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Abstract

In a recent empirical work, Hanna and Oliva (2011) have found a
negative impact of pollution on labor supply (leisure effect). In a theo-
retical work, Bosi, Desmarchelier and Ragot (2013) have shown that the
leisure effect may promote macroeconomic volatility. Previous theoret-
ical literature focused only on the effects of pollution on consumption
demand (Michel and Rotillon, 1995) neglecting those on labor supply.
In a continuous-time Ramsey model, we study the interplay between the
effects on consumption demand and labor supply. We introduce nonsep-
arable preferences either between pollution and consumption or between
pollution and labor supply, and we show that a compensation effect (pos-
itive impact of pollution on consumption demand) jointly with a a leisure
effect promotes local indeterminacy through a Hopf bifurcation.
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1 Introduction

An important stream of literature applies the Ramsey model to pollution issues.
Pollution affects the fundamentals and in particular preferences.
Keeler et al. (1972) and Forster (1973) pioneered this literature by introduc-

ing the pollution in Ramsey agents’ preferences. In Forster (1973), pollution is
a flow which reduces the utility, but preferences are separable: pollution does
not affect the marginal utility of consumption. In Keeler et al. (1972), pollution
is a stock and consumption and environmental quality are nonseparable goods.
Normality ensures the uniqueness and the saddle-path stability of the steady
state as in Forster (1973). The same holds in Van der Ploeg and Withagen
(1991) with a negative cross derivatives (that is a marginal utility of consump-
tion decreasing in the pollution level).
The interplay between consumption and pollution in a Ramsey model is fully

characterized by Heal (1982).1 Heal studies the growth path of a Ramsey model
where the marginal utility of consumption is affected by the stock of pollution
without imposing any restrictive assumption on this interplay.2 When the stock
of pollution increases the marginal utility of current consumption (the so-called
adjacent complementarity), a limit cycle arises near the steady state through a
Hopf bifurcation.
Heal’s conclusions cast some doubts about the robustness of saddle-path sta-

bility in the dominant literature. The effects of pollution on growth through
the consumption channel were also studied by Michel and Rotillon (1995) in
an endogenous growth model with learning-by-doing. They considered different
effects of pollution on consumption. On the one hand, pollution can stimulate
the consumption demand through what they call a compensation effect (the
household consumes more to compensate the drop in utility due to a higher
pollution). On the other hand, if the household likes to consume in a pleas-
ant environment, a rise in the pollution level reduces the consumption demand
(they call this phenomenon distaste effect). The presence of positive and nega-
tive externalities (learning-by-doing and pollution respectively) makes endoge-
nous growth dynamics richer and more complicated in their model: the social
optimum converges to a zero growth rate in presence of distaste or weak com-
pensation effects, while a long-run positive endogenous growth rate arises under
large compensation effects.
More recently, Fernandez, Perez and Ruiz (2012) have studied a discrete-

time Ramsey economy with endogenous labor supply where pollution comes
from the use of capital and reduces the household’s utility. They focus on local
indeterminacy and find that separability between consumption and pollution in
the utility function prevents equilibrium multiplicity. Beyond the sustainability
issue, they raise also the convergence question under pollution, especially when
households’ preferences are non-separable.

1Heal (1982) revisits Ryder and Heal (1973) by interpreting the stock of past consumption
in terms of pollution instead of habit formation.

2The flows of pollution come from households’ consumption.

2



Some scholars have addressed the stability issue under the effects of pollu-
tion on consumption demand and labor supply in the overlapping generations
literature (see Zhang (1999) and Seegmuller and Verchère (2004) among others).
Richer and possibly chaotic dynamics arise in their framework.
The literature on the effects of pollution on consumption demand is now well-

established. Conversely, few papers have considered the impact of pollution on
labor supply. Seegmuller and Verchère (2007) raise the question of stability in
a OG model where pollution influences labor supply.
Even if the hypothesis of pollution effects on the marginal utility of con-

sumption is convenient from a theoretical point of view, there is no evidence to
support this assumption. The empirical literature points out instead a negative
effect of pollution on labor supply. For instance, Hanna and Oliva (2011) have
considered the effect on the labor supply in a neighborhood of a polluting refin-
ery in Mexico City and found that a one percent increase in air pollution results
in a 0.61 percent decrease in the hours worked. A close conclusions are also
found by Graff, Zivin and Neidell (2010) and Carson, Koundouri and Nauges
(2011). Following these evidences, Bosi, Desmarchelier and Ragot (2013) build
a discrete-time Ramsey economy where the stock of pollution has no direct ef-
fects on the marginal utility of consumption but affects the marginal disutility
of labor supply. In their model, positive or negative pollution effects on labor
supply may arise (what they call respectively in the spirit of Michel and Rotillon
(1996) disenchantment or leisure effects). The ambiguity rests on the following
mechanism. In the case of disenchantment effect, the larger pollution decreases
the utility of leisure and provides an incentive to increase the worked hours.
Conversely, in the case of leisure effect, an increase in pollution deteriorates the
working conditions and urge households to work less. In Bosi, Desmarchelier
and Ragot (2013), the steady state is unique and a large leisure effect leads to
persistent cycles through a flip bifurcation near the steady state.
Even if Bosi, Desmarchelier and Ragot (2013) fit the evidence, their sim-

plified framework exclude any direct effect of pollution on marginal utility of
consumption and, in turn, on consumption demand. The present paper aims to
develop an unified framework to take into account both the effect of pollution on
consumption demand (Michel and Rotillon (1996)) and on labor supply (Bosi,
Desmarchelier and Ragot (2013)). Our model allows to encompass the changes
in the consumer’s behavior in presence of a deterioration of environmental qual-
ity and their effects on dynamics in the short and long run.
To that purpose, we develop a continuous-time Ramsey economy with sep-

arable preferences in consumption and labor but nonseparable either in con-
sumption and pollution or in labor and pollution. Throughout this framework,
we find that a distaste effect jointly with a leisure effect always implies the ex-
istence of unique steady state. The analysis of local dynamics allows us to find
richer dynamics such as the emergence of local indeterminacy through a Hopf
bifurcation when a sufficiently large compensation effect combine with a strong
enough leisure effect.
The rest of the paper is organized as follows. In the second and third section,

we introduce the model and we derive the dynamic system. In Section 4, we
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provide sufficient conditions for the existence and uniqueness of a steady state.
Section 5 introduces general conditions for local bifurcations and indeterminacy
for three-dimensional dynamic systems with two predetermined variables. The
separable isoelastic case is addressed in Section 6. Section 7 provides simula-
tions. Section 8 concludes.

2 Fundamentals

We consider a continuous-time Ramsey economy with pollution and capital
accumulation. A representative household faces a consumption-leisure arbitrage
by supplying a labor force to a sector of perfectly competitive firms. These firms
produce a single commodity which plays the role of capital or consumption good.
Because of the constant returns to scale, firms can be represented by a single
aggregate firm. Pollution is a by-product of production activities and affects
the individual welfare as a negative externality by distorting the consumption-
leisure arbitrage.

2.1 Preferences

The household earns a capital income rh and a labor income wl where h = h (t)
and l = l (t) denote the individual wealth and labor supply at time t. For
notational simplicity, we will omit the time argument in the following. Income
is consumed and saved/invested according to the budget constraint:

ḣ ≤ (r − δ)h+wl− c (1)

The gross investment includes the capital depreciation at the rate δ.
For simplicity, the population of consumers-workers is constant over time:

N = 1. Such normalization implies L = Nl = l, K = Nh = h and h = K/N =
kl.

