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Abstract

Through a model of repeated bargaining between a buyer and a seller, with chang-

ing private information on both sides, this paper addresses questions of efficiency and

institutional structures in dynamic mechanism design. A new technical device in the

form of a history dependent version of payoff equivalence is established. A new notion

of interim budget balance is introduced which allows for the role of an intermediary

but with bounded credit lines. We then construct a mechanism, which provides a

necessary and sufficient condition for efficiency under interim budget balance. The

existence of a future surplus can be used as collateral to sustain efficiency, and its size

determines the possibility. The mechanism also offers a simple and realistic implemen-

tation. A characterization of efficient implementation under ex post budget balance

is also provided. Further, a characterization for the second best is presented, and

its equivalent Ramsey pricing formulation is established. A suboptimal, but incen-

tive compatible mechanism for the second best with intuitive properties is presented.

When property rights are fluid, that is, the good can be shared, a folk theorem with

a simple mechanism is constructed.
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1 Introduction

In a paper that would generate much interest amongst economists and legal scholars,

Coase [1960] argued that if transactions costs are low enough and trade a possibility, bar-

gaining will eventually lead to an efficient outcome independent of the initial distribution

of property rights. A few decades later, in perhaps an equally influential paper, My-

erson and Satterthwaite [1983] showed that under reasonable institutional assumptions,

asymmetric information precludes efficient trade. A key missing link in Coase’s argument

was established as part of the growing acceptance of the role of information in economic

transactions.1

Myerson and Satterthwaite [1983] , along with many other papers that came before

and after, asked important questions of institution design under varying objectives- effi-

ciency, revenue maximization, etc. Public goods provision, procurement, auctions, optimal

taxation, bilateral trading, wage contracts are just some applications of the general theory

of mechanism design that has thus developed.2

Most of these papers, including the two aforementioned, dealt with static or one-

time interactions. Arguably, many of these economic transactions are inherently dynamic,

where information revealed today can be used for contract design tomorrow. Food subsidies

are provided repeatedly. In a fast changing technological landscape, spectrum auctions

and buybacks are taking place repeatedly. Taxation is often dynamic and tagged with age,

social security being a case in point. Wage contracts and bonuses depend on performance

parameters evaluated over time. Online selling can now rely on a huge treasure trove of

past buying data.

This paper seeks to provide a theory of such dynamic institutions and contribute

towards the burgeoning literature on dynamic mechanism design.3 When are efficient

institutions self enforcing? There are three key words in the preceding statement. By,

efficiency we mean first-best or the optimal allocation of resources without any additional

frictions or binding constraints. Institution is an environment characterized by a set of

rules that internalize underlying frictions. And, self enforcing, refers to the ability of the

institution to implement the desired objective under no external subsidies.

To answer this question, we choose the well studied static problem of bargaining under

two-sided asymmetric information that concerned Myerson and Satterthwaite [1983]. A

seller wants to repeatedly sell a non-durable good to a buyer. Their valuations for the good

1Introducing the Myerson and Satterthwaite Theorem, as now it is popularly called, Milgrom [2004]
writes

“Doubts about the [Coase’s] efficiency axiom are based partly in concern about bar-
gaining with incomplete information. After all, a seller is naturally inclined to ex-
aggerate the cost of his good, and a buyer is inclined to pretend that her value is
low. Should we not expect these exaggerations to lead sometimes to missed trading
opportunities?”

2See Mas-Collel, Whinston and Green [1995], and Jackson [2003] for a thorough overview of the litera-
ture.

3See Bergemann and Said [2010] and Vohra [2012] for insightful surveys.
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are privately known and can change over time. Repetition can blunt the impossibility of

efficiency result of Myerson and Satterthwaite [1983]. We formalize the extent and logic

of this “blunting”.

First, we introduce a new concept of budget balance which we term interim budget

balance.4 The motivation is to allow for the role of a financial intermediary or mechanism

designer, but one who cannot have access to an unbounded credit line. At any given history,

the expected value of current and future cash flows from the buyer and the seller must be

non-negative. Interim budget balance can be seen as the mechanism design counterpart

to self enforcing constraints from the relational contracting literature5, but not on the

side of the agents, rather the institution itself; and standard bond issuing deficit financing

constraints in macro models.6

Conceptually, we want to temper the role commitment plays in dynamic mechanism

design models. In standard dynamic screening contracts, the effect of incentive constraints

mitigates over time, thereby pushing most inefficiency to the early periods7; and individ-

ual rationality constraints bind only in period 1, putting restrictions just on the ex ante

aggregate expected transfers. But with interim budget balance, the incentive constraints

can bind “strongly” at any point in the future depending on the extent of budgeting, and

individual rationality constraints can bind beyond the first period. The intuition is similar

to the static case. It is the simultaneous interaction of incentives with budget balance

and participation that can create inefficiency. With interim budget balance, this interac-

tion takes place every period and hence the expected transfers have to be re-calibrated

repeatedly, not just in the beginning.

Second, we state and prove a history dependent version of the payoff equivalence result.

Any incentive compatible mechanism must differ from another that seeks to implement

the same allocation only through linear translations of the history dependent expected

utilities of the agents. The, undoubtedly insightful, ex ante dynamic versions of the

payoff equivalence formula that have been presented so far8 cannot answer the questions-

what impact will changes in transfers in any particular history have on incentives going

forward, and how can these incentives be preserved? Our dynamic payoff equivalence

formula precisely answers these.

Third, exploiting this payoff equivalence, we ask the question: balancing the budget

in the interim sense as described above, when can efficiency be attained under perfect

Bayesian and ex post notions of implementability? We offer a necessary and sufficient

condition on the fundamentals of the model and an intuitively appealing implementation

in the form of the Collateral Dynamic VCG mechanism. Each period, both agents set aside

4The standard notions in the literature are that of ex ante budget balance- aggregate ex ante expected
cash flow to the mechanism designer is non-negative, and ex post budget balance- transfers sum to zero
every period for any history.

5See Thomas and Worrall [1988], and Levin [2003]
6See Ljungqvist and Sargent [2004].
7For iid types, in fact, it lasts only one period.
8See Pavan, Segal and Toikka [2013], Eso and Szentes [2013] and Skrzypacz and Toikka [2013], and

Battaglini and Lamba [2013] for an equivalent characterization with discrete types.
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the maximum possible transfers that they can, to be used as collateral, while satisfying

incentives and participation through the VCG mechanism. These are then used to balance

the budget for all possible types. If this mechanism cannot (weakly) produce a surplus,

no other mechanism will. The ability of mechanism to produce efficiency in terms of the

fundamentals of the model- in particular, the levels of asymmetric information (captured

by persistence) and discounting, is discussed carefully.

Fourth, we also offer a precise characterization of the second best, defined to be the

maximization of expected gains from trade. Using a simple AR(1) model, we explore the

properties of the no-trade regions. The difference between ex ante and interim notions

of budget balance become apparent. The interim budget constraints are likely to bind

precisely when the ex ante constraints are easy to satisfy, for example, for low levels of

persistence. A general closed form solution to the second best has so far proven to be

technically elusive. So, we adapt two different routes to extract more economic intuition

out of the model.

A dynamic Ramsey pricing interpretation, along the lines of Bulow and Roberts [1989]

shows that trade happens only when the virtual surplus, that is surplus with internalized

information rents, is positive. Re-calibration of commitment as described above means

that each type has many competing notions of virtual surpluses and the pivotal one is

determined by the set of binding interim budget balance constraints. Moreover, in order

to get around the problem of binding global incentive constraints, we offer a class of

suboptimal contracts with appealing features. Loosely speaking, the no-trade regions are

monotonic functions of the history of realizations.

Fifth and final, we consider two variations to the model. We allow the seller to share

the property rights to the good with the buyer. In the absence of a financial intermediary,

that is under ex post budget balance, and under a decentralized version of the problem in

the from of a stochastic game (rather than a dynamic mechanism), by selling part of the

good to the buyer at the start of very period before bargaining commences, efficiency can

be achieved if discounting is high enough to preserve incentives. Lastly, in the appendix, we

introduce a suitable notion of dominant strategy for dynamic mechanisms and show that

under the strictest possible institutional architecture of dominant strategy implementation

with ex post budget balance, only memory-less posted prices are feasible.

It is important to note that all results we describe can be generalized to dynamic mech-

anism design problems with N agents and quasilinear utilities. In particular, the history

dependent payoff equivalence result, notion of interim budget balance, the Collateral Dy-

namic VCG mechanism, characterization of the second best, Ramsey pricing formulation,

monotonic contracts and the folk theorem with shared property rights, each have their N

player counterpart at the cost of a bit more notation.

Related Literature. The bilateral trading problem we study has a rich tradition in

the static mechanism design literature- Myerson and Satterthwaite [1983], and Chatterjee

and Samuelson [1983] being two of the early papers. Myerson and Satterthwaite [1983]
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impose all the institutional details on the model and then establish the impossibility of

efficiency. On the other hand, Williams [1999] and Krishna and Perry [2000] fix an efficient,

incentive compatible and individually rational mechanism and show that it can never

satisfy budget balance, thereby again proving the same impossibility result using a different

technique. We will exploit both approaches in the dynamic model.

In the dynamic mechanism design literature, Baron and Besanko [1982], Besanko

[1985], Battaglini [2005], Pavan, Segal and Toikka [2013], Battaglini and Lamba [2013], and

Eso and Szentes [2013] present various versions of the dynamic envelope formula that sum-

marizes the local incentive compatibility constraints.9 The technique adopted for proving

the history dependent payoff equivalence result, viz. the change of variables from transfers

to expected utility vectors, parallels Battaglini and Lamba [2013], who do the same for

discrete types.

Athey and Segal [2007, 2013] and Bergemann and Valimaki [2010] directly construct

dynamic versions of the VCG mechanism, while the former is concerned about budget

balance, the latter has an efficient exit condition. They key difference with Athey and

Segal [2007, 2013] is that in the dynamic mechanism design problem they do not allow

for individual rationality in every period, thereby demanding a very strong form of com-

mitment. When they do allow the agents to walk away, they establish a folk theorem for

efficiency in a stochastic game version of their model.

This paper is the most closely related to Athey and Miller [2007] and Skrzypacz and

Toikka [2013]. Athey and Miller [2007] study the repeated bilateral trading problem under

iid types, ex ante and ex post budget balance, and ex post incentive compatibility. They

use a bounded budget account to show approximate efficiency under ex post budget bal-

ance. Skrzypacz and Toikka [2013] analyze the same problem with persistent types and

multidimensional initial information. They establish a necessary and sufficient condition

for efficiency under ex ante budget balance, thereby allowing for unbounded credit lines.10

While stressing voluntary participation in each period, we seek to characterize efficiency

for an intermediate notion of budget balance, one that allows for the role of an intermediary

with a bounded credit line. We also want to be able to impose greater restrictions on

the cash flows to the intermediary. The implementation of the Collateral Dynamic VCG

mechanism requires distribution of future surplus as collateral every period, in comparison

to the one time participation fees in Skrzypacz and Toikka [2013], which may require large

amounts of seed capital on the part of the agents, in addition to the unbounded credit line

being offered by the mechanism designer.

Skrzypacz and Toikka [2013] provide a characterization of the second best under an

infinite horizon Gaussian model. Our characterization for the second best, modulo global

incentive constraints, is the most general possible. Unlike the rest of the literature, we

seek to get a better understanding of the second best mechanism under the various notions

9See also Courti and Li [2000] and Eso and Szentes [2007] for sequential screening models.
10Using the balancing trick of Athey and Segal [2007, 2013], this condition also guarantees implementa-

tion under ex post budget balance, but then like Athey and Segal, a strong form of commitment is required
on part of the agents by allowing individual rationality only in period 1.
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of budget balance. To that end we provide a complete characterization of no trade regions

for a class of AR(1) models.

The section on property rights is inspired by Cramton, Gibbons and Klemperer [1987],

who show that efficiency can be attained in the Myerson and Satterthwaite [1983] setting

if one allows for property rights to be shared. And, the section on detail free mechanisms

draws on Hagerty and Rogerson [1987], who show that in a static model, under dominant

strategies only posted prices are feasible.

Plan. We introduce the model in section 2. This is followed by the institutional archi-

tecture in section 3, that is, definitions of incentive compatibility, individual rationality,

budget balance, and efficiency. A change of variables is also undertaken which is a key step

in proving the payoff equivalence result. In section 4, we present a simple two period model

to motivate some of the key forces that apply in the general results in the two sections that

follow it. Section 5 constructs the Collateral Dynamic VCG mechanism and establishes its

salience in completely characterizing efficiency. Section 6 provides a precise formulation

of the second-best mechanism, characterizes an AR(1) model, then discusses a dynamic

Ramsey pricing formulation and applies monotonic contracts to deal with binding global

incentive compatibly constraints. Section 7 establishes for a folk theorem when property

right are fluid. Section 8 discusses avenues for future research. Proofs and other details

not in the main text can be found in the appendix.

