∈ V then gV (z) = −11. Otherwise gV (z) = 00 if X 6= φ
and Y 6= φ, or gV (z) = −10 if X = φ but Y 6= φ, or gV (z) = 01 if X 6= φ but
Y = φ. Now suppose gV (z) = 00 and X 6= φ and Y 6= φ and (S(z), T (z)) /∈ V . Then
it follows that |S(z) ∪ T (z)| ≤ |N | − |S(z) ∪ T (z)|. Note that i ∈ S(z). As we have
assumed that gV (z) 6= gV (z

′
), so it follows that i ∈ NA − S(z

′
). This implies that

|S(z
′
) ∪ T (z

′
)| ≤ |S(z) ∪ T (z)| ≤ |N | − |S(z) ∪ T (z)| ≤ |N | − |S(z

′
) ∪ T (z

′
)|.

So (S(z
′
), T (z

′
)) /∈ V and it follows that gV (z)Rz(i)g

V (z
′
). Similar arguments hold

when gV (z) = −10 or gV (z) = 01. Now suppose gV (z) = −11. As i ∈ S(z), so it
follows that gV (z)Rz(i)g

V (z
′
).

Combining these cases we can say that gV satisfies strategy proofness.

Now we show that gV (z) satisfies country specific Pareto optimality and the far away
condition for all z ∈ R. Consider the following cases.

• Case 1 : z ∈ R such that (S(z), T (z)) ∈ V
In this case, we have gV (z) = (−1, 1). So, as the outcome in this case is (−1, 1),
we can say that in this case gV satisfies the far away condition. Now consider the
following sub cases.

– Sub case 1 : S(z) 6= φ
Then for all agent in S(z), (−1, 1) is the unique best outcome.

– Sub case 2 : S(z) = φ
Since (S(z), T (z)) ∈ V , then we can say T (z) = N . Then notice that (−1, 1) is
one of the country specific Pareto optimal outcome for this profile.

Combining these sub cases, we can conclude that in this case gV satisfies the country
specific Pareto optimality condition.

• Case 2 : z ∈ R such that (S(z), T (z)) /∈ V andNA ⊆ S(z)∪T (z) andNB 6⊆ S(z)∪T (z)
In this case, we have gV (z) = (−1, 0). Since (S(z), T (z)) /∈ V and NB 6⊆ S(z)∪ T (z),
we can say that X := {i ∈ N : z(i) ∈ (0.5, 1]} 6= φ. Note that, (−1, 0) and (0, 0)
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are the best alternatives for all agents in X, but in this case, (−1, 0)Rz(i)(0, 0) for all

i ∈ N . So, we can conclude that in this case gV satisfies the country specific Pareto
optimality condition and the far away condition.

• Case 3 : z ∈ R such that (S(z), T (z)) /∈ V andNB ⊆ S(z)∪T (z) andNA 6⊆ S(z)∪T (z)
Similar to case 2.

• Case 4 : z ∈ R such that (S(z), T (z)) /∈ V andNA 6⊆ S(z)∪T (z) andNB 6⊆ S(z)∪T (z)
In this case, we have gV (z) = (0, 0) and X := {i ∈ N : z(i) ∈ (0.5, 1]} 6= φ and
Y := {i ∈ N : z(i) ∈ [−1,−0.5)} 6= φ. Note that, (−1, 0) and (0, 0) are the best alter-
natives for all agents in X; and (0, 1) and (0, 0) are the best alternatives for all agents
in Y . So (0, 0) is the only common alternative that is the best for all agents in X ∪Y .
Notice that, as X 6= φ and Y 6= φ, so we can say, (−1, 0)Rz(i)(0, 0) do not hold for
all i ∈ N , and (0, 1)Rz(i)(0, 0) do not hold for all i ∈ N . So, we can conclude that

in this case gV satisfies the country specific Pareto optimality condition and the far
away condition.

Combining all these cases, we get the required proof.