Assumption 1 Preferences are separable in consumption and labor:

U (c, l, P ) ≡ u (c, P )− v (l, P ) (2)

with uc > 0, uP ≤ 0, vl > 0, vP ≥ 0 as first-order restrictions, ucc < 0, vll > 0
as second-order restrictions, and limc→0+ uc = ∞, liml→0+ vl = 0 as a limit
conditions.
We do not impose any restriction on the sign of the cross-derivatives ucP and

vlP . Even if preferences are separable in consumption and labor supply, pollu-
tion affects the marginal utilities of both of them and, hence, the consumption-
labor arbitrage through a general equilibrium effect.
According to Michel and Rotillon (1995), pollution has a distaste effect on

consumption if UcP < 0: an increase in pollution reduces the marginal utility
of consumption and, thereby, household’s propensity to consume. The opposite
effect (UcP > 0) is called compensation effect : an increase in pollution raises
the propensity to consume. This terminology has been extended by Bosi, Des-
marchelier and Ragot (2013) to the effects of pollution on labor supply. They
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say that pollution has a leisure effect in the case of positive effect of pollution
on labor disutility (UlP < 0): an increase in pollution decreases labor supply
and raises in turn the leisure demand. Pollution worsens working conditions (for
example, the negative impact of global warming rests on a positive correlation
between heat and work painfulness) and gives an incentive to substitute leisure
to working time. Conversely, the opposite effect (UlP > 0) is called disenchant-
ment effect. In this case, leisure time decreases with pollution. Households like
to enjoy leisure in a healthy and pleasant environment (for instance, pollution
may dissuade people from going outdoor and encourage them to work more).
The agent maximizes the intertemporal utility function

∫
∞

0 e−ρtU (c, l, P ) dt
under the budget constraint (1) where ρ > 0 is the rate of time preference. This
program is correctly defined under Assumption 1.

Proposition 1 The first-order conditions result in a static consumption-leisure
arbitrage

Uc = λ = −Ul/w (3)

a dynamic Euler equation λ̇ = λ (ρ+ δ − r) and the budget constraint (1) now
binding ḣ = (r − δ)h + wl − c jointly with limt→∞ e−ρtλ (t)h (t) = 0, the
transversality condition.

Proof. See the Appendix.

2.2 Technology

At time t representative firm produces a single output Y (t). Technology is repre-
sented by a constant returns to scale production function: Y (t) = F (K (t) , L (t)),
where K (t) and L (t) are the demands for capital and labor at time t.

Assumption 2 The production function F : R2+ → R+ is C1, homogeneous
of degree one, strictly increasing and concave. Inada conditions hold: f (0) = 0,
f ′ (0+) = +∞, f ′ (+∞) = 0, where f (k) ≡ F (k, 1) is the average productivity
and k ≡ K/L denotes the capital intensity.
The firm chooses the amount of capital and labor to maximize the profit

taking as given the real interest rate r (t) and the real wage w (t). In the
following, for notational simplicity, we will omit the time argument t.
The program maxK,L [F (K,L)− rK −wL] is correctly defined under As-

sumption 2 and the first-order conditions write:

r = f ′ (k) ≡ r (k)

w = f (k)− kf ′ (k) ≡ w (k)

We introduce the capital share in total income α and the elasticity of capital-
labor substitution σ:

α (k) ≡
kf ′ (k)

f (k)

σ (k) = α (k)
w (k)

kw′ (k)
(4)
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In addition, we determine the elasticities of factor prices:

kr′ (k)

r (k)
= −

1− α (k)

σ (k)
(5)

kw′ (k)

w (k)
=

α (k)

σ (k)
(6)

2.3 Pollution

The aggregate stock of pollution P is a pure negative externality. Technology is
dirty and pollution persists. We assume a simple linear accumulation process:

Ṗ = −aP + bY (7)

where a ≥ 0 captures the natural rate of pollution absorption and b ≥ 0 the
environmental impact of production. Since, under Assumption 2, Y = Lf (k) =
lf (k), the process of pollution accumulation (7) writes:

Ṗ = −aP + blf (k)

3 Equilibrium

At equilibrium, good and labor markets clear. Applying the Implicit Function
Theorem to the consumption-labor arbitrage (3), we obtain (c, l) as a function
of (λ, k, P ), that is c = c (λ, k, P ) and l = l (λ, k, P ). Let us introduce the
following second-order elasticities of the utility function U (c, l, P ):3

E ≡




εcc εcl εcP
εlc εll εlP
εPc εPl εPP



 ≡






cUcc
Uc

cUcl
Ul

cUcP
UP

lUlc
Uc

lUll
Ul

lUlP
UP

PUPc
Uc

PUPl
Ul

PUPP
UP






The various effects of pollution on preferences can be reinterpreted in terms
of elasticities. Pollution has a distaste effect on consumption if εPc < 0 and a
compensation effect on consumption if εPc > 0. According to Assumption 1,
Ul < 0 and, thus, pollution has a leisure effect if εPl > 0 and a disenchantment
effect if εPl < 0.

Proposition 2 The matrix of partial elasticities is given by

[
λ
c

∂c
∂λ

k
c
∂c
∂k

P
c

∂c
∂P

λ
l

∂l
∂λ

k
l
∂l
∂k

P
l

∂l
∂P

]
=

M

εccεll − εlcεcl
(8)

where

M ≡

[
εll − εlc −α

σ εlc εlcεPl − εllεPc

εcc − εcl
α
σ εcc εclεPc − εccεPl

]
(9)

3 In the case of explicit utility functions, the first and second-order elasticities are related
when the same fundamental parameters appear in both of them.
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Proof. See the Appendix.
In the separable case (2), the elasticities matrix simplifies

E ≡




εcc 0 εcP
0 εll εlP

εPc εPl εPP



 (10)

and we get

[
λ
c
∂c
∂λ

k
c
∂c
∂k

P
c

∂c
∂P

λ
l

∂l
∂λ

k
l
∂l
∂k

P
l

∂l
∂P

]
=

M

εccεll
=

[ 1
εcc

0 − εPc
εcc

1
εll

α
σ
1
εll

− εPl
εll

]
(11)

In our model, dynamics are represented by a three-dimensional system with
two predetermined variables (k and P ) and one non-predetemined (λ).

Proposition 3 The equilibrium transition is driven by the following dynamic
system:

λ̇

λ
= ρ+ δ − r (k)

k̇

k
=

r (k)− δ + w(k)
k −

c(λ,k,P )
kl(λ,k,P ) −

λ
l
∂l
∂λ [ρ+ δ − r (k)]− P

l
∂l
∂P

[
b l(λ,k,P )f(k)P − a

]

1 + k
l
∂l
∂k

(12)

Ṗ

P
= b

l (λ, k, P ) f (k)

P
− a

Proof. See the Appendix.