2 Model

Two agents, each with private information, agree to be in a dynamic bilateral trading rela-

tionship for a non-durable good. The buyer (B) has a hidden valuation for the good and the

seller (S) is endowed with a technology to produce the good each period at a hidden cost.

We assume that buyer’s valuation and the seller’s cost are random variables11, denoted v

and c, distributed according to priors F and G on V = [v, v] and C = [c, c], that evolve ac-

cording to independent Markov processes F (.|.) : V ×V → [0, 1] and G(.|.) : C ×C → [0, 1],

respectively.12 The priors and Markov processes have continuous densities, denoted by f ,

g, f(.|.) and g(.|.), and full support, and the Markov processes are differentiable in the

second argument, that is, the past type.

Each period pt determines the probability of trade, that is, the production and al-

location of the good from the seller to the buyer, xB,t the transfer from the buyer to

the mechanism designer and xS,t the transfer to the seller from the mechanism designer.

The mechanism designer here can be considered as a financial intermediary, an institution

as part of a larger social contract facilitating trade, or a simple transfer scheme in case

xB = xS . The per period payoffs are given by vtpt − xB,t and xS,t − ctpt, for the buyer

11These shall be interchangeably referred to as their types.
12All the main results can accommodate moving supports. It would simply entail a change of notation

to Vt and Ct, to denote the respective supports in each period.
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and seller respectively.13,14

We assume that taking the institutional details as given, both the buyer and seller can

commit to the mechanism. The institutional details temper the role commitment will play

in the model, as we elaborate below. Both the agents know their first period valuation

and cost respectively when the contract is signed, and these then stochastically evolve over

time. This assumption is crucial for it sows the seeds of asymmetric information in the

model with commitment.

The (contractual) relationship lasts lasts for T discrete periods, where T ≤ ∞. Both

the agents discount future payoffs with a common discount factor δ. The static version of

this model, δ = 0, is exactly the one studied by Myerson and Satterthwaite [1983], and

Chatterjee and Samuelson [1983].

It is easy to show that a form of revelation principle holds and thus we can, without

loss of generality, consider direct mechanisms. Every period the agents learn their own

types, and then send a report to the mechanism, which in turn, spits out the allocation

and transfers rules. Employing the revelation principle, however, demands a moral call

on the information the mechanism itself reveals to the agents. In particular, does the

buyer observe the seller’s announcement and vice-versa? We shall work in an environment

where the announcements are publicly observed. There is a close information theoretic

relationship between this public mechanism and the blind one where the announcements

are not publicly observed. We refer the reader to Skrzypacz and Toikka [2013] for a

discussion on this.

The direct mechanism, say m, is then a collection of history dependent probability

and transfer vectors, m = 〈p,x〉 =
(
p
(
vt, ct

∣∣ht−1 ) , xB (vt, ct ∣∣ht−1 ) , xS (vt, ct ∣∣ht−1 ))Tt=1
,

where ht−1 and (vt, ct) are, respectively, the public history up to period t−1 and the types

revealed at time t. These can also be succinctly written as p(ht), etc. In general, ht is

defined recursively as ht =
{
ht−1, (vt, ct)

}
, with h0 = ∅. The set of possible histories at

time t is denoted by Ht (for simplicity H = HT ).

The strategies of the buyer and the seller can potentially depend on a richer set of

histories. For the buyer, the information available before his period t report is given by

htB = {ht−1B , vt−1, v̂t}, where vt−1 is the announced type in period t−1, and v̂t is the actual

type in period t, starting with h0B = {v̂1}. The seller’s information is analogously defined.

Let the set of private histories at time t be denoted by Ht
B and Ht

S , respectively. Thus, for

a given mechanism, the strategy for the buyer, (σB,t)
T
t=1, is then simply a function that

maps private history into an announcement every period, σB,t : Ht
B 7→ V, and similarly

for the seller, σS,t : Ht
S 7→ C.

13The t subscript will not be used when the set of histories make the time dimension obvious.
14An equivalent model is one where the seller is endowed with a good every period and needs to decide

whether she should sell the it to the buyer or consume it.
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3 The Institutional Framework

The edifice of the institutional machinery has three key foundations: information rents,

voluntary participation and limits on insurance. In the mechanism design lexicon, these

would respectively be associated with incentive compatibility, individual rationality and

budget balance constraints.

For a fixed mechanism m and strategies σ = (σB, σS), the expected utilities on the

induced allocation and transfers, after each possible history are defined as follows.

Um,σB (htB) = Em,σ
[

T∑
τ=t

δτ−1 (vτpτ − xB,τ ) |hτB

]
(1)

and,

Um,σS (htS) = Em,σ
[

T∑
τ=t

δτ−1 (xS,τ − cτpτ ) |hτS

]
(2)

Though, along truthful histories the difference between public and private histories is

moot, and thus in much of what follows we shall suppress the same. Let Umi = Um,σ
∗

i , for

i = B,S; where σ∗ is the truth-telling strategy.

3.1 A Change of Variables

We propose a change of variables in the structure of the mechanism that will be central

in our endeavor to establish a history dependent payoff equivalence result. In order to

keep notation simple we suppress the type/variable over which expectation is taken. For

example

p(vt|ht−1) =

∫
C

p
(
vt, ct

∣∣ht−1 ) dG(ct|ct−1),

where ct−1 is the t− 1 period announcement of the seller, known to the buyer, and,

p(vt+1|ht−1, vt) =

∫
C

∫
C

p
(
vt+1, ct+1

∣∣ht−1, vt, ct ) dG(ct|ct−1)dG(ct+1|ct)

Expected utility of the buyer can be recursively defined as

UB(vt, ct|ht−1) = vtp(vt, ct|ht−1)− xB(vt, ct|ht−1) + δ

∫
V

UB(vt+1|ht−1, vt, ct)dF (vt+1|vt)

(3)

and,

UB(vt|ht−1) = vtp(vt|ht−1)− xB(vt|ht−1) + δ

∫
V

UB(vt+1|ht−1, vt)dF (vt+1|vt)
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Utility of the buyer of type vt from misreporting (once) to be type v′t, for a fixed type ct

of the seller, can be succinctly written as

UB(v′t; vt, ct|ht−1) = vtp(v
′
t, ct|ht−1)−xB(v′t, ct|ht−1)+δ

∫
V

UB(vt+1|ht−1, v′t, ct)·dF (vt+1|vt)

= UB(v′t, ct|ht−1)+(vt−v′t)p(v′t, ct|ht−1)+δ
∫
V

UB(vt+1|ht−1, v′t, ct)·
(
dF (vt+1|vt)− dF (vt+1|v′t)

)
(4)

Similarly,

UB(v′t; vt|ht−1) = UB(v′t|ht−1)+(vt−v′t)p(v′t|ht−1)+δ
∫
V

UB(vt+1|ht−1, v′t)·
(
dF (vt+1|vt)− dF (vt+1|v′t)

)
The seller’s utility, US , can be similarly defined.

It is straightforward to note that a mechanism m = 〈p,x〉, which is a collection of

history dependent allocation and transfer vectors, can be equivalently defined to be m =

〈p,U〉, where (fixing the allocation) the duality between transfers and expected utility

vectors is completely described by equation (3).

3.2 Incentive Compatibility

We say that mechanism, m, is Bayesian incentive compatible if

UmB (v1) ≥ U
m,(σB ,σ

∗
S)

B (v1) and UmS (c1) ≥ U
m,(σ∗B ,σS)
S (c1),

∀ v1 ∈ V, ∀ c1 ∈ C, all possible strategies σB and σS . If in addition, the game induced by

the mechanism and the type space admits σ∗ as a perfect Bayesian equilibrium, we say that

the mechanism in perfect Bayesian incentive compatible (PBIC). Finally, the mechanism

is periodic ex post incentive compatible (EPIC), if for both agents, truth telling is a best

response after any truthful history and for any realization of current type of the other

agent.15

Exploiting the one-deviation principle, incentive compatibility can be defined as fol-

lows.

Definition 1. A mechanism m = 〈p,U〉 satisfies perfect Bayesian incentive compatibility

if

UB(vt|ht−1) ≥ UB(v′t; vt|ht−1) and US(ct|ht−1) ≥ US(c′t; ct|ht−1)

∀vt, v′t ∈ V, ∀ct, c′t ∈ C, ∀ht−1 ∈ Ht−1, ∀t.

A stronger equilibrium notion as described above is the that of ex-post incentive com-

patibility. The mechanism in each period is implemented in ex-post equilibrium (see Chung

15To quote Bergemann and Valimaki [2010], “We say that the mechanism is periodic ex post incentive
compatible if truth-telling is a best response regardless of the history or the current state of the other
agents.”
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and Ely [2006]). Formally,

Definition 2. A mechanism m = 〈p,U〉 satisfies ex post incentive compatibility if

UB(vt, ct|ht−1) ≥ UB(v′t; vt, ct|ht−1) and US(vt, ct|ht−1) ≥ US(c′t; vt, ct|ht−1)

∀vt, v′t ∈ V, ∀ct, c′t ∈ C, ∀ht−1 ∈ Ht−1, ∀t.

3.3 Individual Rationality

Even though commitment is assumed as part of our institutional architecture, we find it

compelling to allow the agents- the buyer and the seller- to walk away at any stage if their

utility from continuing in the contract falls below their reservation thresholds, which are

normalized to zero. We say that a mechanism is perfect Bayesian individually rational

(PBIR) if

UmB (htB) ≥ 0 and UmS (htS) ≥ 0,

∀ htB ∈ Ht
B and htS ∈ Ht

S . Similar to incentive compatibility, if in addition the utility is

required to be greater than or equal to the reservation value for every realization of current

type of the other agent, we say the mechanism is ex post individually rational (EPIR). In

keeping with our notation, we have:

Definition 3. A mechanism m = 〈p,U〉 satisfies perfect Bayesian individually rationality

if

UB(vt|ht−1) ≥ 0 and US(ct|ht−1) ≥ 0

∀vt ∈ V, ∀ct ∈ C, ∀ht−1 ∈ Ht−1, ∀t.

Definition 4. A mechanism m = 〈p,U〉 satisfies ex post individually rationality if

UB(vt, ct|ht−1) ≥ 0 and US(vt, ct|ht−1) ≥ 0

∀vt ∈ V, ∀ct ∈ C, ∀ht−1 ∈ Ht−1, ∀t.

We say that a mechanism is perfect Bayesian implementable if it is perfect Bayesian

incentive compatible and individually rational, and it is ex post implementable if it is ex

post incentive compatible and individually rational.

3.4 Budget Balace

In mechanism design with many agents budget balance is seen as the limits on insurance or

external subsidies available to them. In addition to the traditional notions of ex ante and

ex post budget balance, we introduce an intermediate notion of interim budget balance.

We say that a mechanism is interim budget balanced if

Em
[

T∑
τ=t

δτ−t (xB,τ − xS,τ ) | ht−1
]
≥ 0
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∀ ht−1 ∈ Ht−1.16 The mechanism is ex ante budget balanced if interim budget balance

holds for the null history. Moreover, we say that the mechanism is ex post budget balanced

if the entire vector of transfers are equal for any history, xB = xS .

Next, using equations (1) and (2) we can write the expected budget surplus that a

mechanism generates after any history ht−1 to be

EBS(ht−1) = Em
[

T∑
τ=t

δτ−t (vτ − cτ ) pτ − UB(vt|ht−1)− US(ct|ht−1) | ht−1
]

(5)

The ex ante budget surplus is denoted simply by EBS = EBS(h0). We have,

Definition 5. A mechanism 〈p,U〉 satisfies ex ante budget balance if

EBS ≥ 0

This is the weakest possible notion of budget balance for this dynamic model. It means

that the mechanism designer does not loose money in an expected ex ante sense. A more

robust definition of budget balance in our opinion, which still allows for the role of an

intermediary is the one where a positive budget surplus is guaranteed after every history.

Definition 6. A mechanism 〈p,U〉 satisfies interim budget balance if

EBS(ht−1) ≥ 0 ∀ht−1 ∈ Ht−1, ∀t

This can be motivated in many ways. First, it can be viewed as a participation con-

straint for the mechanism designer- after any history, just like the the two agents, the

mechanism designer must have a an incentive to continue in the relationship. Second, it

is a bankruptcy constraint for the intermediary. If the contract reaches a stage the where

the intermediary is expected to loose money for sure, he or she should be allowed to shut

shop.

Finally, the most standard (and strictest) definition of budget balance from the static

literature that can be generalized to dynamic environments states the transfers should

exactly equal across all histories for all time periods.

Definition 7. A mechanism m = 〈p,x〉 satisfies ex post budget balance if

xB(vt, ct|ht−1)− xS(vt, ct|ht−1) = 0,

∀vt ∈ V, ∀ct ∈ C, ∀ht−1 ∈ Ht−1, ∀t.17

16The exact definition will employ almost sure notions on the set of histories. It will be obvious and is
suppressed for the ease of exposition.