Now consider the following example. Suppose there are 5 agents in NA and 2 agents in NB .
Consider the following profile. z(i) = −0.75, z(j) = −0.25 for all j ∈ NA−{i} and z(k) = 1
for all k ∈ NB . Notice that (S(z), T (z)) ∈ V1 ⊂ V . So gV (z) = −11. Now consider a
unilateral deviation z

′
of agent i ∈ NA where z

′
(i) = −0.5. Notice that (S(z

′
), T (z

′
)) /∈ V

and gV (z
′
) = −10. But gV (z)Iz(i)g

V (z
′
) and gV (z)Iz′ (i)g

V (z
′
). This is a violation of the

non-corruptibility condition.
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4. Example that violates only strategy proofness :
We define subsets of 2N × 2N as follows

(a) N1 := {(U, V ) ∈ 2N × 2N : U = φ, V ( N}
(b) N := (2N × 2N )−N1

(c)

V1 :=

{
(U, V ) ∈ N :

∃ φ 6= N1 ( NA and φ 6= N2 ( NB such that N1 ⊂ NA − (U ∪ V ),

N2 ⊂ NB − (U ∪ V ) and |U ∪ V | < min{|NA − (U ∪ V )|, |NB − (U ∪ V )|}

}

(d)

V2 :=

{
(U, V ) ∈ N :

NA ⊂ U ∪ V and ∃ φ 6= N2 ( NB such that

N2 ⊂ NB − (U ∪ V ) and |U ∪ V | < |N | − |U ∪ V |

}
(e)

V3 :=

{
(U, V ) ∈ N :

NB ⊂ U ∪ V and ∃ φ 6= N1 ( NA such that

N1 ⊂ NA − (U ∪ V ) and |U ∪ V | < |N | − |U ∪ V |

}

(f) V4 := {(U, V ) ∈ 2N × 2N : U ∪ V = N}
(g) V := V1 ∪ V2 ∪ V3 ∪ V4

Note that for all i 6= j,Vi ∩ Vj = φ where i, j ∈ {1, 2, 3, 4}.

Using this V , we define a social choice function as follows

• For any profile z ∈ R

(a) S(z) := {i ∈ N : z(i) ∈ (−0.5, 0.5)}.
(b) T (z) := {i ∈ N : z(i) ∈ {−0.5, 0.5}}.

• For every profile z ∈ R, we may define a social choice function as follows.

gV (z) =



−11 if (S(z), T (z)) ∈ V

−10 if (S(z), T (z)) /∈ V and NA ⊆ S(z) ∪ T (z) and NB 6⊆ S(z) ∪ T (z)

01 if (S(z), T (z)) /∈ V and NB ⊆ S(z) ∪ T (z) and NA 6⊆ S(z) ∪ T (z)

00 otherwise

As the four cases are distinct, so gV (z) is well defined.

Now we show that gV (z) satisfies non-corruptibility condition for all z ∈ R. Let z and z
′

be a unilateral deviation of an agent i ∈ N . Let gV (z)Iz(i)g
V (z

′
) and gV (z)Iz′ (i)g

V (z
′
).

To the contrary, suppose gV (z) 6= gV (z
′
). So, we may assume that S(z) 6= S(z

′
) or

T (z) 6= T (z
′
). Without loss of generality, let i ∈ NA. As this is a unilateral deviation of

agent i, so we can say

• z(i) ∈ [−1,−0.5)⇒ z
′
(i) ∈ [−0.5, 0].

• z(i) = −0.5⇒ z
′
(i) ∈ [−1, 0]− {−0.5}.

• z(i) ∈ (−0.5, 0]⇒ z
′
(i) ∈ [−1,−0.5].
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Since we have assumed that gV (z)Iz(i)g
V (z

′
) and gV (z)Iz′ g

V (z
′
), so we get the following

cases.