4 Steady state

At the steady state, λ̇ = k̇ = Ṗ = 0 and system (12) becomes

r (k) = ρ+ δ (13)

c (λ, k, P ) = [ρk +w (k)] l (λ, k, P ) =
a

b
P − δkl (λ, k, P ) (14)

l (λ, k,P ) f (k) =
a

b
P (15)

because f (k) = kr (k) +w (k).
We observe that the capital intensity k = r−1 (ρ+ δ) remains that of Modi-

fied Golden Rule (MGR) and pollution does not affect it.
Consider the system

c (λ, k, P )

l (λ, k,P )
= ρk +w (k) (16)

l (λ, k,P ) f (k) =
a

b
P (17)
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Let

ς (λ) ≡
c (λ, k, P (λ))

l (λ, k, P (λ))
> 0 and ες (λ) ≡

λς′ (λ)

ς (λ)

where P (λ) is implicitly defined by (17).
Replacing k from (13) in ς (λ) = ρk + w (k), we compute the leisure λ and

eventually the pollution P (λ) of steady state.
Assumption 3

1 + εPc
εcc

1 + εPl
εll

>
εll
εcc

(18)

where the elasticities are evaluated at the steady state.
This inequality holds for instance if εPc < −εcc (distaste effect (εPc < 0)

or weak compensation effect (0 < εPc < −εcc)) jointly with εPl > −εll (leisure
effect (εPl > 0) or weak disenchantment effect (−εll < εPl < 0)). We will
provide an explicit inequality in terms of the exogenous parameters in the case
of separable and isoelastic preferences.

Proposition 4 (uniqueness of the steady state) Let Assumptions 1 and 2 hold.
The stationary capital intensity k is always unique. In addition, under Assump-
tion 3, the steady state (λ, k, P ) is unique (sufficient condition).

Proof. See the Appendix.

5 Local dynamics, bifurcations and indetermi-
nacy

In order to study the local dynamics, we linearize the three-dimensional dynamic
system (12):

λ̇ = f1 (λ, k, P )

k̇ = f2 (λ, k, P )

Ṗ = f3 (λ, k, P )

around the steady state and we obtain a Jacobian matrix:

J =




∂f1
∂λ

∂f1
∂k

∂f1
∂P

∂f2
∂λ

∂f2
∂k

∂f2
∂P

∂f3
∂λ

∂f3
∂k

∂f3
∂P



 (19)

In the following, we provide general conditions for local bifurcations and, in
the case of a three-dimensional system with two predetermined variables, local
indeterminacy. In Section 6, we will apply these results to an isoelastic case
(isoelastic separable preferences and Cobb-Douglas production function).
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5.1 Bifurcations

In continuous time, a local bifurcation generically arises when the real part of
an eigenvalue λ (p) of the Jacobian matrix crosses zero in response to a change
of parameter p. Denoting by p∗ the critical parameter value of bifurcation, we
get generically two cases: (1) saddle-node bifurcation when a real eigenvalue
crosses zero: λ (p∗) = 0, (2) Hopf bifurcation when the real part of two complex
and conjugate eigenvalues λ (p) = a (p)± ib (p) crosses zero. More precisely, we
require a (p∗) = 0 and b (p) 	= 0 in a neighborhood of p∗ (see Bosi and Ragot
(2011, p. 76)).
System (12) is three-dimensional with two predetermined variables (k and

P ) and one jump variable (λ). Thus, multiple equilibria (local indeterminacy)
arise when the three eigenvalues of the Jacobian matrix (19) evaluated at the
steady state have negative real parts: either λ1, λ2, λ3 < 0 or Reλ1,Reλ2 < 0
and λ3 < 0.

Proposition 5 Under Assumption 3, saddle-node bifurcations are ruled out.

Proof. Under Assumption 3, the steady state is unique. The class of saddle-
node bifurcations (elementary saddle node, transcritical and pitchfork) always
involves multiple steady states (Bosi and Ragot, 2011).
A Hopf bifurcation occurs when the real part of two complex and conjugate

eigenvalues λ (p) = a (p)±ib (p) crosses zero. More precisely, we require a (0) = 0
and b (p) 	= 0 in a neighborhood of p = 0, where p = 0 is the normalized
bifurcation value of parameter.
Consider the Jacobian matrix J and focus on the expressions of determinant,

sum of minors of order two and trace in terms of eigenvalues:

D = λ1λ2λ3

S = λ1λ2 + λ1λ3 + λ2λ3 =
3∑

i=1

detMii

T = λ1 + λ2 + λ3

Proposition 6 (Hopf characterization) In the case of a three-dimensional sys-
tem, a Hopf bifurcation generically arises if and only if D = ST and S > 0.

Proof. See the Appendix.
We will show later the occurrence of a Hopf bifurcation in a standard case

(explicit conditions and simulation).

5.2 Local indeterminacy

In our model, dynamics involves two predetermined variables (k and P ) and a
jump variable (λ). As seen above, indeterminacy requires the three eigenvalues
with negative real parts: either λ1, λ2, λ3 < 0 or Reλ1,Reλ2 < 0 and λ3 < 0.
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Proposition 7 (local indeterminacy) In the case of system (12), if all the
eigenvalues are real, the equilibrium is locally indeterminate if and only if D,T <
0 and S > 0.

Proof. See the Appendix.
Consider the possibility of local indeterminacy through a Hopf bifurcation.

Unfortunately, Proposition 7 is of little use because, it is difficult to know
whether the eigenvalues are real. In the nonreal case, the necessary condi-
tion of Proposition 7 still holds. Indeed, indeterminacy (Reλ1 = Reλ2 < 0 and
λ3 < 0) implies

D = λ1λ2λ3 =
[
(Reλ1)

2 + (Imλ1)
2
]
λ3 < 0

S = λ1λ2 + (λ1 + λ2)λ3 = (Reλ1)
2 + (Imλ1)

2 + 2Reλ1λ3 > 0

T = λ1 + λ2 + λ3 = 2Reλ1 + λ3 < 0

However, the sufficient condition fails: even if

D = λ1λ2λ3 =
[
(Reλ1)

2 + (Imλ1)
2
]
λ3 < 0

still implies λ3 < 0, conditions D,T < 0 and S > 0 do not rule out the unpleas-
ant case Reλ1 = Reλ2 > 0.
We provide instead another sufficient condition for local indeterminacy, that

is more restrictive.

Proposition 8 (local indeterminacy through a Hopf bifurcation) Let pH the
Hopf bifurcation value of a parameter p such that D (pH) = S (pH)T (pH) and
S (pH) > 0. If D (pH) < 0, the equilibrium is locally indeterminate for some
value of p around pH .

Proof. See the Appendix.

6 Isoelastic case

In order to provide conditions for local bifurcations and indeterminacy in terms
of fundamental parameters and relevant economic interpretations, we focus on
standard functional forms.
The separable case (Assumption 1) is suitable for our local analysis because

of the lack of direct cross effects between the marginal utility of consumption and
labor. However, we need to introduce more structure for the purpose of economic
analysis. In the isoelastic case, the elasticities of matrix (11) are constant and
have an easy economic interpretation. Thus, we consider isoelastic separable
preferences:

u (c, P ) ≡
(cP−η)

1−ε

1− ε
and v (l, P ) ≡ ω

(
lPψ

)1+ϕ

1 + ϕ
(20)
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where 1/ε ≥ 0 is the consumption elasticity of intertemporal substitution, 1/ϕ ≥
0 is the Frisch elasticity of intertemporal substitution and ω > 0 is the weight
of disutility of labor in total utility. In addition, η, ψ ≥ 0 (Assumption 1).
In addition, we focus on a Cobb-Douglas production function giving the

following intensive output:
f (k) = Akα (21)

We observe that, in this case, α becomes constant and σ = 1.
The elasticities on the RHS of matrix (11) appear only in the first two

columns of the elasticities matrix E (see (10)):

Ẽ ≡




εcc εcl
εlc εll
εPc εPl



 =





cucc
uc

0

0 lvll
vl

PuPc
uc

PvPl
vl



 =




−ε 0
0 ϕ

(ε− 1) η (1 + ϕ)ψ





and depends directly on the fundamental parameters.
The elasticities in the third column of E (see (10)) are more complicated

because they are not directly parametric but involve the endogenous variables:
λ, k, P . Fortunately, we no longer need them in the following. Hence, matrix
(11) simplifies:

[
λcλ
c

kck
c

PcP
c

λlλ
l

klk
l

P lP
l

]
=

[
−1

ε 0 η ε−1
ε

1
ϕ

α
ϕ −ψ 1+ϕ

ϕ

]
(22)

where now the more compact expression yx denotes the derivative ∂y/∂x.
We observe that, if η > 0, a distaste effect holds when 0 < ε < 1, while a

compensation effect arises when ε > 1. Our isoelastic specification rules out any
disenchantment effect if ψ > 0, but captures the leisure effect empirically found
by Hanna and Oliva (2011).
The dynamic system (12) writes:

λ̇

λ
= ρ+ δ − r (k) (23)

k̇

k
=

ρ+ w(k)
k −

c(λ,k,P )
kl(λ,k,P ) −

1+ϕ
ϕ

(
ρ+ δ − r (k) + ψ

[
a− b l(λ,k,P )f(k)P

])

1 + α
ϕ

(24)

Ṗ

P
= b

l (λ, k, P ) f (k)

P
− a (25)

6.1 Steady state

In the isoelastic case, the steady state values depend explicitly on the funda-
mental parameters and the comparative statics leads to unambiguous results.
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Proposition 9 In the isoelastic case, there exists a unique steady state:

λ =

(
B

ρk +w

) (ϕ+ψ+ϕψ)ε
ϕ+ψ+ϕψ+ε+(1−ε)η

(26)

k =

(
αA

ρ+ δ

) 1
1−α

(27)

P = Cλ
1

ϕ+ψ+ϕψ (28)

where w = (1− α)Akα and

B ≡
C

ε−1
ε

η+ 1+ϕ
ϕ

ψ

(w/ω)
1
ϕ

C ≡

[
Akα

b

a

(w
ω

) 1
ϕ

] ϕ
ϕ+ψ+ϕψ

Proof. See the Appendix.

It is interesting to note that we do not need to impose restriction (18) to
ensure the uniqueness of steady state. (18) represents a sufficient condition for
uniqueness (Proposition 4). The only restriction we need in the isoelastic case
is ϕ+ ψ + ϕψ + ε+ (1− ε) η 	= 0. Otherwise, the steady state (λ) fails to exist
(see (26)).

Focus now on the comparative statics.
As seen in the general case, the capital intensity remains that of MGR as

in the Ramsey model and the basic parameters α, δ, ρ and A plays the usual
role on k. The preferences parameters ε, η, ϕ, ψ and ω play no direct role
on k (but affect the consumption demand and the labor supply through λ and
P ). This result is not surprising: indeed, we are focusing on a market economy
where, differently from the planner’s solution, the pollution externality is not
internalized and has no marginal effect on the Euler equation λ̇/λ = ρ+δ−r (k).
Consider

lnλ =
(ϕ+ ψ + ϕψ) ε

ϕ+ ψ + ϕψ + ε+ (1− ε) η

(
z −

1

ϕ
y +

(
ε− 1

ε
η +

1 + ϕ

ϕ
ψ

)
ϕx+ y

ϕ+ ψ + ϕψ

)
(29)

lnP =
ϕx+ y + lnλ

ϕ+ ψ + ϕψ
(30)

where

x ≡ ln

(
Akα

b

a

)

y ≡ ln
w

ω
z ≡ − ln (ρk +w)

12



that is

x =
α

1− α
lnα+

1

1− α
lnA−

α

1− α
ln (ρ+ δ)− ln

a

b

y =
α

1− α
lnα+

1

1− α
lnA−

α

1− α
ln (ρ+ δ) + ln (1− α)− lnω

z = −
α

1− α
lnα−

1

1− α
lnA+

1

1− α
ln (ρ+ δ)− ln [ρ+ (1− α) δ]

Computations give

∂P/∂ε

P/ε
=

lnλ+ η lnP

ϕ+ ψ + ϕψ + ε+ η − εη

∂λ/∂ε

λ/ε
=

∂P/∂ε

P/ε
(ϕ+ ψ + ϕψ) (31)

∂P/∂η

P/η
=

(ε− 1) η lnP

ϕ+ ψ + ϕψ + ε+ η − εη
(32)

∂λ/∂η

λ/η
=

∂P/∂η

P/η
(ϕ+ ψ + ϕψ) (33)

with ln (λPη) = ln (cP−η)
−ε
.

Using (29) and (30) we get more explicitly

∂P/∂ε

P/ε
=

(1 + ϕ) (η + ψ) (x+ z) + (η − 1) (y − ϕz)

(ϕ+ ψ + ϕψ + ε+ η − εη)2
ε (34)

∂P/∂η

P/η
=

ϕx+ y + ε (x+ z)

(ϕ+ ψ + ϕψ + ε+ η − εη)2
(ε− 1) η

Proposition 10 The qualitative impacts of ε on P and λ are the same. In
particular, if η = 1, then

∂λ/∂ε

λ/ε
,
∂P/∂ε

P/ε
> 0

iff

a < b
ρ+ δ

ρ+ (1− α) δ

Proof. The qualitative impacts are the same because of (31). If η = 1, (34)
becomes

∂P/∂ε

P/ε
=

ε (x+ z)

(1 + ϕ) (1 + ψ)

with

x+ z = ln

[
b

a

ρ+ δ

ρ+ (1− α) δ

]

The proposition follows.
Assumption 4 εη < ε+ η + ϕ+ ψ + ϕψ.

13



Assumption 4 writes

P

c

∂c

∂P
< 1 +

ϕ

ε

(
1−

P

l

∂l

∂P

)

and is satisfied under the joint assumption of distaste and leisure effect:

P

c

∂c

∂P
< 0 and

P

l

∂l

∂P
< 0

Proposition 11 The qualitative impacts of η on λ and P are the same because
of (33). Under Assumption 4, they are positive under dominant income effects
(ε > 1) and high pollution (P > 1) or dominant substitution effects (ε < 1) and
low pollution (P < 1).

Proof. We observe that, under Assumption 4,

∂P/∂η

P/η
> 0 iff (ε− 1) lnP > 0

Focus for instance on the second case (substitution effects and low pollution).
According to 22, a higher η implies a stronger distaste effect. Then, for a given
pollution level, individuals consume less and save more which increases the
production level and the pollution stock in turn.
For ϕ and ψ, focus on the simplified case ε = 1 (logarithmic felicity). We

have

lnλ =
xψ + xψϕ− y + z (ϕ+ ψ + ϕψ)

(1 + ϕ) (1 + ψ)

lnP =
ϕx+ y + lnλ

ϕ+ ψ + ϕψ

and, thus,

∂P/∂ϕ

P/ϕ
= −

ϕ

1 + ϕ

y + z

(1 + ϕ) (1 + ψ)

∂λ/∂ϕ

λ/ϕ
= −

∂P/∂ϕ

P/ϕ

∂P/∂ψ

P/ψ
= −

ψ

1 + ψ

(1 + ϕ)x+ y + z

(1 + ϕ) (1 + ψ)

∂λ/∂ψ

λ/ψ
= −

∂P/∂ψ

P/ψ

Proposition 12 The qualitative impacts of ϕ on P and λ are opposite. More
explicitly,

∂P/∂ϕ

P/ϕ
> 0 (and

∂λ/∂ϕ

λ/ϕ
< 0) iff ω >

(1− α) (ρ+ δ)

ρ+ (1− α) δ
(< 1)

14



Corollary 13 The impact of ϕ on pollution is positive if ω = 1.