17Equivalently, a mechanism m = 〈p,U〉 satisfies ex post budget balance if

(vt − ct)p(vt, ct|ht−1)−
(
UB(vt, ct|ht−1)− δ

∫
V
UB(vt+1|ht−1, vt, ct)dF (vt+1|vt)

)
−
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A natural way to motivate this in the dynamic model is the absence of an outside

insurance provider or financial intermediary. A contractual relationship is thus more the

order of interpretation rather than a mechanism.

Note the hierarchy in budget balance

ex post BB ⇒ interim BB ⇒ ex ante BB

There is also an equivalence relationship between instantaneous (or stage) notion of ex-

pected budget surplus18 and ex post budget balance. Details are provided in the appendix.

3.5 Objectives

One of the most widely accepted objectives of mechanism design is that of efficiency.19

We shall invoke the strongest possible version in its ex post form.

Definition 8. A mechanism m = 〈p,U〉 satisfies efficiency if

p(vt, ct|ht−1) =

{
1 if vt > ct

0 otherwise

∀vt ∈ V, ∀ct ∈ C, ∀ht−1 ∈ Ht−1, ∀t.

Thus, regardless of history, under a positive instantaneous surplus and only then,

efficiency demands trade and always with probability 1.

There are a plethora of situations, captured by the fundamentals of the model, where

efficient trade is not possible. Many competing notions of second-best are in the fray, some

of which are discussed in section 8. We employ the most standard one of ex ante expected

gains from trade.

Definition 9. A mechanism m = 〈p,U〉 satisfies second-best efficiency if it maximizes

the ex ante expected gains from trade, that is,

GFT = Em
[

T∑
t=1

δt−1 (vt − ct) pt

]

In a price theory formulation of the problem, this would be referred to as the maximiza-

tion of surplus. This benchmark is especially salient because in the absence of asymmetric

information or when the budget balance constraints do not bind, it will implement the

efficient allocation.(
US(vt, ct|ht−1)− δ

∫
C
US(ct+1|ht−1, vt, ct)dG(ct+1|ct)

)
= 0

∀vt ∈ V, ∀ct ∈ C, ∀ht−1 ∈ Ht−1, ∀t.
18Defined as EBSt(h

t−1) = Em
[
xB(vt, ct|ht−1)− xS(vt, ct|ht−1)

]
19See Holmstrom and Myerson [1983] for the various notions of efficiency.
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4 A Simple Two Period Model

To fix ideas and motivate the intuition is a simple way we first present a two period

model. The mechanism designer wishes to maximize expected gains from trade for the

model presented above with T = 2. Results for both ex ante BB and interim BB are

discussed.20

The analysis in this section takes a direct approach a’la Myerson and Satterthwaite

[1983]. We collapse the necessary local incentive compatibility conditions into an envelope

formula which is then plugged into the expected budget surplus constraint. Note, however,

that because the problem is dynamic this exercise is repeated for every possible history.

We first provide the flavor of the general argument, and then proceed to solve specific

examples to formally lay down the key forces in our understanding of efficient self enforcing

institutions. A word on the notation is in order. Since this is a two period model, h will

represent the history of announced types in the first period, and hi its component with

respect to agent i, for i = B,S. We also provide the proof of the lemma below for a quick

refresher on the standard techniques of dynamic mechanism design.21

Lemma 1. For any perfect Bayesian incentive compatible mechanism,

EBS + UB(v) + US(c) =

∫
V

∫
C

[{(
v1 −

1− F (v1)

f(v1)

)
−
(
c1 +

G(c1)

g(c1)

)}
p(v1, c1)

+δ

∫
V

∫
C

{(
v2 −

1− F (v1)

f(v1)

[
−∂F (v2|v1)/∂v1

f(v2|v1)

])
−
(
c2 +

G(c1)

g(c1)

[
−∂G(c2|c1)/∂c1

g(c2|c1)

])}

×p(v2, c2|v1, c1)g(c2|c1)f(v2|v1)dc2dv2

]
g(c1)f(v1)dc1dv1,

and

EBS(h) + UB(v|h) + US(c|h) =

∫
V

∫
C

[(
v2 −

1− F (v2|hv)
f(v2|hv)

)
−
(
c2 +

G(c2|hc)
g(c2|hc)

)]

×p(v2, c2|h)g(c2|hc)f(v2|hv)dc2dv2

Proof. Incentive compatibility in period 2 for any history h gives,

(
v2 − v′2

)
p(v2|h) ≥ UB(v2|h)− UB(v′2|h) ≥

(
v′2 − v2

)
p(v′2|h)

20Since the horizon is finite, the latter also precisely characterizes the allocations that can be implemented
under ex-post BB. See section 10.1 in the appendix.

21For simplicity, in this section, in a slight abuse of notation, we will denote UB(v) = infv∈V UB(v) and
UB(c) = infc∈C US(c). This is true if Markov processes satisfy first order stochastic dominance, but not in
general. It is, however, not essential for our results.
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The envelope formula for period 2 thus follows,

UB(v2|h) = UB(v|h) +

v2∫
v

p(ṽ2|h)dṽ2 (6)

Employing incentive compatibility in period 1 gives

(v1 − v′1)p(v1) + δ

∫
V

UB(v2|v1) ·
[
dF (v2|v1)− dF (v2|v′1)

]
≥ UB(v1)− UB(v′1) ≥

(v1 − v′1)p(v′1) + δ

∫
V

UB(v2|v′1) ·
[
dF (v2|v1)− dF (v2|v′1)

]
Using (6) and integration by parts, gives the dynamic envelope formula,

UB(v1) = UB(v) +

v1∫
v

p(ṽ1) + δ

∫
V

p(v2).

(
−∂F (v2|ṽ1)/∂ṽ1

f(v2|ṽ1)

)
dv2

 dF (ṽ1) (7)

Similarly, we get

US(c2|h) = US(c|h) +

c∫
c2

p(c̃2|h)dc̃2 (8)

and,

US(c1) = US(c) +

c∫
c1

[
p(c̃1) + δ

∫
C
p(c2).

(
−∂G(c2|c̃1)/∂c̃1

g(c2|c̃1)

)
dc2

]
dG(c̃1) (9)

Now, in period 2, we can write the expected budget surplus as

EBS(h) =

∫
V

∫
C

[xB(v2, c2|h)− xS(v2, c2|h)] g(c2|hc)f(v2|hv)dc2dv2

=

∫
V

∫
C

[(v2p(v2, c2|h)− UB(v2, c2|h))− (c2p(v2, c2|h) + US(v2, c2|h))] g(c2|hc)f(v2|hv)dc2dv2

which using equations (6) and (8), and integration by parts can be written as

EBS(h) + UB(v|h) + US(c|h) =

∫
V

∫
C

[(
v2 −

1− F (v2|hv)
f(v2|hv)

)
−
(
c2 +

G(c2|hc)
g(c2|hc)

)]

×p(v2, c2|h)g(c2|hc)f(v2|hv)dc2dv2

14



Similarly, using equations (7) and (9) in

EBS =

∫
V

∫
C

[
(v1p(v1, c1)− UB(v1, c1))− (c1p(v1, c1) + US(v1, c1))

+δ

∫
V

∫
C

[v2p(v2, c2|v1, c1)− c2p(v2, c2|v1, c1)] g(c2|hc)f(v2|hv)dc2dv2
]
g(c1)f(v1)dc1dv1

and integrating by parts, we get the desired equality.

It is important to note that the above result can be stated and proven verbatim for

ex post incentive compatibility. The key to the indifference is that the expected budget

surplus takes expectation over all current and future types of both agents.

Lemma 1 provides some indication of the general results to follow. It exactly charac-

terizes the expected budget surplus for every possible history in terms of the allocation

and fundamentals of the model. Characterization under interim BB follows immediately.

Let EBS∗∗ and EBS∗∗(h) refer specifically to the incentive compatible and individually

rational mechanisms where

UB(v) = US(c) = UB(v|h) = US(c|h) = 0

for all v ∈ V, c ∈ C, and h ∈ V × C.

Corollary 1. A perfect Bayesian (or ex post) incentive compatible and individually ra-

tional mechanism can be implemented under interim BB if and only if EBS∗∗ ≥ 0 and

EBS∗∗(h) ≥ 0 for all h ∈ V × C.

Proof. Sufficiency is obvious. For necessity, note that EBS∗∗ and EBS∗∗(h) are the

highest expected budget surpluses that can be generated for their respective histories

while satisfying IC and IR. If they are not non-negative no other IC and IR mechanism

can ensure them to be.

Removing transfers, the second best mechanism can then be explicitly formulated by

the following result.

Corollary 2. A perfect Bayesian incentive compatible and individually rational allocation

maximizes expected gains from trade under interim BB if only if it solves

max
p

GFT

subject to

EBS∗∗ ≥ 0, EBS∗∗(h) ≥ 0 ∀h, and

p is PBIC
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Implementability of p is essentially a requirement that global incentive constraints be

satisfied.22 We will have more to say on that in section 6. Corollary 2 is a two period

version of the general Proposition 3 that will follow in section 6.

A substantial appeal of the static model with linear preferences and continuous types

is that the solution is always bang-bang, the probability of trade is always 0 or 1. Since

the objective and all constraints are linear in the allocation, the same insight goes through

in the dynamic model too.

Perhaps the one of the most studied simple expositions of the competing economic

forces of information, commitment and budget balance in mechanism design is the uniform

bilateral trading problem- static version of our model with a uniform prior.23 In order to

clearly bring out the prominent economic forces in a simple fashion, we work in a natural

extension of this model to the dynamic environment, and present the optimal mechanisms

under the extreme ends of the information space. In the next three subsections the types

of the buyer and the seller are assumed to be uniform on [0,1] in both periods.24

4.1 Static Benchmark

Following Myerson and Satterthwaite [1983], let us first consider the case where δ = 0.

Then, writing down the problem in corollary 2 as a Lagrangian25, it is easy to show that

trade happens, that is, p(v1, c1) = 1, if and only if v1 > c1 + M , where M solves the

binding EBS constraint

1∫
0

1∫
0

1{v1>c1+M} [2v1 − 1− 2c1] dc1dv1 = 0

i.e.,
1

6
(4M − 1)(1−M)2 = 0

Thus, trade happens if and only if v1 > c1 + 1
4 . Since efficiency demands trade for every

v1 ≥ c1; M = 1
4 precisely characterizes the no trade region and the degree of inefficiency.

Since the allocation is monotonic, it is implementable. Figure 1a captures the no-trade

region pictorially. The solid diagonal represents the locus v1 = c1. Efficient allocation

requests trade above the solid diagonal. The area above the dotted line represents the

actual trade region.

22In the static model it is replaced by the familiar monotonicity condition on the allocation.
23See Myerson [1985] and Gibbons [1992].
24We use the iid model to motivate ideas because it offers a simple and complete characterization.

Moreover, as we will see in the AR(1) model in section 6, even a two period persistent types model with
interim BB is very hard to characterize in general.

25
1∫
0

1∫
0

[(v1 − c1) + λ (2v1 − 1− 2c1)] p(v1, c1)dc1dv1, where λ is the multiplier on EBS. Details are in the

appendix.
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4.2 IID case

Now, suppose the types of both agents are distributed uniformly on [0,1] in both periods.26

We first consider implementation under ex ante BB. In the second period distortions in

the EBS constraint are 0, and trade is always efficient, generating a maximum possible

surplus of 1
6 irrespective of the history in period 1. Thus, the no trade region in period 1

solves
1

6
(4M − 1)(1−M)2 + δ

1

6
= 0 (10)

It is clear that M is a decreasing function of δ. In fact, at δ = 0, M = 1/4, replicating

the static model, and M = 0 for δ = 1, implying the implementability of the efficient

allocation.

In the T period version of this problem, trade is always efficient starting period 2. Using

a recursive mechanism, Athey and Miller [2007] show that in fact for any distribution, when

T =∞, trade in first period will be efficient for any δ ≥ 1
2 .

Next, consider implementation under interim BB. Now, it is easy to show that EBS∗∗(h)

will always bind, and the trade in the second period replicates the static model. Thus,

p(v2, c2|h) = 1 if and only if v2 > c2 + 1
4 for all h. In the first period, the no trade region

M solves
1

6
(4M − 1)(1−M)2 + δ

9

64
= 0 (11)

Again, M is a decreasing function of δ. However, this time even δ = 1 cannot guarantee

efficient trade in period 1. Interim budget balance forces the agents to internalize incentives

for period 2 while deciding on the optimal mechanism. The contract is no longer efficient

in period 2, and hence a smaller collateral is available for trade in period 1.

Nevertheless, it is interesting to consider δ as a proxy for the surplus available in the

future in a general T period model. Following the said motivation, it is easy to see that

trade will be efficient, and the expected budget surplus constraint will not bind in period

1 for δ ≥ 32
27 .