• Case 1 : gV (z) = (−1, 1) and gV (z
′
) = (−1, 0)

In this case, we get (S(z), T (z)) ∈ V , (S(z
′
), T (z

′
)) /∈ V and NA ⊆ S(z

′
) ∪ T (z

′
)

and NB 6⊆ S(z
′
) ∪ T (z

′
). As this is a unilateral deviation of an agent in NA,

so it follows that NB 6⊆ S(z) ∪ T (z). Since gV (z)Iz(i)g
V (z

′
) and gV (z)Iz′ g

V (z
′
),

so we must have either z(i) ∈ [−1,−0.5) and z
′
(i) = −0.5, or z(i) = −0.5 and

z
′
(i) ∈ [−1,−0.5). For the case when z(i) = −0.5 and z

′
(i) ∈ [−1,−0.5), we have

|S(z) ∪ T (z)| > |S(z
′
) ∪ T (z

′
)|. This contradicts the fact that (S(z

′
), T (z

′
)) /∈ V . Now

consider the case when z(i) ∈ [−1,−0.5) and z
′
(i) = −0.5. As (S(z), T (z)) ∈ V , so

it follows that |S(z) ∪ T (z)| < |NA − (S(z) ∪ T (z))|. Since (S(z), T (z)) ∈ V , so we
can say |S(z) ∪ T (z)| ≥ 1. So there exists atleast one agent i 6= j ∈ NA such that
z(j) ∈ [−1,−0.5). This contradicts the fact that NA ⊆ S(z

′
) ∪ T (z

′
) because agent j

is not the unilaterally deviating agent.

• Case 2 : gV (z) = (0, 0) and gV (z
′
) = (0, 1)

In this case, we get (S(z
′
), T (z

′
)) /∈ V and NB ⊆ S(z

′
)∪T (z

′
) and NA 6⊆ S(z

′
)∪T (z

′
).

Since z and z
′

are unilateral deviation of an agent in NA, so we can say that
NB ⊆ S(z) ∪ T (z). Now, if (S(z), T (z)) ∈ V , then gV (z) = (−1, 1), a contradiction.
Now suppose (S(z), T (z)) /∈ V . In this case, if NA ⊆ S(z) ∪ T (z), then as
NB ⊆ S(z) ∪ T (z), it follows that (S(z), T (z)) ∈ V4 which contradicts (S(z), T (z)) /∈
V . So in this case NA 6⊆ S(z) ∪ T (z). Then gV (z) = (0, 1), another contradiction.

• Case 3 : gV (z) = (0, 0) and gV (z
′
) = (−1, 0)

In this case, we get (S(z
′
), T (z

′
)) /∈ V and NA ⊆ S(z

′
)∪T (z

′
) and NB 6⊆ S(z

′
)∪T (z

′
).

Since gV (z)Iz(i)g
V (z

′
) and gV (z)Iz′ (i)g

V (z
′
), so we must have either z(i) ∈ (−0.5, 0]

and z
′
(i) = −0.5, or z(i) = −0.5 and z

′
(i) ∈ (−0.5, 0]. Since z and z

′
are unilateral

deviation of an agent in NA, so we can say that NA ⊆ S(z) ∪ T (z) and NB 6⊆
S(z) ∪ T (z). Now, if (S(z), T (z)) ∈ V , then gV (z) = (−1, 1), a contradiction; and if
(S(z), T (z)) /∈ V , then gV (z) = (−1, 0), another contradiction.

Combining these cases we can say that gV satisfies non-corruptibility.

Now we show that gV (z) satisfies country specific Pareto optimality and the far away
condition for all z ∈ R. Consider the following cases.

• Case 1 : z ∈ R such that (S(z), T (z)) ∈ V
In this case, we have gV (z) = (−1, 1). So, as the outcome in this case is (−1, 1),
we can say that in this case gV satisfies the far away condition. Now consider the
following sub cases.

– Sub case 1 : S(z) 6= φ
Then for all agent in S(z), (−1, 1) is the unique best outcome.

– Sub case 2 : S(z) = φ
Since (S(z), T (z)) ∈ V , then we can say T (z) = N . Then notice that (−1, 1) is
one of the country specific Pareto optimal outcome for this profile.

Combining these sub cases, we can conclude that in this case gV satisfies the country
specific Pareto optimality condition.