Proposition 14 The qualitative impacts of ψ on P and λ are opposite. More
explicitly,

∂P/∂ψ

P/ψ
< 0 (and

∂λ/∂ψ

λ/ψ
> 0) iff A

(
α

ρ+ δ

)α

>
(a
b

)1−α
[
ω

ρ+ (1− α) δ

(1− α) (ρ+ δ)

] 1−α
1+ϕ

This equivalence is interpreted as follows. A higher ψ implies a stronger
leisure effect and, thus, a lower labor supply, which reduces the production
level and the pollution level in turn. Such a relation is magnified under a large
environmental effect of production (b).
Following the MGR, such variations of ψ, l and P have no effect on the

stationary value of capital intensity (k). In addition, at the steady state, c = γkl
(see the proof of Lemma 18): the decrease of labor supply (l) induced by a
higher ψ entails a lower consumption level (c) and a higher marginal utility of
consumption, that is λ (see 3).

Corollary 15 The impact of ϕ on pollution is positive if the TFP (A) is low,
the natural rate of pollution absorption (a) is high or the environmental impact
of production (b) is low.

A higher ϕ means a lower leisure effect. Then, for a given pollution level,
the representative household works more which enhances the production level
and the pollution stock in turn. Under a distaste effect, a higher pollution level
implies that the household reduces his consumption demand. This increases the
marginal utility of consumption and, according to 3, λ as well.
In addition,

∂λ/∂p

λ/p
=

(1 + ϕ)ψpxp − pyp + (ϕ+ ψ + ϕψ) pzp
(1 + ϕ) (1 + ψ)

∂P/∂p

P/p
=

(1 + ϕ) pxp + pyp + pzp
(1 + ϕ) (1 + ψ)

with p = A,a/b, ρ, δ, ω.

(AxA, AyA, AzA) =

(
1

1− α
,
1

1− α
,−

1

1− α

)

(a
b
x a
b
,
a

b
ya
b
,
a

b
z a
b

)
= (−1, 0, 0)

(ρxρ, ρyρ, ρzρ) =

(
−

α

1− α

ρ

ρ+ δ
,−

α

1− α

ρ

ρ+ δ
,
1

1− α

ρ

ρ+ δ
−

ρ

ρ+ (1− α) δ

)

(δxδ, δyδ, δzδ) =

(
−

α

1− α

δ

ρ+ δ
,−

α

1− α

δ

ρ+ δ
,
1

1− α

δ

ρ+ δ
−

(1− α) δ

ρ+ (1− α) δ

)

(ωxω, ωyω, ωzω) = (0,−1, 0)

15



Then,

∂λ/∂A

λ/A
= −

1

1− α

1

1 + ψ

∂P/∂A

P/A
=

1

1− α

1

1 + ψ

∂λ/∂ a
b

λ/a
b

= −
ψ

1 + ψ

∂P/∂ a
b

P/a
b

= −
1

1 + ψ

∂λ/∂ρ

λ/ρ
=

ρ
ρ+δ

α+ϕ+(1−α)ψ+(1−α)ψϕ
1−α − ρ

ρ+(1−α)δ (ϕ+ ψ + ϕψ)

(1 + ϕ) (1 + ψ)

∂P/∂ρ

P/ρ
=

ρ
ρ+δ

1−2α−αϕ
1−α − ρ

ρ+(1−α)δ

(1 + ϕ) (1 + ψ)

∂λ/∂δ

λ/δ
=

δ
ρ+δ

α+ϕ+(1−α)ψ+(1−α)ψϕ
1−α −

(1−α)δ
ρ+(1−α)δ (ϕ+ ψ + ϕψ)

(1 + ϕ) (1 + ψ)

∂P/∂δ

P/δ
=

δ
ρ+δ

1−2α−αϕ
1−α −

(1−α)δ
ρ+(1−α)δ

(1 + ϕ) (1 + ψ)

∂λ/∂ω

λ/ω
=

1

(1 + ϕ) (1 + ψ)

∂P/∂ω

P/ω
= −

1

(1 + ϕ) (1 + ψ)

The impact of α remains too ambiguous and complicate.

Proposition 16 The effects of A, a/b, ρ and ω on P and λ are the following

∂P/∂A

P/A
= −

∂λ/∂A

λ/A
=

1

1− α

1

1 + ψ
> 0

∂P/∂ a
b

P/a
b

=
1

ψ

∂λ/∂ a
b

λ/a
b

= −
1

1 + ψ
< 0

∂P/∂ω

P/ω
= −

∂λ/∂ω

λ/ω
= −

1

(1 + ϕ) (1 + ψ)
< 0

These elasticities deserve an economic interpretation.
A higher A implies a higher production level and in turn a higher pollution

level. Such an increase of the pollution stock lowers the labor supply (leisure

16



effect) and, thus, the marginal disutility of labor supply (Assumption 1) and λ
in turn (see 3). In addition, From (14), for a given l and P , a higher a/b implies
a higher consumption level. Since ε = 1, the LHS of equation (3) writes 1/c = λ,
that is, the increase of c is followed by a drop of λ. According to equation (17),
for a given k, a higher a/b induces a lower pollution level. Finally, according to
the functional forms (20) and (21), the RHS of equation (3) writes

λ = ω

(
lPψ

)ϕ
Pψ

(1− α) kα

with an underlying positive relation between ω an P : a higher ω increases the
marginal disutility of labor supply, the household reduces his labor supply which
reduces the production level and the pollution stock in turn.

Proposition 17 The effects of ρ and δ on P and λ are the following

∂P/∂ρ

P/ρ
= −Mρ [ρ (1 + ϕ) + δ (1− α) (2 + ϕ)] < 0

∂λ/∂ρ

λ/ρ
= Mρ (ρ (1 + ϕ) + δ (1− α) [1− ψ (1 + ϕ)]) > 0 iff ρ >

(
ψ −

1

1 + ϕ

)
(1− α) δ

∂P/∂δ

P/δ
= −Mδ [ρ (α+ ϕ) + δ (1− α) (1 + ϕ)] < 0

∂λ/∂δ

λ/δ
= Mδ (ρ (1 + ϕ) + (1− α) [ρϕ+ (ρψ + δ) (1 + ϕ)]) > 0

where M ≡ α/ [(1− α) (ρ+ δ) (ρ+ (1− α) δ) (1 + ϕ) (1 + ψ)] > 0.

These elasticities can be easily interpreted. Because of the MGR, we notice
that a higher ρ implies lower capital stock, production level and pollution stock
at the end. Conversely, since a higher ρ induces a lower pollution level, the
representative household increases his labor supply (leisure effect), the marginal
disutility of labor supply and, eventually, λ. Similar arguments explain the
effects of δ on P and λ.

6.2 Local dynamics

System (23)-(25) writes:

λ̇ = f1 (λ, k, P ) ≡ λ [ρ+ δ − r (k)]

k̇ = f2 (λ, k, P ) ≡
ϕ

α+ ϕ[
ρk +w (k)−

c (λ, k, P )

l (λ, k, P )
− k

1 + ϕ

ϕ

(
ρ+ δ − r (k) + ψ

[
a− b

l (λ, k, P ) f (k)

P

])]

Ṗ = f3 (λ, k, P ) ≡ bl (λ, k, P ) f (k)− aP

We linearize it around the steady state through the computation of the
Jacobian.