4.3 Perfect Persistence

When types are perfectly persistent, there are no second period expected budget surplus

constraints. So, all notions of budget balance are equivalent. The problem reduces to the

maximization of gains from trade under ex ante BB and constant types, thus giving us a

repetition of the static optimum. In both periods trade happens if and only if v > c+ 1
4 .

4.4 Discussion

We know that efficient trade is impossible in the static model. What is the driving force

in the dynamic model that presents us with the possibility of efficiency? A casual glance

at equations (10) and (11) gives us an indication. Surplus generated in the second period

is a function of the levels of asymmetric information through persistence and the limits

26Formal proofs are presented in the appendix.
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on insurance imposed by varying notions of budget balance. These provide key building

blocks for understanding the possibility of achieving efficiency in more general models.

Under iid types and ex ante BB, maximum possible surplus is generated in period 2,

which can distributed across types and time, significantly reducing the no-trade region in

period 1. However, under a stricter notion of budget balance, there are limits on the depth

of the credit line facilitating trade. It reduces the total future surplus, thereby mitigating

the advantage dynamics present even for the case with minimal informational constraints.

At the other extreme, when the informational constraints are the most severe, in the

form of constant types, it blunts all possible advantages that dynamics present by making

all those histories that would relax information constraints to generate future surplus be

zero in probability.

The important question we seek to answer in the next section is the following. Under

voluntary participation and reasonable limits on budgeting across time; and as a function

of information asymmetry and discounting, when can the agents create enough surplus so

that an institution guaranteeing efficient trade can be created?

5 Efficiency: The Collateral Dynamic VCG Mechanism

In order to construct possibility or impossibility results in efficiency with incentive com-

patible and individually rational mechanisms which satisfy budget balance, two distinct

routes are pursued in the static literature. The first one was exploited in the two period

model studied in section 4. A second best mechanism was formulated using the envelope

formula, and the local incentive compatibility and individual rationality constraints were

all summarized in the budget surplus conditions. Efficiency can be attained when these

complied budget constraints do not bind, or in other words are non-negative at the efficient

allocation. We will generalize this approach in the next section.

The other methodology, reminiscent of Williams [1999] and Krishna and Perry [2000],

amongst others, is to start with perhaps the most well known efficient mechanism- VCG

(or the Pivot mechanism will do too in this case), and build around it, in an attempt to

satisfy budget balance, which the original mechanism does not. In this section, we present

a series of general results on efficiency in the dynamic bilateral trade setting, taking this

latter route.

To this end, we adapt techniques for static models from Krishna and Perry [2000] to the

dynamic framework. Intuitively, why should we expect to achieve efficiency in a dynamic

model when an impossibility result holds in the similar static setting? What factors are

salient in the ability of the dynamic relationship to overcome the static benchmark? The

answer, as was alluded to in section 4, lies in the existence of future surplus, and its size.

We show that this surplus, if large enough, can be used as collateral to guarantee efficiency

in dynamic models. Since efficiency is not attainable in the last period of a finite horizon

model under interim BB, we shall assume T =∞ in this section.27

27Efficiency can be sustained, however, under ex ante BB in a finite horizon model. The condition is
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Consider a standard VCG mechanism, where

pvcg(vt, ct|ht−1) =

{
1 if vt > ct

0 otherwise

xvcgB (vt, ct|ht−1) =

{
ct if vt > ct

0 otherwise

xvcgS (vt, ct|ht−1) =

{
vt if vt > ct

0 otherwise

Define the associated expected utility vectors to be

UvcgB (vt, ct|ht−1) = UvcgS (vt, ct|ht−1) = E

[
T∑
τ=t

δτ−t(vτ − cτ )+ | ht−1, (vt, ct)

]
, (12)

where x+ = max {0, x}, and since the mechanism is fixed, the expectation is taken over

the conditional distributions F (.|.) and G(.|.).
Clearly the mechanism always runs a deficit for any notion of budget balance. In

what follows, we first use payoff equivalence to pin down the mechanism that guarantees

the highest possible expected budget surplus for every history while satisfying individual

rationality. Next, we show that this is exactly the mechanism that generates the highest

collateral at every history from which the possibility (or impossibility) of efficient trade can

be built for interim BB. We start with a history dependent version of payoff equivalence.

Proposition 1. Payoff equivalence holds after every history. That is, if 〈p,U〉 and
〈
p, Ũ

〉
are two ex post incentive compatible mechanisms that generate utility vectors(
UB(vt, ct|ht−1), US(vt, ct|ht−1)

)
and

(
ŨB(vt, ct|ht−1), ŨS(vt, ct|ht−1)

)
, respectively, then,

there exists a family of constants
(
aB(ct|ht−1), aS(vt|ht−1)

)
such that

UB(vt, ct|ht−1) = ŨB(vt, ct|ht−1) + aB(ct|ht−1), and

US(vt, ct|ht−1) = ŨS(vt, ct|ht−1) + aS(vt|ht−1)

Conversely, if 〈p,U〉 is ex post incentive compatible, and U and Ũ satisfy the above two

equations for a finite family of constants
(
aB(ct|ht−1), aS(vt|ht−1)

)
, then

〈
p, Ũ

〉
is also

ex post incentive compatible.

This extends the celebrated payoff equivalence result from static mechanism design

to dynamic environments. Pavan, Segal and Toikka [2013] and Skrzypacz and Toikka

[2013] have presented an ex ante version of this result, showing that for two incentive

compatible mechanisms implementing the same allocation, the expected payoff of each

initial type of the agent(s) in one differs from the other only by some additive constant.

Their results put restriction on the ex ante expected transfers, whereas our’s shows a

precisely characterized by Corollary 3, which does not depend on the time horizon.
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deeper history dependent connection between transfers that support ex post incentive

compatible allocations.

The change of variables from 〈p,x〉 to 〈p,U〉 proves key in establishing this result.28

If we work in an environment with stage transfers it is hard to keep track of the change

in incentives caused by a moving transfers around after any given history. But, moving

expected utility vectors endogenously keeps the incentives intact. The bijection from x to

U through p precisely determines the associated stage transfers.

Also, note that the result is proven for the stronger equilibrium concept, ex post

incentive compatibility. The equivalent version for Bayesian incentive compatibility entails

taking the requisite expectations, which will result in the constants simply being aB(ht−1)

and aS(ht−1), respectively.

Now, we construct the collateral dynamic VCG mechanism.

Constructing the Collateral Dynamic VGC mechanism

Step 1. Start with the VCG mechanism, 〈pvcg,Uvcg〉, as defined above. It is ex post

incentive compatible and ex post individually rational.

Step 2. Select the mechanism 〈p∗,U∗〉, where p∗ = pvcg, and U∗ is chosen so that

inf
v∈V

U∗B(v, ct|ht−1) = 0 = inf
c∈C

U∗S(vt, c|ht−1) for all vt, ct and ht−1. Let EBS∗(ht−1) repre-

sent the expected budget surplus generated by this mechanism after history ht−1.

Step 3. Show that an ex post incentive compatible and individually rational mecha-

nism guaranteeing efficient trade under interim BB can exist if and only if 〈p∗,U∗〉 runs

an expected budget surplus, that is, EBS∗(ht−1) ≥ 0 ∀ht−1, ∀t.

Step 4. Using 〈p∗,U∗〉 and equation (3), recover the stage transfers x∗.

The task, thus, boils down to reformulating the VCG mechanism so that the trans-

fers are normalized to guarantee the “lowest” types29, the minimum possible expected

utility every period, which is zero. This extraction of maximum possible transfers, while

ensuring individual rationality, from both the agents generates a collateral. In a simple

implementation, both agents pay the normalization up front each period, and then simply

run a VCG mechanism. We know from Myerson and Satherthwaite [1983] and Krishna

and Perry [2000] that the collateral is not sufficient to insure all types in the static model,

and hence efficiency cannot be attained under ex post budget balance. In the dynamic

model, a higher future (constrained) surplus translates one for one into a higher collat-

eral. When can sufficient collateral be generated in the dynamic model to implement the

28This approach is popular in (static) contract theory. See, for example Laffont and Martimort [2001].
The key difference is that change with stage transfers in the dynamic environment must be with the
expected utility variables, rather than the stage utility ones.

29If we imposed first order stochastic dominance, these would be v and c.
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efficient allocation for all types after all histories? As step 3 above requests, the following

proposition answers the question precisely.

Proposition 2. There exists an ex post incentive compatible and ex post individually

rational mechanism that implements the efficient allocation under interim BB if and only

if EBS∗(ht−1) ≥ 0 ∀ht−1, ∀t.

Proposition 2 is essentially saying that if the Collateral Dynamic VCG mechanism

cannot produce an expected budget surplus in any given history, then no other mechanism

can. One might think that while the mechanism may run a deficit in some history30,

it might be possible to transfer resources from some other which runs a surplus. By

construction, the Collateral Dynamic VCG mechanism has already taken care of that. If

it was possible to make such a transfer in an incentive compatible and individually rational

manner, it has been internalized by the mechanism.

Further, the notion of interim budget balance and the Collateral Dynamic VCG mech-

anism are more flexible than it may seem at a first glance, in at least two ways. First,

we have normalized the lower bound of expected surplus in any period to be 0. It can be

taken to be any finite negative number. The greater its magnitude, which corresponds to

the depth of the credit line on offer, the higher are the chances of sustaining efficiency.

Second, we force re-calibration of transfers to take place every period. It can be relaxed so

that the interim budget balance constraint is imposed every k periods which too creates

greater efficiency without relying on unbounded insurance. In both cases, the Collateral

Dynamic VCG mechanism can be accordingly modified.

The condition EBS∗ ≥ 0 is exactly the inequality characterizing efficient trade under

ex ante budget balance in Skrzypacz and Toikka [2013]. The equivalence is formally

established in the appendix. Thus, their result can be obtained as a consequence of our

Proposition 2.31

Corollary 3. There exists an ex post incentive compatible and ex post individually rational

mechanism that implements the efficient allocation under ex ante BB if and only if EBS∗ ≥
0.

It is imperative to note that the proposition above is stronger than most of the results

in the static (Bayesian) literature in the sense that it establishes the conditions for ex

post implementation. Unsurprising, to the extent that we started with a VCG mecha-

nism. But, perhaps surprisingly, it also precisely characterizes the conditions for Bayesian

implementation.

Corollary 4. There exists a perfect Bayesian incentive compatible and individually ratio-

nal mechanism that implements the efficient allocation under interim BB if and only if

EBS∗(ht−1) ≥ 0 ∀ht−1, ∀t.
30What we actually mean is a set of histories with positive measure.
31Like Krishna and Perry [2000], they also consider multidimensional initial types which can be accom-

modated in our set up too.
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The intuition for this is quite simple. The expected budget surplus constraint takes

expectation over all current and future types. So, from equation (5), it is evident that for

interim budget balance the two notions are equivalent.

An important observation is that if the support is constant and T =∞, it is sufficient

to look only at EBS∗ and EBS∗(h1) for all h1 ∈ V × C, for Markov processes ensure that

the expected budget surplus constraints after period 2 have been considered in period 2

itself. Moreover, since the utility vector U∗ starting period 2 is stationary, the associated

transfers, using equation (3), are also stationary.

What about implementation under ex post budget balance? Miller [2012] has already

shown that ex post implementation under ex post budget balance is impossible even with

iid shocks. Thus, it is obviously futile to attempt a characterization under persistence.

Though, a similar characterization under perfect Bayesian implementation is an open

question. It is straightforward to notice that EBS∗(ht−1) ≥ 0 in a necessary condition for

the same.

In the appendix, we establish another intermediate notion of budget balance that

seeks to provide positive expected stage surplus, that is, the expected cash flows to the

mechanism designer must be non-negative in expectation every period. Lemma 5 in the

appendix shows that perfect Bayesian implementation under this new notion is equivalent

to implementation under ex post budget balance.32 Define

EBSt(h
t−1) = EBS(ht−1)− δEm

[
EBS(ht)|ht−1

]
.

Thus, EBSt(h
t−1) is the current expected budget surplus after history ht−1, and can be

used as a proxy for ex post budget balance.

Using this tool, the Collateral Dynamic VCG mechanism also provides a sufficient

condition for efficient implementation under ex post BB. Proof is analogous to Proposition

2, and omitted.

Corollary 5. If there exists a mechanism that implements the efficient allocation under

perfect Bayesian incentive compatibility and individual rationality and ex post budget bal-

ance, then EBS∗(ht−1) ≥ 0 ∀ht−1, ∀t. In addition, if EBS∗t (ht−1) ≥ 0 ∀ht−1, ∀t, then

there exists one such mechanism.