• Case 2 : z ∈ R such that (S(z), T (z)) /∈ V andNA ⊆ S(z)∪T (z) andNB 6⊆ S(z)∪T (z)
In this case, we have gV (z) = (−1, 0). Since (S(z), T (z)) /∈ V and NB 6⊆ S(z)∪ T (z),
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we can say that X := {i ∈ N : z(i) ∈ (0.5, 1]} 6= φ. Note that, (−1, 0) and (0, 0)
are the best alternatives for all agents in X, but in this case, (−1, 0)Rz(i)(0, 0) for all

i ∈ N . So, we can conclude that in this case gV satisfies the country specific Pareto
optimality condition and the far away condition.

• Case 3 : z ∈ R such that (S(z), T (z)) /∈ V andNB ⊆ S(z)∪T (z) andNA 6⊆ S(z)∪T (z)
Similar to case 2.

• Case 4 : z ∈ R such that (S(z), T (z)) /∈ V andNA 6⊆ S(z)∪T (z) andNB 6⊆ S(z)∪T (z)
In this case, we have gV (z) = (0, 0) and X := {i ∈ N : z(i) ∈ (0.5, 1]} 6= φ and
Y := {i ∈ N : z(i) ∈ [−1,−0.5)} 6= φ. Note that, (−1, 0) and (0, 0) are the best alter-
natives for all agents in X; and (0, 1) and (0, 0) are the best alternatives for all agents
in Y . So (0, 0) is the only common alternative that is the best for all agents in X ∪Y .
Notice that, as X ∪ Y 6= φ, so we can say, (−1, 0)Rz(i)(0, 0) do not hold for all i ∈ N ,

and (0, 1)Rz(i)(0, 0) do not hold for all i ∈ N . So, we can conclude that in this case gV

satisfies the country specific Pareto optimality condition and the far away condition.

Combining all these cases, we get the required proof.

Now consider the following example. Suppose there are 5 agents in NA and 4 agents in
NB . Consider the following profile. z = (−0.8,−0.8,−0.75,−0.25,−0.25, 1, 1, 1, 1). Notice
that (S(z), T (z)) ∈ V1 ⊂ V . So gV (z) = −11. Now consider a unilateral deviation z

′
of

agent i ∈ NA where z(i) = −0.75 and z
′
(i) = −0.25. Notice that (S(z

′
), T (z

′
)) /∈ V and

gV (z
′
) = 00. But gV (z

′
)Pz(i)g

V (z). This is a violation of strategy proofness.
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8 Conclusion

In this section, we perturb our model in three aspects keeping everything else fixed.

Firstly, we consider that agents have lexicographic preferences. More precisely an agent i with
dip x(i) will weakly prefer (α, β) to (α1, β1) under lexicographic preferences iff

• Either min{|α− x(i)|, |β − x(i)|} > min{|α1 − x(i)|, |β1 − x(i)|}

• Or min{|α− x(i)|, |β − x(i)|} = min{|α1 − x(i)|, |β1 − x(i)|},
max{|α− x(i)|, |β − x(i)|} ≥ max{|α1 − x(i)|, |β1 − x(i)|}

Notice that, under this preference, agent i will be indifferent between (α, β) to (α1, β1) iff
min{|α− x(i)|, |β − x(i)|} = min{|α1 − x(i)|, |β1 − x(i)|} and
max{|α − x(i)|, |β − x(i)|} = max{|α1 − x(i)|, |β1 − x(i)|}. So under this preference, it can be
shown that the outcome of a strategy proof, non-corruptible, country specific Pareto optimal
social choice function must be one of the corner points of A .

Secondly, we may consider three country model with every thing remaining the same. In this
case we have to redefine the far away condition for the middle country. The class of rule will
depend on this definition. If we do not define the far away condition for the middle country, then
inner solution might be possible.

Thirdly, instead of the fixed interval [−1, 0] and [0, 1]; we may assume any arbitrary interval [a, b]
and [b, c] as the two countries. Note that in all our proofs, we do not use the relative size of each
country. So, our results will hold even in this general setting.
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