17



In the following, let

θ ≡ α
1 + ϕ

ϕ
and τ ≡

α+ ϕ

ϕ
> θ

µ ≡ ψ
1 + ϕ

ϕ
, γ ≡

r

α
− δ, s ≡ (1− α) r (35)

n ≡ µ
a

ϕ
+ γ

(
1

ε
+
1

ϕ

)
and ξ ≡ γ

(
µ+ η

ε− 1

ε

)

with r = ρ+ δ.

Lemma 18 Let D, S and T be the determinant, the sum of diagonal minors
of order two and the trace of the Jacobian matrix evaluated at the steady state.
Thus,

D =
as

τ

[
(1 + µ)

(
n−

aµ

ϕ

)
−

ξ

ϕ

]

S =
aθξ − ns

τ
− aρ (1 + µ) (36)

T = ρ− a+ aµ
θ − τ

τ

Proof. See the Appendix.

6.3 Bifurcations and indeterminacy

In this subsection we provide general conditions under which the system un-
dergoes a Hopf bifurcation and local indeterminacy arises. At the end, we
characterize the particular cases with no pollution effects on (1) consumption
and leisure, (2) leisure, (3) consumption.

6.3.1 Limit cycles

Let

ηH ≡
ε

ε− 1

(
ξH
γ
− µ

)
(37)

with

ξH ≡
s (1 + µ)

(
n− aµ

ϕ

)
+
[
ρτ (1 + µ) + ns

a

] (
ρ− a− aµ τ−θ

τ

)

s
ϕ + θ

(
ρ− a− aµ τ−θ

τ

) (38)

and S > 0, that is

ξH >
ns+ aρτ (1 + µ)

aθ
(39)

Proposition 19 (limit cycles) There exists a parameter region such that, when
η goes through ηH , the system undergoes a Hopf bifurcation.

18



Proof. See the Appendix.
It is interesting to see that limα→1 ηH = ε/ (ε− 1). Then, ηH > 0 iff ε > 1,

that is the occurrence of a Hopf bifurcation requires dominant income effects.
Recall that

P

c

∂c

∂P
= −η

1− ε

ε

that is, in this limit case, a Hopf bifurcation occurs only under a compensation
effect (∂c/∂P > 0 or εPc > 0) as in Michel and Rotillon (1995).
Assume a rise of P near the steady state. Since ∂c/∂P > 0 and ∂l/∂P < 0

(matrix (22)), this entails an increase of c jointly with a decrease of k and a
decrease of l. These two effects imply a fall in the production level and, in turn,
a decrease of pollution. By this channel, deterministic endogenous fluctuations
occur near the steady state.

Proposition 20 Let ε > 1 and ρ > αa. Then, with no capital depreciation
(δ = 0), we have

∂ηH
∂ψ

< 0 iff ε > α
1 + ϕ (2 + ϕ)

1− α (2− α)

Proof. Using (38), we compute the derivative with δ = 0.

∂ηH
∂ψ

=
1 + ϕ

ϕ

ρϕ (ρ− aα) (1− α) (α+ ϕ) (α− ε+ αε (2− α) + αϕ (2 + ϕ))

(ε− 1) (ρ (αϕ+ 1) (α+ ϕ)− aα (1 + ϕ) ((α+ ϕ) + µϕ (1− α)))2

Proposition 20 means that, in the case of strong income effects (high ε)
and weak natural rate of pollution absorption (ρ > αa), the greater is the
sensitivity of labor supply to pollution (ψ), the lower is the critical sensitivity
of consumption demand to pollution (ηH) for which a limit cycle occurs.

6.3.2 Local indeterminacy

Proposition 21 (local indeterminacy through a Hopf bifurcation) If

(1 + µ)

(
n−

aµ

ϕ

)
−

ξH
ϕ

< 0 (40)

then there exists a parameter region where indeterminacy occurs.

Proof. See the Appendix.

Corollary 22 In the case of compensation effects (ε > 1), local indeterminacy
through a Hopf bifurcation arises if

ηH >
ε+ ϕ (1 + µ)

ε− 1
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Proof. Replace n and ξH from (37) in (40), and solve the inequality for ηH .
The possibility of self-fulfilling prophecies rests on equilibrium indetermi-

nacy. Let us provide an intuition for them in our economy.
Let the economy be at the steady state and assume that any consumer ex-

pect today an increase in the pollution level tomorrow. Since ∂c/∂P > 0 and
∂l/∂P < 0, she wants a higher consumption demand tomorrow jointly with a
lower labor supply. She needs to save more today to finance a larger consump-
tion tomorrow under a lower labor income. The increase in capital intensity
will enhance the production level and promote an increase in the pollution
stock. Hence, the expectation of higher pollution tomorrow turns out to be
self-fulfilling.
Focus on relation (40):

lim
a→0+

[
(1 + µ)

(
n−

aµ

ϕ

)
−

ξH
ϕ

]
= −∞ (41)

From (41), it appears that local indeterminacy is more likely when the nat-
ural rate of pollution absorption (a) is low, that is pollution is more persis-
tent and the negative effects of production as well. This result contrasts with
many contributions. Indeed, using a Ramsey framework displaying endogenous
growth, Fernandez, Perez and Ruiz (2012) and Itaya (2008) have studied in-
determinacy with pollution as a flow. A same result holds also in the OLG
literature (see Seegmuller and Verchère (2007)).

6.3.3 Particular cases

INSERT PAGES 20-28 OF THE LIONEL’S PDF (MANUSCRIPT).
(1) η = ψ = 0 (no effects).
(2) ψ = 0 and η > 0 (distaste effect (0 < ε < 1) or compensation

effect (ε > 1)).
(3) η = 0 and ψ > 0 (leisure effect).

7 Simulation

We have provided general conditions for the occurrence of limit cycles (Proposi-
tion 6) and more explicit conditions in the isoelastic case (Proposition 19). The
following section provide a graphical example of the existence of stable limit
cycles through a calibrated simulation.
In this section, we propose a numerical investigation of local dynamics using

the MATCONT package for MATLAB. We calibrate the values according to
quarterly data:

Parameter A ω a b α δ ε ϕ ψ ρ
Value 1 1 0.01 0.01 0.33 0.025 2 0.5 3.78 0.01
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ε = 2 ensures the existence of a compensation effect while ϕ and ψ are set
in order to satisfy (39):

ξH = 1. 998 3 >
ns+ aρτ (1 + µ)

aθ
= 1. 224 1

According to this calibration, we find ηH ≈ 26.625. MATCONT detects a
local bifurcation when the bifurcation parameter varies in a convenient range.
In our case, we consider the range around the critical value (26, 27) ∋ ηH and
MATCONT finds independently the critical value ηH = 26.624837 which is very
close to ours. The relation between the steady state pollution P and the bifur-
cation parameter η is represented in Figure 1 and obtained with MATCONT,
where H represents the Hopf bifurcation.

26 26.1 26.2 26.3 26.4 26.5 26.6 26.7 26.8 26.9 27

0.9045

0.905

0.9055

0.906

0.9065

0.907

0.9075

0.908

0.9085

0.909

eta

P

H 

Figure 1. Equilibrium continuation.

The first Lyapunov coefficient associated with the Hopf boundary is l1 =
−1.201350 ∗ 10−5 (See Kuznetsov (1998), p. 99), which means that we are con-
sidering a supercritical Hopf bifurcation at ηH = 26.624837. Figure 2 represents
the stable limit cycle in the (k, λ, P )-plane.
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0.1561

0.1561

0.1561

0.1561

0.1561

28.4705

28.4706

28.4706

0.9073

0.9073

0.9073

0.9073

0.9073

0.9073

0.9073

0.9073

0.9073

lambda
k

P

Figure 2. Stable limit cycle.