Exploiting constant support, stationarity can be used to state a tighter sufficiency

condition than the one stated above. Let

η(v, c) = EBS∗t (v, c) and η0 = EBS∗1

So, η denotes the expected budget surplus only as a function of types in the last period,

and η0 represents the same for the null history. Then, we have

32This a generalization of the result from static mechanism design that ex ante and ex post notions of
budget balance are equivalent under Bayesian implementation. See for example Cramton, Gibbons and
Klemperer [1987], and Mailath and Samuelson [1990] .
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Corollary 6. If η(v, c) + δE [η(ṽ, c̃)|(v, c)] ≥ 0 for all (v, c), and η0 + δE [η(ṽ, c̃)] ≥ 0, then

there exists a mechanism that implements the efficient allocation under perfect Bayesian

incentive compatibility and individual rationality and ex post budget balance.

This result is essentially establishing that even if EBS∗t (v, c) < 0 for some histories, as

long as we can borrow from the next period for all those histories for which EBS∗t+1(ṽ, c̃) ≥
0, and break even, efficient allocation can still be implemented under static and thus ex

post budget balance. In the appendix, we build a heuristic mechanism that shows that if

this borrowing from future periods can be done in finite fashion, efficiency under ex post

budget balance can be achieved.

Krishna and Perry [2000] emphasize the salience of the generalized VCG mechanism

they construct in providing a precise condition for efficient trade. The same emphasis

is merited for the Collateral Dynamic VCG mechanism. It unifies some of the existing

results, establishes new ones towards a precise characterization of efficiency and offers an

intuitive method of implementation.

5.1 Example: The IID Model

For an infinite horizon model with IID types (and constant support), all interim budget

balance constraints, including the ex ante one, are the same. Thus, to sustain efficiency

we only need to check EBS∗ ≥ 0. Suppose V = C, and Y is the expected first best gains

from trade. Adopting Athey and Miller [2007], and Skrzypacz and Toikka [2013] to our

mechanism,

EBS∗ = (2δ − 1)E [Y ] ≥ 0⇔ δ ≥ 1

2

It is a simple and striking result, especially since it is independent of the details of the

distribution.33 But, the unsatisfactory part is the force driving this result: starting at

any history, in evaluating the budget constraints, incentive constraints beyond the current

ones do not matter.

What about ex post budget balance? If Y is the expected first best gains from trade,

then it is easy to show that for any history ht−1,

EBS∗t (ht−1) = (2δ − 1)E [Y ]− δ(2δ − 1)E [Y ] = (1− δ)(2δ − 1)E [Y ]

So, again efficient trade is possible if and only if δ ≥ 1
2 . However, there is a key difference

between the two results. While, the one for interim (and ex ante) notions of budget balance

is ex post implementable, for ex post budget balance it is only implementable in perfect

Bayesian equilibrium. For iid types, an interesting result between the independence of the

critical level of discounting from the underlying distributions here, and the impossibility

under ex post implementation established by Miller [2012], is attainable if we consider

implementation under perfect Bayesian incentive compatibility, but ex post individual

rationality. Proposition 6 in the appendix proves such a result.

33This of course is not true for a finite model, as we saw in section 4.

24



0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

α

 

 

EBS*(δ = 0.6)
EBS*hl(δ = 0.6)
EBS*(δ = 0.7)
EBS*hl(δ = 0.7)

(a) EBS∗, EBS∗(vH , cL), δ = 0.6 and 0.7

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

α

 

 

EBS*(δ = 0.6)
EBS*hh(δ = 0.6)
EBS*(δ = 0.7)
EBS*hh(δ = 0.7)

(b) EBS∗, EBS∗(vL, cH), δ = 0.6 and 0.7

Figure 2: EBS for Two Types

5.2 Example: Two type model with Persistence

It is a well known fact that even in the static model with discrete types, efficiency is

possible.34 Instead of pursuing a full characterization, we pin down efficiency for a simple

two type model that allows us to study the affects of discounting and persistence in perhaps

the simplest possible fashion. In doing so, we rely on the two-type envelope formula for

an infinite horizon model, established by Battaglini [2005]. Details are in the appendix.

The buyer and seller types are arranged as vH > cH > vL > cL. Any other arrangement

will lead to posted prices being efficient statically and thus dynamically. We assume a

uniform prior and simple Markov matrices: f(vi|vi) = α = g(ci|ci) and f(vi|vj) = 1−α =

g(ci|cj) for i 6= j. Note that efficiency demands p(cH , vL|ht−1) = 0 for all ht−1, and trade

with probability 1 for all other realizations.

Figure 2 shows maximum possible expected budget surplus for an incentive compatible

and individually rational mechanism. Values of types are chosen so that efficiency is not

feasible in a static model. We plot the EBS∗ and EBS∗(vH , cL) in figure 2a, EBS∗ and

EBS∗(vL, cH) in figure 2b, against persistence for δ = 0.6 (solid) and δ = 0.7 (dotted).35

Two observations are immediate. First, the interim budget constraints start from the same

point at α = 0.5 reiterating that for iid types, ex ante and interim are the same. Second,

their value in the positive regions is increasing in δ.36

Also, while EBS∗(vH , cL) is always below the ex ante budget constraint, EBS∗(vL, cH)

lies above it. Persistence affects both the probability of an event and the size of distor-

tions or information rents. In EBS∗(vH , cL), clearly the size of distortions grows faster

than the rate at which the probability of histories with distortions goes to zero, hence it

becomes negative. On the other hand EBS∗(vL, cH) increases at the tail of highest levels

of persistence showing the opposite effect.

34See Matsuo [1989].
35Note these are closed form solutions.
36We plot only two values, but numerical results show that these is generally true for all δ.

25



5.3 Example: Truncated Normal

We consider now a model with a uniform prior on [0,1] for both types and a Markov

evolution governed by a truncated normal.

F (v′|v) =
Φ
(
v′−v
σ

)
− Φ

(
0−v
σ

)
Φ
(
1−v
σ

)
− Φ

(
0−v
σ

) ,
where Φ is the standard normal and σ is the variance. So, the type today determines

the mean tomorrow. G(.|.) is similarly defined. Information rents for this problem are

not stationary and hence hard to evaluate even numerically for an infinite horizon.37 So,

we cannot exploit the techniques that we did in the two type model above. Instead, we

calculate EBS∗ for a two period model, and then further calculate EBS∗(v, c) for specific

realizations of v, c for a three period model, that is, with two periods to go. This allows

us a fair comparison between the ex ante and interim notions of budget balance.

It is important to note that higher values of σ imply “lower” persistence- the bell

of the normal curve is flatter. In figure 3 we plot the EBS∗, EBS∗(0.25, 0.75) and

EBS∗(0.75, 0.25) against σ for three different values of δ. As expected, EBS∗ is an

increasing function of σ, and hence a decreasing function of persistence for all values of δ.

As we saw in the two-type model, interim budget surplus may not always be decreasing

in persistence. While EBS∗(0.25, 0.75) is decreasing, EBS∗(0.75, 0.25) (middle graphs)

is in fact increasing in persistence, showing that interim budget constraints may bind

precisely when the ex ante ones are likely to be satisfied.

Finally, note that the value of each graph is decreasing with δ, which is a bit coun-

terintuitive. It is because, being a two period model, the “surplus” being generated from

implementing the efficient allocation in the last period is actually negative, hence an ab-

solute increase in δ decreases the aggregate surplus rather than increasing it. This is

however, just a product of the finiteness (two period) of the model.

6 Second Best Efficiency

As was expected, though achievable in a large class of environments and institutional

structures, efficiency is definitely not the norm. Therefore, an analysis of the second-

best is merited. The steps to be followed are pretty much a direct generalization of the

two period model studied in section 4. We seek to maximize the expected gains from

trade subject to perfect Bayesian incentive compatibility and individual rationality under

interim budget balance. First, the dynamic envelope formula gives a characterization of

the expected budget surplus sans the transfers.

37To test the affect of persistence on ex ante budget balance, Skrzypacz and Toikka [2013] use a nice
example in the form of a renewal model. Type remains constant with a probability, say p, and is redrawn
from the prior with probability 1 − p. It has an easily exploitable stationarity. Unfortunately we cannot
use this model, because the history dependent payoff equivalence result does not allow lumpy distributions.
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Figure 3: EBS for Truncated Normal
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Lemma 2. The expected budget surplus after any history can be expressed only as a

function of the allocation, that is, for all ht−1 and for all t,

EBS(p|ht−1) + inf
v∈V

UB(v|ht−1) + inf
c∈C

US(c|ht−1) = Γ(p|ht−1),

for some function Γ(.|ht−1) continuous in the vector of current and future allocations.

Define EBS∗∗(p|ht−1) to be the expected budget surplus that chooses inf
v∈V

UB(v, ct|ht−1) =

0 = inf
c∈C

US(vt, c|ht−1) above. Then, we have the following characterization of the second

best.

Proposition 3. There exists a mechanism that maximizes the expected gains from trade

amongst the class of perfect Bayesian incentive compatible and individually rational mech-

anisms under interim BB if and only if the allocation solves

max
p

GFT

subject to

EBS∗∗(p|ht−1) ≥ 0 ∀ht−1, ∀t, and

p is PBIC

A questions begs to be asked. What if none of the expected budget surplus con-

straints bind in the aforementioned optimization problem? An immediate implication is

in the offing- the efficient allocation then must be implementable. For all ht−1, define

EBS∗∗(ht−1) to be be EBS∗∗(p|ht−1) evaluated at the efficient allocation.

Corollary 7. An efficient mechanism is perfect Bayesian (and ex post) implementable

under interim BB if and only if

EBS∗∗(ht−1) ≥ 0 ∀ht−1, ∀t

Proposition 2 and Corollary 7 provide equivalent characterizations of the precise con-

ditions on the fundamentals that guarantee efficient implementation. While the former

uses a engineering approach, constructing the Collateral Dynamic VCG mechanism, the

latter pursues it through the second best.

In the characterization of the second best above, the dynamic envelope formula allows

us to eliminate the transfers, and summarize the IR and local IC constraints through the

expected budget surplus conditions. Unlike the static model though, implementability

does not necessitate the monotonicity of allocation rule, so global incentive constraints

cannot be replaced by simple monotonicity constraints. This makes the problem highly

intractable. See, for example, Battaglini and Lamba [2013].

We first describe the second best for a simple AR(1) model and then propose a a class

of suboptimal but intuitively appealing incentive compatible contracts.
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6.1 Example: AR(1) Model

We consider a two period model. Both agents’ type are distributed uniformly on [0, 1] in

period 1. In period 2, they follow simple AR(1) processes, viz,

v2 = γBv1 + (1− γB)εv,

c2 = γSc1 + (1− γS)εc

here 0 ≤ γi ≤ 1, for i = B,S and εv and εc are both uniformly distributed on [0, 1]. Note

that types can only increase in value, and values of 0 and 1 for γi capture independence

and perfect persistence, respectively.

The iid case, γB = γS = 0, and perfectly persistent case γB = γS = 1 were completely

characterized in section 4. Under interim BB, the EBS∗∗(h) constraints always bind for

all h in period 2 in the iid case, whereas for constant types, none do. We show in the

appendix that even for the asymmetric extreme cases, γB = 0, γS = 1, and γB = 1, γS = 0,

EBS∗∗(h) do not bind in the second period, elucidating that perfect persistence of any of

agent is enough to transfer the burden of asymmetric information entirely to period 1.

Let γ = (γB, γS). Under ex ante BB, trade can be characterized as follows.

Lemma 3. There exists a number Mγ,δ, 0 ≤ Mγ,δ < 1, such that the second best Perfect

Bayesian implementable allocation under ex ante BB is given by

p(v1, c1) =

{
1 if v1 > c1 +Mγ,δ

0 otherwise

and,

p(v2, c2|v1, c1) =

{
1 if v2 > c2 +

Mγ,δ

1−Mγ,δ
[γB(1− v1) + γSc1]

0 otherwise

where for an interior optimum Mγ,δ solves the equation

EBS∗∗ = 0

evaluated at the allocation defined above.

As in standard dynamic screening models, under an AR(1) process, the allocation is

monotonic38 and hence incentive compatible. Note that in the second period, the no trade

region is strictly decreasing in v1 and increasing in c1. So, a greater chance of trade in

period 1 offers an increased probability in period 2.

For implementation under interim BB, we make a further assumption. Let γB =

γS = γ ≤ 1/4. This is made to ensure that we do not have to consider global incentive

compatibility constraints and the problem is solvable in closed form.

38In the sense of Definition 11.
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Lemma 4. Suppose γB = γS = γ ≤ 1/4. There exists a family of numbers numbers

Mγ,δ and (Mγ,δ (v1, c1))(v1,c1)∈V×C such that the second best perfect Bayesian implementable

allocation under interim BB is given by

p(v1, c1) =

{
1 if v1 > c1 +Mγ,δ

0 otherwise

and,

p(v2, c2|v1, c1) =

{
1 if v2 > c2 +Mγ,δ(v1, c1)

0 otherwise

where for an interior optimum Mγ,δ solves the equation

EBS∗∗ = 0

evaluated at the allocation defined above. Moreover, there exists a number mγ,δ, −1 ≤
mγ,δ ≤ 1, such that

Mγ,δ(v1, c1) =


1
4 [γ (v1 − c1) + (1− γ)] if v1 > c1 +mγ,δ

Mγ,δ

1−Mγ,δ
[γ − γ(v1 − c1)] otherwise

When do the interim budget constraints bind at the optimum and what impact does

it have on the no-trade regions? As we saw in the simple examples in section 4 and the

examples on efficiency in section 5, interim budget balance constraints are likely to bind

when the ex ante constraint is easy to satisfy. The number mγ,δ determines the split

in period 2 between the set of histories for which the interim budget constrains bind at

the optimum. Unlike, the result with ex ante BB, the no trade regions are no longer an

increasing function on the no trade regions in the first period. In fact the allocation does

not satisfy monotonicity, but is still incentive compatible.

6.2 A Dynamic Ramsey Pricing Formulation

Maximization of social surplus in the absence of asymmetric information simply entails

the implementation of the efficient allocation. The inability of the optimal second best

mechanism to be able to do the same in the presence of asymmetric information is due to

information rents or binding virtual surplus constraints. The static version of the second

best problem can be stated as39

max
p

∫
V

∫
C

S(v, c)p(v, c)f(v)g(c)dcdv (13)

39Under the standard monotone hazard rate conditions, so that the monotonicity constraints can be
ignored.
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subject to ∫
V

∫
C

V S(v, c)p(v, c)f(v)g(c)dcdv ≥ 0, (14)

where S(v, c) = v− c denotes the surplus associated with types v and c of the two agents,

and V S(v, c) =
[
v − 1−F (v)

f(v)

]
−
[
c+ G(c)

g(c)

]
the corresponding virtual surplus. The virtual

surplus constraint is but of course the summarized expected budget surplus constraint

in the mechanism design problem described in proposition 3. In a potent price theoretic

interpretation of the problem, Bulow and Roberts [1989] split the virtual surplus into

marginal revenue, MR =
[
v − 1−F (v)

f(v)

]
, and marginal cost, MC =

[
c+ G(c)

g(c)

]
. Thus,

the bargaining problem of Myerson and Satterthwaite [1983] is interpretable as a simple

Ramsey pricing problem. To quote Bulow and Roberts [1989], “ specify first that trade

will occur whenever MR > MC. For cases in which MR < MC, assign a priority based

on the ratio of (v − c)/(MC −MR) (“efficiency” gained to “profits” lost). Allow trade

in as many cases as possible using the priority scheme up to the point at which (20) [our

equation (14)] equals zero.”

A direct dynamic generalization of their insight is in order. Suppose for simplicity

first that global incentive constraints can be ignored, for example in the iid model or the

models described above in lemmas 3 and 4. We consider the two period problem for an

easy exposition. The problem of second best under ex ante BB can be stated as follows.

max
p

∫
V

∫
C

[
S(v1, c1)p(v1, c1) (15)

+δ

∫
V

∫
C

[S(v2, c2)p(v2, c2|v1, c1)f(v2|v1)g(c2|c1)dc2dv2
]
f(v1)g(c1)dc1dv1

subject to ∫
V

∫
C

[
V S(v1, c1)p(v1, c1)

δ

∫
V

∫
C

V S(v2, c2|v1, c1)p(v2, c2|v1, c1)f(v2|v1)g(c2|c1)dc2dv2
]
f(v1)g(c1)dc1dv1 ≥ 0, (16)

where the important addition to the static world is the virtual valuation term in the second

period: V S(v2, c2|v1, c1) =
[
v1 − 1−F (v1)

f(v1)

(
−∂F (v2|v1)/∂v1

f(v2|v1)

)]
−
[
c1 + G(c1)

g(c1)

(
−∂G(c2|c1)/∂c1

g(c2|c1)

)]
.

A similar Ramsey strategy can be adopted. All types (in period 1 and 2) for which

MR > MC, trade will occur. For the rest, a ranking based on the efficiency-profit ratio

and the binding virtual surplus constraint determine (im)possibility of trade. Note that

ranking is homogenous for types in both periods, that is, for V S < 0, trade is allowed in

decreasing order of S/(−V S) across periods till (16) binds.

Ramsey pricing under interim BB is more nuanced. For the second period types,

two notions of virtual valuations must be internalized, arising from the history dependent
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expected budget surplus constraints. We have:

max
p

∫
V

∫
C

[
S(v1, c1)p(v1, c1)

+δ

∫
V

∫
C

[S(v2, c2)p(v2, c2|v1, c1)f(v2|v1)g(c2|c1)dc2dv2
]
f(v1)g(c1)dc1dv1

subject to ∫
V

∫
C

[
V S1(v1, c1)p(v1, c1)

+δ

∫
V

∫
C

V S1(v2, c2|v1, c1)p(v2, c2|v1, c1)f(v2|v1)g(c2|c1)dc2dv2
]
f(v1)g(c1)dc1dv1 ≥ 0,

(17)

and for all (v1, c1) ∈ V × C,∫
V

∫
C

V S2(v2, c2|v1, c1)f(v2|v1)g(c2|c1)p(v2, c2|v1, c1)dc2dv2 ≥ 0, (18)

where V S1 is the same as V S in the problem with ex ante BB, and V S2(v2, c2|v1, c1) =[
v2 − 1−F (v2|v1)

f(v2|v1)

]
−
[
c2 + G(c2|c1)

g(c2|c1)

]
.

In the first period, all types for which V S1 ≥ 0 trade for sure. In the second pe-

riod, all types for which V S1(.|.) ≥ 0 and V S2(.|.) ≥ 0, trade for sure. The correct

virtual surplus, that is MR-MC, for the Ramsey ranking contest in period 2 depends on

whether constraint (18) binds. If after history (v1, c1), it binds, sorting is done based on

S(.|v1, c1)/
(
−V S2(.|v1, c1)

)
. Once we have run through all histories for which (18) binds,

these allocations are substituted back in to equation (17). Then, a Ramsey ranking is

done for the remaining second period types and all first period types as before.

The number mγ,δ in lemma 4 captures the endogenously determined virtual surplus

through binding constraints for the AR(1) model. It shows that for histories (v1, c1) such

that v1 > c1 + mγ,δ, constraint (18) binds and the no-trade region is thus characterized

by V S2. On the other hand, for v1 ≤ c1 + mγ,δ, the constraint (18) does not bind, and

V S1 is the correct virtual surplus determining trade regions through the binding ex ante

budget surplus constraint.

As we have shown before, for the iid model, constraint (18) will always bind and V S2

is pivotal for all histories. And, at the other extreme, under constant types, none of the

(18) constraints bind and all inefficiency is characterized through (17).

For a general T period model, for any history ht−1, exactly t virtual surpluses will

be need to be internalized. If EBS∗∗(ht−1) binds, V St will be the pivotal virtual sur-

plus characterizing trade after history ht−1. If not, then check EBS∗∗(ht−2), where

πt−2(h
t−1) = ht−2 (where π is the projection mapping), and so on. Courtesy the insights

of Bulow and Roberts [1989] and machinery we develop in this paper, we have been able

to offer a general dynamic Ramsey pricing interpretation of dynamic mechanism design
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models.

As a final but important thought, note that we focussed on models in which global

incentive compatibility constraints do not bind. The Ramsey story is yet not complete.

The crucial bang-bang insight of Myerson [1985], emanating from linearity of preferences is

again utilized. Since the binding (global) incentive compatibility constraints are all linear

in the allocation, they can eventually be summarized in the form of aggregate virtual

surplus equations (17) and (18). The added complexity will be in the structure of V S1

and V S2, not in the geometry of the virtual surplus constraints themselves.40 Thus, the

basic framework described above still goes through.

6.3 Monotonic Contracts

No discussion of the second best is complete without a description of how to deal with

global incentive compatibility constraints. It is an important puzzle in dynamic mechanism

design, one for which we offer a suboptimal solution with intuitive properties.

Informally, the following restriction is imposed on trade. If trade happened for a certain

buyer type v and seller type c in period 1, then it will always happen in period 2 for any

buyer seller types (v′, c′), where v′ ≥ v and c′ ≤ c, and so on. If the mechanism admits

trade for a certain pair of types it will always admit trade for any “higher” types in the

future.

Formally, define the following partial order on the set of histories.41

Definition 10. For ht, ĥt ∈ Ht, ht � ĥt if htv,j ≥ ĥtv,j and htc,j ≤ ĥtc,j for all j ≤ t.

Then, we can define monotonicity.

Definition 11. An allocation p is monotonic if ht−1 � ĥt−1 ⇒ p(vt|ht−1) ≥ p(v′t|ĥt−1)
and p(ct|ht−1) ≤ p(c′t|ĥt−1) for all vt ≥ v′t and ct ≥ c′t.

This, what we believe is a fairly plausible restriction on trade, produces a class of

contracts that are completely characterized by the local incentive constraints. They are of

course incentive compatible and produce monotonic trade regions in the sense we described

above. Moreover, the ex ante expected loss in welfare, in comparison to the optimal second

best, completely disappears as the stochastic processes either become perfectly persistent

or iid.

The idea of imposing monotonicity on the mechanism has been introduced by Battaglini

and Lamba [2013] in the context of a dynamic monopoly problem with changing consumer

tastes for a discrete type space. We present the results for a model with multiple agents

and a continuous type space.

Define M as the set of monotonic mechanisms.42 The optimal monotonic mechanism

then solves,

max
p∈M

GFT

40Myerson [1984] communicates the basic idea elegantly.
41htv,j denotes buyer’s report in period j ≤ t.
42Clearly, M is a closed and convex subset of the set of feasible allocations.
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subject to

EBS∗∗(p|ht−1) ≥ 0 ∀ht−1, ∀t

Let δF be the Markov distribution for the buyer that puts all the probability mass on

being the constant type and similarly δG for the seller. We write F (.|.)→ δF and F (.|.)→
F (.) for convergence in distribution to constant types and iid distribution respectively.

Also, a ∨ b denotes a or b, and a ∧ b denote a and b. Then, we have the following result.

Proposition 4. The optimal monotonic mechanism converges in probability to the second

best as {[F (.|.)→ δF ] ∨ [F (.|.)→ F (.)]} ∧ {[G(.|.)→ δG] ∨ [G(.|.)→ G(.)]}.

The proposition simply states that as types either become perfectly persistent or iid,

the optimal monotonic contract converges in probability to the second best. A useful

corollary is immediate.

Corollary 8. The ex ante loss in objective between second best and monotonic contracts

converges to zero as {[F (.|.)→ δF ] ∨ [F (.|.)→ F (.)]} ∧ {[G(.|.)→ δG] ∨ [G(.|.)→ G(.)]}.

Global incentive constraints bind in dynamic models because of a failure of monotonic-

ity. What notion of monotonicity fails can be debated, but its failure is hard to ignore.

These intuitively appealing contracts provide a useful alternative.43

7 Property Rights

An important assumption embedded in most of the analysis so far is the right to own the

object- the seller has the right to produce the good every period. This, perhaps innocuous

sounding detail, is actually quite significant. Greater efficiency can be achieved with fluid

property rights, that is when both agents can jointly own the object. Shares of a company,

auctioning spectrum licensing for different regions, local public goods provision, etc may

sometimes be viewed through the lens of joint ownership. Of course, to allow for this, the

good in question must be divisible.

We consider the following simple modification to the model. There is no mechanism

designer or intermediary who can dynamically break the budget for the agents. Instead of

having the opportunity to produce the good for the buyer, the seller is now endowed with

the good every period which she values at ct and the buyer values at vt.
44 The buyer and

seller play an infinitely repeated stochastic game. For period t, let rt,B = 0 and rt,S = 1

denote the initial share of good, as owned by the buyer and seller respectively, and rft,B
and rft,S be the final share. The stage preferences for the buyer and the seller are given

by rft,Bvt − xt and rft,Sct + xt, respectively, where xt represents the transfer made by the

buyer to the seller.

43Nuemrical results in Battaglni and Lamba [2013] for the monopoly problem show that monotonic
contracts do well in terms of the their distance from the second best for intermediate distributions as well.

44As pointed out in section 2, this model is equivalent to the one we have so far discussed, where the
seller has the option of producing the good for the buyer.
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We ask the following question. When can efficiency be sustained with limited commit-

ment in the form of a decentralized stochastic game (as opposed to a dynamic mechanism),

under ex post budget balance but with fluid property rights? To this end, we assume that

types are iid. The idea is not to produce the most general possible efficiency result for

stochastic games, which in turn, has been done by Athey and Segal [2007, 2013]45, but to

show how divisibility of the good and property rights can be exploited to sustain efficiency

in a model where we get impossibility in a static setting.

To achieve our objective we exploit the efficiency result by Cramton, Gibbons and

Klemperer [1987] for static models. They showed that in the neighborhood of equal own-

ership, efficiency can be sustained through a simple second price auction implementation.