At the Hopf bifurcation point (η = ηH), the steady state becomes:

(k, λ, P ) = (28.470616, 0.15609615, 0.90732381)

The corresponding eigenvalues become:

λ1 = −0.0457699

λ2 = 0.0679497i

λ3 = −0.0679497i

8 Conclusion

Within a unified framework, we have studied together the pollution effects on
consumption demand and labor supply. We have provided sufficient conditions
to ensure the uniqueness of the steady state and introduced a general method to
address the issue of local bifurcations and indeterminacy for three-dimensional
dynamic systems in presence of two predetermined variables. Applying these
general results to the case of separable isoelastic preferences, we have found that
a compensation effect coupled with a leisure effect leads to local indeterminacy
through a Hopf bifurcation. These results add value to the existing literature
on the stability issue under pollution in Ramsey economies.
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9 Appendix

Proof of Proposition 1
The Hamiltonian writes H̃ = e−ρtU (c, l, P ) + λ̃ [(r − δ)h+wl − c] and the

first-order conditions

∂H̃/∂λ̃ = (r − δ)h+wl − c = ḣ

∂H̃/∂h = λ̃ (r − δ) = −λ̃
′

∂H̃/∂c = e−ρtUc − λ̃ = 0

∂H̃/∂l = e−ρtUl + λ̃w = 0

jointly with the transversality condition limt→∞ λ̃ (t)h (t) = 0. Setting λ ≡

eρtλ̃, we find λ̇ − ρλ = eρtλ̃
′

and equations in Proposition 1. The discounted
Hamiltonian H ≡ eρtH̃ becomes H = U (c, l, P ) + λ [(r − δ)h+wl − c].

Proof of Proposition 2
Differentiating the system

λ− Uc (c, l, P ) = 0

λw (k) + Ul (c, l, P ) = 0

we get

εcc
dc

c
+ εlc

dl

l
=

dλ

λ
− εPc

dP

P

εcl
dc

c
+ εll

dl

l
=

dλ

λ
+ α

dk

k
− εPl

dP

P

that is
[

dc
c
dl
l

]
=

M

εccεll − εlcεcl




dλ
λ
dk
k
dP
P





where M is given by (9). Thus, we obtain the following matrix of partial elas-
ticities (8).

Proof of Proposition 3
Let us reconsider the dynamic system:

λ̇ = λ [ρ+ δ − r (k)]

ḣ = (r − δ)h+wl − c

Ṗ = −aP + blf (k)

We observe that h = kl and, thus,

ḣ

h
=

k̇

k
+

l̇

l
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In addition, l = l (λ, k, P ) and, thus,

l̇

l
=

λ

l

∂l

∂λ

λ̇

λ
+

k

l

∂l

∂k

k̇

k
+

P

l

∂l

∂P

Ṗ

P

where the elasticities
λ

l

∂l

∂λ
,
k

l

∂l

∂k
,
P

l

∂l

∂P

are given by (8).
We obtain the following three-dimensional dynamic system

λ̇

λ
= ρ+ δ − r (k)

k̇

k
= r (k)− δ +

w (k)

k
−

c (λ, k, P )

kl (λ, k, P )
−

l̇

l

= r (k)− δ +
w (k)

k
−

c (λ, k, P )

kl (λ, k, P )
−

λ

l

∂l

∂λ

λ̇

λ
−

k

l

∂l

∂k

k̇

k
−

P

l

∂l

∂P

Ṗ

P

Ṗ

P
= b

l (λ, k, P ) f (k)

P
− a

that is system (12).

Proof of Proposition 4
Assumption 2 ensures that a stationary level of capital k exists according to

equation (13). The concavity of f ensures also that there is a unique stationary
level of capital.
We apply first the Implicit Function Theorem to equation (17) to obtain a

function P (λ) with

P ′ (λ) =
λlλ
l

l
λ

a
bf(k) −

PlP
l

l
P

Noticing that, at the steady state, l/P = a/ (bf), we get the multiplier
elasticity of pollution:

ζ ≡
λP ′ (λ)

P (λ)
=

λlλ
l

1− PlP
l

Replacing P = P (λ) into equation (16), we find

ς (λ) ≡
c (λ, k, P (λ))

l (λ, k, P (λ))
= ρk +w (k) > 0

with

ες (λ) ≡
λς ′ (λ)

ς (λ)
=

λcλ
c
−

λlλ
l
+ ζ

(
PcP
c
−

PlP
l

)

=
λcλ
c
−

λlλ
l

1− PcP
c

1− PlP
l

(42)
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The continuity of ς implies that, if there are multiple steady state, the slope
ς′ (λ) changes its sign from a steady state to another. Conversely, if ς ′ (λ) is
always negative at the steady state λ, then the steady state is unique.
Under Assumption 1 (separability), expression (42) writes

ες (λ) =
λcλ
c
−

λlλ
l

1− PcP
c

1− PlP
l

=
1

εcc
−
1

εll

1 + εPc
εcc

1 + εPl
εll

(43)

(see elasticities (11)) with εcc < 0 and εll > 0. Thus ες (λ) < 0 if and only if
(18) holds.

Proof of Proposition 6
Necessity. In a three-dimensional dynamic system, we require at the bifurca-

tion value: λ1 = ib = −λ2 with no generic restriction on λ3 (see Bosi and Ragot
(2011) or Kuznetsov (1998) among others). The characteristic polynomial of J
is given by: P (λ) = (λ− λ1) (λ− λ2) (λ− λ3) = λ3 − Tλ2 + Sλ − D. Using
λ1 = ib = −λ2, we find D = b2λ3, S = b2, T = λ3. Thus, D = ST and S > 0.

Sufficiency. In the case of a three-dimensional system, one eigenvalue is
always real, the others two are either real or nonreal and conjugated. Let us
show that, if D = ST and S > 0, these eigenvalues are nonreal with zero real
part and, hence, a Hopf bifurcation generically occurs.
We observe that D = ST implies

λ1λ2λ3 = (λ1λ2 + λ1λ3 + λ2λ3) (λ1 + λ2 + λ3)

or, equivalently,

(λ1 + λ2)
[
λ23 + (λ1 + λ2)λ3 + λ1λ2

]
= 0 (44)

This equation holds if and only if λ1 + λ2 = 0 or λ
2
3 + (λ1 + λ2)λ3 + λ1λ2 = 0.

Solving this second-degree equation for λ3, we find λ3 = −λ1 or −λ2. Thus,
(44) holds if and only if λ1+λ2 = 0 or λ1+λ3 = 0 or λ2+λ3 = 0. Without loss
of generality, let λ1 + λ2 = 0 with, generically, λ3 	= 0 a real eigenvalue. Since
S > 0, we have also λ1 = −λ2 	= 0. We obtain T = λ3 	= 0 and S = D/T = λ1
λ2 = −λ21 > 0. This is possible only if λ1 is nonreal. If λ1 is nonreal, λ2 is
conjugated, and, since λ1 = −λ2, they have a zero real part.