We employ the following mechanism, which we term the Fluid Property Rights (FPR)

mechanism.46

Constructing the FPR mechanism

Step 1. At the start of every period, the seller hands over half the ownership of the

good to the buyer for a fixed cost ν. Therefore, the outside option of no trade for the

buyer and seller are now 1
2vt and 1

2ct, respectively.

Step 2. If the seller refuses to sell the share, trade breaks down forever.

Step 3. A modified second price auction is then run to determine the ownership of

the good. Both players announce bids, bB and bS , respectively. The highest bidder gets

the good and pays the other half of his/her bid, that is, half of the loosing bid.

The following result formalizes our claim.

Proposition 5. There exists a cost ν and 1 > δ∗ > 0 such that efficiency can be sustained

as a perfect Bayesian equilibrium of the stochastic game, with ex post individual rationality,

through the FPR mechanism, for all 1 > δ > δ∗.

Mirroring proposition 6 in the appendix, the result is established for the stronger notion

of ex post individual rationality. Also, there is nothing salient about the split to half-half

at the first stage of the mechanism. One can propose a a split more in the favor of the

seller to guarantee efficiency for lower levels of discounting.

8 Avenues for Future Research

The paper seeks to provide a theory of dynamic institutions. Much work still lies ahead.

We give a brief overview of what we think are interesting questions to pursue in the

45However they assume discrete types and we can establish the result for discrete and continuous types.
Moreover our result holds for the stronger notion of EPIR, while they establish it for PBIR.

46The idea of this mechanism appears in footnote 21 of Athey and Miller [2007].
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literature.

• The relationship of interim budget balance with self enforcing constraints in the

relational contracting literature and the debt financing constraint in macro models

is worth exploring.

• Using the Collateral Dynamic VCG Mechanism that we construct and the Balance

Budget Account Mechanism for iid types from Athey and Miller [2007], mechanisms

for approximate efficiency with persistent types seems like a fruitful direction to push

in.

• A precise characterization of the perfect Bayesian implementability under ex post

budget balance is an open question. We provide sufficient conditions and a heuristic

mechanism in this paper.

• We only looked at the expected gains from trade as a second best mechanism. This is

just one point on the Pareto possibility frontier. In particular, the neutral bargaining

solution of Myerson [1984] is worth pursuing in the dynamic model.

• Providing theoretical bounds for monotonic mechanisms will make the analysis deeper.

• The appendix, section 9.16, has a section on Dominant Strategy Mechanisms. Through

a suitably defined notion of dominant strategies, we show that only memoryless

posted prices are feasible. Richer questions can be framed for posted price mecha-

nisms. For example, what is the optimum in the class of posted price mechanisms

that can depend on the past history of trade?

• Finally, providing a general theory for discrete types in highly useful too.

9 Appendix

Omitted proofs and other details can be found in this section.

9.1 Relationships between different notions of budget balance

It is easy to see from the definitions 5, 6, and 7 that

ex post BB ⇒ interim BB ⇒ ex ante BB

Define,

EBSt(h
t−1) = EBS(ht−1)−Em

[
EBS(ht)|ht−1

]
= Em

[
xB(vt, ct|ht−1)− xS(vt, ct|ht−1)|ht−1

]
to be the current expected budget surplus.
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Definition 12. A mechanism m = 〈p,x〉 satisfies static budget balance if

EBSt(h
t−1) ≥ 0 ∀ht−1 ∈ Ht−1, ∀t

Then, we have the following tight characterization of implementation under ex post

budget balance.

Lemma 5. A perfect Bayesian incentive compatible and individually rational mechanism,

m = 〈p,x〉, is implementable under static BB if and only if it is implementable under ex

post BB.

Proof. Ex post BB implies static BB is obvious. Suppose 〈p,x〉 satisfies static BB. Fix a

history ht−1, and let Π = EBSt(h
t−1) ≥ 0. Define

x̃(vt, ct|ht−1) = xB(vt|ht−1)−
∫
V

xB(vt, ct)f(vt|vt−1)dvt + xS(ct|ht−1) + αΠ,

where α ∈ [0, 1] is a constant. We have

x̃(vt|ht−1) = xB(vt|ht−1)− (1− α)Π, and

x̃(ct|ht−1) = xS(ct|ht−1) + αΠ

Repeat this for every possible history. Now, consider the mechanism 〈p, x̃〉. It is ex post

BB by construction. Moreover, using a incentive compatible mechanism we are reducing

what the buyer has to pay and increasing what the seller gets. So, the new mechanism

must also be incentive compatible and individually rational.

This is a generalization of a standard result in static mechanism design to the dynamic

model.47 Thus, we get that under perfect Bayesian implementation, static and ex post

budget balance are equivalent. Note, however that the same may not be true for ex post

implementation. So, for ex post budget balance under voluntary participation, the notions

of implementation do not agree.

Moreover for a finite model, it is easy to see through backward induction that static

BB is actually equivalent to interim BB. Thus, we have:

If T is finite, then under PBIC and PBIR, ex post BB ⇔ static BB ⇔ interim BB

9.2 Details of the Examples presented in Section 4

In each of the first three examples, we maximize expected gains from trade under the

respective expected budget surplus constraints. In all the cases below, the allocation will

be monotonic in the sense of definition 11, so will ignore the implementability constraint.

47See, for example, Cramton, Gibbons and Klemperer [1987], and Mailath and Samuelson [1990].
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In the static model,

max
p

1∫
0

1∫
0

(v1 − c1) p(v1, c1)dc1dv1

subject to
1∫

0

1∫
0

(2v1 − 1− 2c1) p(v1, c1)dc1dv1 ≥ 0

The Lagrangian can then we written as

1∫
0

1∫
0

[(v1 − c1) + λ (2v1 − 1− 2c1)] p(v1, c1)dc1dv1

= (1 + 2λ)

1∫
0

1∫
0

(
v1 − c1 −

λ

1 + 2λ

)
p(v1, c1)dc1dv1

Since we know that the efficient allocation is not implementable, we must have λ > 0.

Thus, we must have

p(v1, c1) =

{
1 if v1 > c1 +M

0 otherwise

where M = λ
1+2λ . Substituting this allocation rule in the binding constraint, gives M = 1

4 .

The two period iid problem under ex ante BB can be written as

max
p

1∫
0

1∫
0

(v1 − c1) p(v1, c1) + δ

1∫
0

1∫
0

(v2 − c2) p(v2, c2|v1, c1)dc2dv2

 dc1dv1 (19)

subject to

1∫
0

1∫
0

(2v1 − 1− 2c1) p(v1, c1) + δ

1∫
0

1∫
0

(v2 − c2) p(v2, c2|v1, c1)dc2dv2

 dc1dv1 ≥ 0 (20)

Setting up the Lagrangian, it is easy to see that the optimal mechanism is efficient in

period 2 and M in period 1 solves equation (10).

Finally, in the two period iid problem under interim BB we maximize (19) subject to

(20) and
1∫

0

1∫
0

(2v2 − 1− 2c2) p(v2, c2|v1, c1)dc2dv2 ≥ 0,

for all v1, c1. Setting up the Lagrangian it is easy to see that allocation in period 2

replicates the static model, and period 1 no-trade region solves equation (11).
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9.3 Proof of Proposition 1

We prove the result for the buyer. Analogous arguments apply for the seller.

Necessity. Fix ht−1 ∈ Ht−1. From equation (4), incentive compatibility implies

(vt − v′t)p(vt, ct|ht−1) + δ

∫
V

UB(vt+1|ht−1, vt, ct) ·
[
dF (vt+1|vt)− dF (vt+1|v′t)

]
≥ UB(vt, ct|ht−1)− UB(v′t, ct|ht−1) ≥

(vt − v′t)p(v′t, ct|ht−1) + δ

∫
V

UB(vt+1|ht−1, v′t, ct) ·
[
dF (vt+1|vt)− dF (vt+1|v′t)

]
Using integration by parts, this can be written as

(vt − v′t)p(vt, ct|ht−1) + δ

∫
V

∂UB(vt+1|ht−1, vt, ct)
∂vt+1

·
[
F (vt+1|vt)− F (vt+1|v′t)

]
dvt+1

≥ UB(vt, ct|ht−1)− UB(v′t, ct|ht−1) ≥

(vt − v′t)p(v′t, ct|ht−1) + δ

∫
V

∂UB(vt+1|ht−1, v′t, ct)
∂vt+1

·
[
F (vt+1|vt)− F (vt+1|v′t)

]
dvt+1

Since the utility functions and stochastic processes satisfy all standard regularity condi-

tions48, the usual envelope argument gives us

∂UB(vt, ct|ht−1)
∂vt

= p(vt, ct|ht−1) + δ

∫
V

∂UB(vt+1|ht−1, v′t, ct)
∂vt+1

· ∂F (vt+1|vt)
∂vt

dvt+1

A slight modification of the Theorem 1 in Pavan, Segal and Toikka [2013] tells us that

this can be done recursively. The modification being an extra variable in conditioning on

expectations, viz ct, since we are using ex post incentive compatibility. Thus49

UB(v′t, ct|ht−1)− UB(v′′t , ct|ht−1)

v′t∫
v′′t

p(vt, ct|ht−1) + δ

∫
V

∂UB(vt+1|ht−1, v′t, ct)
∂vt+1

· ∂F (vt+1|vt)
∂vt

dvt+1

 dvt (21)

The result follows.

Sufficiency. Suppose 〈p,U〉 is ex post incentive compatible. Fix ct and ht−1. Then,

48See sections 2.1 and 3.1 of Pavan, Segal and Toikka [2013].
49From any standard integrability theorem, see for example Theorem 5.13 in Royden [1968].
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UB(vt, ct|ht−1) appears in two kinds of incentive compatibility constraints. First,

UB(vt, ct|ht−1) ≥ UB(v′t, ct|ht−1) + (vt − v′t)p(v′t, ct|ht−1)

+δ

∫
V

UB(vt+1|ht−1, v′t, ct)
(
f(vt+1|vt)− f(vt+1|v′t)

)
dvt+1

and,

UB(v′t, ct|ht−1) ≥ UB(vt, ct|ht−1) + (v′t − vt)p(vt, ct|ht−1)

+δ

∫
V

UB(vt+1|ht−1, vt, ct)
(
f(vt+1|v′t)− f(vt+1|vt)

)
dvt+1

Clearly addition of any constant aB(ct|ht−1) to U(vt, ct|ht−1) for all vt ∈ V does not affect

any of these constraints.

Next, fix (vt−1, ct−1) = ht−1t−1. Second, we need to consider the constraints,

UB(v′t−1, ct−1|ht−2) ≥ UB(vt−1, ct−1|ht−2) + (v′t−1 − vt−1)p(vt−1, ct−1|ht−1)

+δ

∫
V

UB(vt|ht−1)
(
f(vt|v′t−1)− f(vt|vt−1)

)
dvt

Thus, addition of the constants aB(ct|ht−1) to U(vt, ct|ht−1) for all vt ∈ V, and ct ∈ C,
leads to addition of aB(ht−1) = E

[
aB(ct|ht−1)

]
to U(vt|ht−1) for all vt ∈ V which drops

out of the constraint.

Therefore, linear additions of constants as defined in the proposition preserves incen-

tives.

9.4 Proof of Proposition 2

Sufficiency is obvious. If the Collateral Dynamic VCG mechanism satisfies all the necessary

properties, then it is one such desired mechanism.

Next, we establish necessity. Most of the substance follows from Proposition 1, that

is, payoff equivalence. Suppose there exists a set of histories H of non-zero measure, such

that EBS∗(h) < 0 for all h ∈ H.

Consider any other mechanism 〈p,U〉 that is ex post incentive compatible, individually

rational and and implements the efficient allocation under interim budget balance. Then,

by construction,

UB(vt, ct|ht−1) ≥ U∗B(vt, ct|ht−1) and US(vt, ct|ht−1) ≥ U∗S(vt, ct|ht−1)

Recollect that expected budget surplus can be written as

EBS(ht−1) = Em
[

T∑
τ=t

δτ−1 (vτ − cτ ) pτ − UB(vt|ht−1)− US(ct|ht−1) | ht−1
]
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Thus, if for any history ht−1 ∈ H, EBS∗(ht−1) < 0, we must have EBS(ht−1) < 0 in

〈p,U〉.