Proof of Proposition 7
Necessity. In the real case, we obtain D = λ1λ2λ3 < 0, S = λ1λ2 + λ1λ3 +

λ2λ3 > 0 and T = λ1 + λ2 + λ3 < 0.
Sufficiency. We want to prove that, if D,T < 0 and S > 0, then λ1, λ2, λ3 <

0. Notice that D < 0 implies λ1, λ2, λ3 	= 0.
D < 0 implies that at least one eigenvalue is negative. Let, without loss of

generality, λ3 < 0. Since λ3 < 0 and D = λ1λ2λ3 < 0, we have λ1λ2 > 0. Thus,
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there are two subcases: (1) λ1, λ2 < 0, (2) λ1, λ2 > 0. If λ1, λ2 > 0, T < 0
implies λ3 < − (λ1 + λ2) and, hence,

S = λ1λ2 + (λ1 + λ2)λ3 < λ1λ2 − (λ1 + λ2)
2 = −λ21 − λ22 − λ1λ2 < 0

a contradiction. Then, λ1, λ2 < 0.

Proof of Proposition 8
By Proposition 6, we have Reλ1 (pH) = Reλ2 (pH) = 0. λ3 (pH) < 0 is

implied by D (pH) = [Imλ1 (pH)]
2 λ3 (pH) < 0. Thus, there exists ε > 0 such

that, generically, we have Reλ1 (p) ,Reλ2 (p) , λ3 (p) < 0 (local indeterminacy)
for any p ∈ (pH − ε, pH) or, alternatively, for any p ∈ (pH , pH + ε).

Proof of Proposition 9
From (2) and (20), (3) writes

c =
[
λP η(1−ε)

]−1/ε
and l =

[
wλP−ψ(1+ϕ)/ω

]1/ϕ
(45)

(13) gives (27). Equation (17) yields (28). Replacing (27) and (28) in (45) and
(45) in (16), we find (26).

Proof of Lemma 18
The Jacobian matrix (19) becomes:

J =




0 sλ

k 0
∂f2
∂λ

∂f2
∂k

∂f2
∂P

aλlλ
l

P
λ a

(
α+ klk

l

)
P
k a

(
PlP
l − 1

)





with

∂f2
∂λ

=
1

τ

k

λ

[
aµ

λlλ
l
+ γ

(
λlλ
l
−

λcλ
c

)]

∂f2
∂k

=
1

τ

[
aµ

(
α+

klk
l

)
+ γ

(
klk
l
−

kck
c

)
+ ρ−

s

ϕ

]

∂f2
∂P

=
1

τ

k

P

[
aµ

(
PlP
l
− 1

)
+ γ

(
PlP
l
−

PcP
c

)]

because, at the steady state,

c

kl
= γ > 0,

w

k
= r

1− α

α
and b

lf (k)

P
= a

Using (5), (6) and (22), we find

J = (mij) =




0 sλ

k 0
n
τ

k
λ ρ+ aµ θ

τ −
ξ+aµ(1+µ)

τ
k
P

a
ϕ

P
λ aθP

k −a (1 + µ)
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Proof of Proposition 19
Focus on Proposition 6 and expressions (36) for D, S and T . We know that

a Hopf bifurcation arises if and only if D = ST and S > 0, that is if and only if

as

τ

[
(1 + µ)

(
n−

aµ

ϕ

)
−

ξ

ϕ

]
=

[
aθξ − ns

τ
− aρ (1 + µ)

](
ρ− a+ aµ

θ − τ

τ

)

aθξ − ns

τ
− aρ (1 + µ) > 0

or, equivalently,

ξH ≡
s (1 + µ)

(
n− aµ

ϕ

)
+
[
ρτ (1 + µ) + ns

a

] (
ρ− a− aµ τ−θ

τ

)

s
ϕ + θ

(
ρ− a− aµ τ−θ

τ

)

ξH >
ns+ aρτ (1 + µ)

aθ
(> 0)

A Hopf bifurcation generically occurs if the following restriction is satisfied:

s (1 + µ)
(
n− aµ

ϕ

)
+
[
ρτ (1 + µ) + ns

a

] (
ρ− a− aµ τ−θ

τ

)

s
ϕ + θ

(
ρ− a− aµ τ−θ

τ

) >
ns+ aρτ (1 + µ)

aθ

(46)
If

s

ϕ
+ θ

(
ρ− a− aµ

τ − θ

τ

)
> 0 (47)

(46) becomes equivalent to

a (1 + µ) (ϕnθ − τρ− aµθ)− ns > 0 (48)

Let us show that inequalities (47) and (48) are satisfied for some parametric
values. Consider the case a < ρ and α ≈ 1. Inequalities (47) and (48) become

lim
α→1

[
s

ϕ
+ θ

(
ρ− a− aµ

τ − θ

τ

)]
= θ (ρ− a) > 0

and
lim
α→1

[a (1 + µ) (ϕnθ − τρ− aµθ)− ns] = aρτ (1 + µ)
ϕ

ε
> 0

because

lim
α→1

n ≡ µ
a

ϕ
+ ρ

(
1

ε
+
1

ϕ

)

Proof of Proposition 21
Notice that

D (pH) =
as

τ

[
(1 + µ)

(
n−

aµ

ϕ

)
−

ξH
ϕ

]
< 0

and apply Proposition 8.
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10 Calibration

Parameters.
θ = α 1+ϕ

ϕ

τ = α+ϕ
ϕ

µ = ψ 1+ϕ
ϕ

r = ρ+ δ
γ = r

α − δ
s = (1− α) r

n = µ a
ϕ + γ

(
1
ε +

1
ϕ

)

A = 1
ω = 1
a = 0.01
b = 0.01
α = 0.33
δ = 0.025
ε = 2
ϕ = 0.5
ψ = 3.78
ρ = 0.01

ηH ≡ ε
ε−1






s(1+µ)(n−aµ
ϕ )+(ρτ(1+µ)+ns

a )(ρ−a−aµτ−θτ )
s
ϕ
+θ(ρ−a−aµτ−θτ )

γ − µ






ξH ≡
s(1+µ)(n−aµ

ϕ )+(ρτ(1+µ)+ns
a )(ρ−a−aµ τ−θ

τ )
s
ϕ
+θ(ρ−a−aµ τ−θ

τ )
Steady state:

η = ε
ε−1






s(1+µ)(n−aµ
ϕ )+(ρτ(1+µ)+ns

a )(ρ−a−aµ
τ−θ
τ )

s
ϕ
+θ(ρ−a−aµτ−θτ )

γ − µ






ξ =
s(1+µ)(n−aµ

ϕ )+(ρτ(1+µ)+ns
a )(ρ−a−aµ τ−θ

τ )
s
ϕ
+θ(ρ−a−aµ τ−θ

τ )

λ =
(

B
ρk+(1−α)Akα

) (ϕ+ψ+ϕψ)ε
ϕ+ψ+ϕψ+ε+(1−ε)η

= 0.156 10

k =
(

αA
ρ+δ

) 1
1−α

= 28. 471
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P = Cλ
1

ϕ+ψ+ϕψ = 0.907 33

w = (1− α)A

((
αA
ρ+δ

) 1
1−α

)α

B = C
ε−1
ε

η+
1+ϕ
ϕ

ψ

(w/ω)
1
ϕ

C =
(
Akα b

a

(
w
ω

) 1
ϕ

) ϕ
ϕ+ψ+ϕψ

P = 0.907 33
Eigenvalues.

J = (mij) =




0 sλ

k 0
n
τ

k
λ ρ+ aµ θ

τ −
ξ+aµ(1+µ)

τ
k
P

a
ϕ

P
λ aθP

k −a (1 + µ)





λ1 = −0.0457699

λ2 = 0.0679497i

λ3 = −0.0679497i
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