9.5 Equivalence of EBS∗ ≥ 0 with Skrzypacz and Toikka [2013]’s worst

case expectation condition

Define the aggregate first best gains from trade to be

Y =

T∑
t=1

δt−1 (vt − ct)+ ,

where x+ = max {0, x}. Skrzypacz and Toikka [2013] establish that efficient, incentive

compatible and individually rational trade is possible with ex ante budget balance if and

only if

inf
v1∈V

E [Y |v1] + inf
c1∈C

E [Y |c1] ≥ E [Y ]

where the expectations are taken over F , G, F (.|.) and G(.|.).
From equations (5) and (12), and Step 2 of the mechanism, we get

EBS∗ = inf
v1∈V

E [Y |v] + inf
c1∈C

E [Y |c1]− E [Y ]

9.6 Proof of Corollary 6

If η0 and η(v, c) ≥ 0, we are done. Suppose, η(v, c) < 0 for all (v, c) ∈ H ⊂ V × C,
where H has positive measure. Fix, (v, c) ∈ H. Pick types ṽ, c̃ following (v, c) that have

positive EBS∗t+1(ṽ, c) > 0 and increase the expected utility vectors for these histories,

while ensuring that associated stage expected budget surplus is never less than zero.

Since η(v, c)+δE [η(ṽ, c̃)|(v, c)] ≥ 0, this can be done in a way that the new η′(v, c) ≥ 0

for all (v, c) ∈ V × C. This mechanism is implements the efficient allocation under static

budget balance.

9.7 A heuristic derivation of efficient implementation under ex post bud-

get balance

Note that

EBSt(h
t−1) = EBS(ht−1)− δE

[
EBS(ht)|ht−1

]
,

where

EBS(ht−1) = Em
[

T∑
τ=t

δτ−t (vτ − cτ ) pτ − UB(vt|ht−1)− US(ct|ht−1) | ht−1
]

Start with the Collateral Dynamic VCG mechanism. If EBS∗1 < 0, we cannot decrease

UB(v1, c1) and US(v1, c1) for any (v1, c1) ∈ V × C for it will violate individual rationality.

But, we can increase increase UB(v2, c2|v1, c1) and US(v2, c2|v1, c1). Do it for all the types
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equally such that the aggregate value equals
EBS∗1
δ . Now, evaluate the new stage expected

budget surplus constraints for period 2. For all those histories for which it is negative,

increase UB(v3, c3|h2) and US(v3, c3|h2). And, keep doing this exercise. If the mechanism

thus constructed is finite, that is, utility vectors required to sustain static budget balance

are bounded, then there exists a mechanism that sustains efficiency under static budget

balance and hence ex post budget balance. Corollary 6 offers a condition on the primitives

when this is indeed possible. Weaker conditions can be similarly stated.

9.8 Equivalence between EBS∗(ht−1) and EBS∗∗(ht−1)

Suppose a mechanism m = 〈p,U〉 implements the efficient allocation. Then, the associated

expected budget surplus after any history can be written as

EBS(ht−1) = Em
[

T∑
τ=t

δτ−1 (vτ − cτ ) pτ − UB(vt|ht−1)− US(ct|ht−1) | ht−1
]

Since the Collateral Dynamic VCG mechanism and m both implement the efficient al-

location, they differ from each other only through (history dependent) constants in propo-

sition 1. In both the Collateral Dynamic VCG mechanism and the mechanism constructed

for the second best optimum the utility of the “lowest type” is normalized to zero. Thus,

they must have the same expected utility vectors. Therefore, by the above definition of

expected budget surplus, EBS∗(ht−1) = EBS∗∗(ht−1).

9.9 Efficiency under ex post IR and perfect Bayesian IC for IID model

Suppose V = C and iid types. Then, we can state the following result.

Proposition 6. There exists a 1 > δ∗ > 0 such that a perfect Bayesian incentive com-

patible and ex post individually rational mechanism m = 〈p,x〉 implements the efficient

allocation under ex post budget balance for all δ > δ∗.

Proof. Fix the efficient allocation. Define

Π∗ =

∫
V

∫
C

(v − c)+g(c)f(v)dcdv

to be the static first best gains from trade. Next, define transfers to be the following. We

don’t bother with history, because this is an iid model.

x(v, c) = v

∫
C

1{v>c′}g(c′)dc′ + c

∫
C

1{v′>c}f(v′)dv′ −
∫
V

∫
C

v′1{v′>c}g(c′)f(v′)dc′dv′ + αΠ∗,

for some α ∈ (0, 1). Then, it is easy to check that the expected stage utilities are given by

uB = (1− α)Π∗ and uS = αΠ∗, respectively. The ex post ones are given by

uB(v, c) = v1{v>c} − x(v, c) and uS(v, c) = x(v, c)− c1{v>c}
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Thus, we need to find a discount factor large enough so that the following two equations

are always satisfied for all (v, c) ∈ V × C,

uB(v, c) +
δ

1 + δ
(1− α)Π∗ ≥ 0 and uS(v, c) +

δ

1 + δ
αΠ∗ ≥ 0

It is easy to see for a δ∗ large enough this will always be satisfied. In fact, we can choose

α, so that δ∗∗ = minα δ
∗(α) is the lowest possible.

Note that we did not need to assume V = C. As long as there is sufficient overlap to

generate gains from trade, we are good. Also, as Miller [2012] shows, this result breaks

down if we demand EPIC, so requiring perfect Bayesian incentive compatibility is key to

the construction.

9.10 Efficiency in two type model with persistence

We shall exploit second best characterization of efficiency in Corollary 7 and use EBS∗∗.

First, let Sij denote the expected surplus after realization of type i for the buyer and type

j for the seller in the previous period. Then,

SHH = vH − cH + δ
[
α2SHH + α(1− α)SHL + α(1− α)SLH + (1− α)2SLL

]
SHL = vH − cL + δ

[
α(1− α)SHH + α2SHL + (1− α)2SLH + α(1− α)SLL

]
SLH = 0 + δ

[
α(1− α)SHH + (1− α)2SHL + α2SLH + α(1− α)SLL

]
SLL = vL − cL + δ

[
α2SHH + α(1− α)SHL + α(1− α)SLH + (1− α)2SLL

]
These can be simultaneously solved in closed form. Further, the ex ante expected surplus

is then given by

S =
1

4
(SHH + SHL + SLH + SLL)

Using the envelope characterization in Battaglini [2005], we know that starting at any

history, for the buyer distortions last if and only if types are vL each period and for the

seller if types are cH each period. Let ∆v = vH − vL and ∆c = cH − cL. The ex ante

distortions (or information rents) are given by

R =
1

2

∞∑
t=1

δt−1αt−1
(

2α− 1

α

)t−1
[∆v + ∆c]− 1

4

∞∑
t=1

δt−1α2(t−1)
(

2α− 1

α

)t−1
[∆v + ∆c]

The first term adds the respective distortions and the second one subtracts the events

when buyer type is vL and the seller type is cH simultaneously because then we know that

trade does not happen. RHL and RLH can be similarly calculated. Then, we have

EBS∗∗ = S−R,EBS∗∗(vL, cH) =
SLH − (vH − vL)

δ
−RHL, EBS∗∗(vL, cH) =

SLH
δ
−RLH

which we plot in Figure 2.
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9.11 Proof of Lemma 2

Equation (5), definition of expected budget surplus gives us

EBS(ht−1) = Em
[

T∑
τ=t

δτ−t (vτ − cτ ) pτ − UB(vt|ht−1)− US(ct|ht−1) | ht−1
]

From equation (21), we get

UB(vt|ht−1) = ΓB(p|ht−1) + inf
v∈V

UB(v|ht−1)

for some function ΓB(p|ht−1), which from the proof of Proposition 1 is obvious is contin-

uous in p. Similarly,

US(vt|ht−1) = ΓS(p|ht−1) + inf
c∈C

US(c|ht−1)

Substituting these back in EBS(ht−1) gives us the result.

9.12 Proof of Proposition 3

Fixing allocation p, from Lemma 2, it is clear that there exists a mechanism that can

implement p under interim BB if and only if EBS∗∗(p|ht−1) ≥ 0 ∀ ht−1, ∀t. The result

thus follows.

9.13 Second Best for the AR(1) Model

For γB, γS < 1, the objective of the problem is given by

1∫
0

1∫
0

[
(v1 − c1) p(v1, c1) + δ

1

1− γB
1

1− γS

γBv1+(1−γB)∫
γBv1

γSc1+(1−γS)∫
γSc1

(v2 − c2) p(v2, c2|v1, c1)dc2dv2
]
dc1dv1 (22)

The first period second period expected budget surplus constrain is given by

1∫
0

1∫
0

[
(2v1 − 1− 2c1) p(v1, c1) + δ

1

1− γB
1

1− γS

γBv1+(1−γB)∫
γBv1

γSc1+(1−γS)∫
γSc1

(v2 − γB(1− v1)− c2 − γSc1) p(v2, c2|v1, c1)dc2dv2
]
dc1dv1 ≥ 0

(23)
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and, the second period one after history (v1, c1) is given by

γBv1+(1−γB)∫
γBv1

γSc1+(1−γS)∫
γSc1

[(2v2 − (γBv1 + (1− γB))− (2c2 − γSc1)] dc2dv2 ≥ 0 (24)

It is easy to see that if either type is constant, the second period constraint is degenerate

in the sense that it zero only at corner points of the support of the other type. So, none

of these constraints will bind.

Proof of Lemma 3. Here we consider the maximization of the objective, (22), only under

(23). In a slight abuse of notation, the Lagrangian is given by

(22) + λ · (23)

Separating coefficient, and denoting

Mγ,δ =
λ

1 + 2λ

gives us the characterization.

Proof of Lemma 4. We have γB = γS = γ ≤ 1
4 . The Lagrangian to the problem can be

written as

(22) + λ · (23) + δ
1

1− γB
1

1− γS

1∫
0

1∫
0

λ(v1, c1)(24)dc1dv1

Separating coefficients and denoting,

Mγ,δ =
λ

1 + 2λ

and,

Mγ,δ(v1, c1) =
λ

1 + λ+ 2λ(v1, c1)
[γ − γ(v1 − c1)]+

λ

1 + λ+ 2λ(v1, c1)
[γ(v1 − c1) + (1− γ)]

Now, fix (v1, c1), and let M = Mγ,δ(v1, c1). Then, a binding (24) is given by

γv1+(1−γ)∫
max {γc1+M,γv1}

min {v2−M,γc1+(1−γ)}∫
γc1

[(2v2 − (γv1 + (1− γ))− (2c2 − γc1)] dc2dv2 = 0

Both the limits in the brackets fall on the side of the term with M , if M ≥ (v1 − c1).
Suppose it is true. Then, solving it gives a cubic whose non-trivial root is given by

M =
1

4
[γ(v1 − c1) + (1− γ)]

which is greater than or equal to (v1 − c1) if and only if γ ≤ 1
4 .
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So, it clear that when (24) binds, M is given by the above value, and when it does not,

it is given by the same value as in the ex ante problem. Let k = v1−c1 and z = γk+(1−γ).

Then, the LHS of (24) is given by

1

6
[z −M ]2 [4M − z]

If no second period constraints bind, define mγ,δ = 1, if all second period constraints

bind, define mγ,δ = −1. For intermediate cases, since the problem is continuous there

must exist a z∗ such that
Mγ,δ

1−Mγ,δ
[1− z∗] =

1

4
z∗

It is clear the z ≤ z∗ ⇔ Mγ,δ

1−Mγ,δ
[1− z] ≥ 1

4z. Thus, we have that (24) must bind for all

z > z∗ and not for z ≤ z∗. Finally,

z > z∗ ⇔ v1 > c1 + z∗

Define mγ,δ = z∗.

Finally, it is straightforward to show that the allocations satisfy integral monotonicity

as defined in Pavan, Segal and Toikka [2013] and hence is incentive compatible.

9.14 Proof of Proposition 4

First, note that monotonicity as defined and local incentive constraints imply that global

incentives are satisfied. See Battaglini and Lamba [2013] and Pavan, Segal and Toikka

[2013].

We prove that for any given T , the optimal monotonic mechanism converges in prob-

ability to the second best. The proof follows the proof of Proposition 8 in Battaglini and

Lamba [2013] closely. We show the result for F (.|.) → δF and G(.|.) → δG. The rest of

the cases follow similarly.

Let Πs(F,G), Πm(F,G) and Π∗∗(F,G) be the value of the objective from, respectively,

the repetition of the optimal static second best, the optimal monotonic mechanism and

the optimal second best, when the Markov process are given by F and G respectively.

Because the repetition of the optimal static second best is a monotonic mechanism, we

must have Πm(F,G) ∈ [Πs(F,G),Π∗∗(F,G)]. Moreover, when types are constant, that is,

F (.|.) = δF , repetition of the static optimum is the optimal second best.

Since the distributions are continuous and Πm(F,G),Πs(F,G) and Π∗∗(F,G) are con-

tinuous in F and G, by the theorem of the maximum, we must have that for any se-

quence (Fn, Gn) → (δF , δG) and ε > 0, there must be an n′ such that for n > n′ we

have |Πm (Fn, Gn)−Π∗∗ (Fn, Gn)| ≤ |Πs (Fn, Gn)−Π∗∗ (Fn, Gn)| < ε. It is immediate

to see that the fact that Πm (Fn, Gn) converges to Π∗∗ (Fn, Gn) implies that the optimal

monotonic mechanism must converge to the mechanism that maximizes second best in

probability.
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