
Translation-Consistent Subgroup Decomposable Inequality Indices 
Bhargav Maharaj12 

Ramakrishna Mission Vidyamandira, Belurmath, India 

 

 

Abstract 
 

The paper suggests a two-parameter extension of the family of subgroup decomposable absolute 

inequality indices identified in Chakravarty and Tyagarupananda (1998). Maintaining similarity 

with Zheng (2007), we replace the notion of ‘translation invariance’ by ‘translation consistency’ 

and hence characterize the relevant class of subgroup decomposable inequality indices.  
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1. Introduction 
Over several decades of the last century, the study of economic inequality has drawn a 

considerable attention of welfare economists all over the globe. Of particular interest is the 

notion of ‘subgroup decomposability’ of an inequality index, which deals with the contribution 

of different groups in the measurement of inequality in a multi-group context. This type of 

decomposition helps the policy-maker identifying the subgroup responsible for the enhancement 

of inequality. In this situation, the subgroup-decomposability of the inequality index under 

consideration requires that the overall inequality can be expressed as a sum of a between-group 

term and a within-group term. The between-group term measures the inequality among the 

subgroups obtained by replacing the individual incomes by the mean incomes of the subgroups 

while the within group term is a weighted sum of the inequality measures of the subgroups. The 

notion of subgroup-decomposability of an inequality index came to the fore on the eighties of the 

last century. Bourguigon (1979), Shorrocks (1980, 1984), Blackorby et al (1981) and Foster 

(1983) were among those who contributed to the area.  

 

Shorrocks (1980) identified the class ( )cI  of all symmetric (that is, invariant under all 

permutations of incomes), scale-invariant (homogeneous of degree zero), twice continuously 

differentiable and subgroup decomposable inequality indices satisfying Population Principle 

(invariance under replications of the population) and non-negativity (the index is non-negative 

valued and it vanishes if only if all the incomes are equal). The family cI  is popularly known as 

the generalized entropy family.    

 

Replacing the notion of ‘scale invariance’ by ‘translation invariance’, Chakravarty and 

Tyagarupananda (1998) characterized the class of all absolute subgroup decomposable indices 

(satisfying other conditions as in Shorrocks (1980)). The isolated class includes variance and the 

Kolm absolute inequality index θI , where θ  is a positive real number.  

 

Bosmans and Cowell (2010) demonstrated how ‘translation invariance’ can be used as a tool for 

identification of the family of ‘absolutely decomposable’ inequality indices. In particular, an 

inequality measure satisfying anonymity, the transfer principle, population replication 



invariance, absolute decomposability and translation invariance if and only if there exists a real 

number 𝜃 and a continuous and strictly increasing transform of the inequality index equals either 

variance or Kolm absolute inequality index.      

 

In a remarkable contribution, Zheng (2007) contended that the notion of invariance (scale/ 

translation/ intermediate) depends on the value judgment of the policy maker. To get rid of this 

problem, he suggested the use of ‘unit consistency’ condition (a natural generalization of ‘scale 

invariance’) and then located the relevant class of decomposable measures. It has been shown 

that the latter is a two-parameter extension of the one-parameter generalized entropy family.  

 

Following the argument put forward by Zheng (2007), one may wonder if it is possible to find an 

ordinal counterpart of ‘translation invariance’ and axiomatize the corresponding class of 

decomposable inequality indices. This paper makes an attempt to answer this question. We first 

define a ‘translation consistent’ inequality index. To illustrate the notion, consider two income 

distributions 1D  and 2D  and let the inequality index I  rank 1D  higher than 2D . Now, if all the 

incomes in both the distributions be increased/decreased by a constant amount, then translation 

consistency demands that I should rank the former higher than the latter. Obviously, a translation 

invariant inequality index is ‘translation consistent’, but the converse is not true. Thus, the class 

of all ‘translation consistent’ inequality indices includes θI  and the variance. In other words, the 

class characterized in this paper can be viewed as a generalization of the class mentioned in 

Chakravarty and Tyagarupananda (1998).  

 

The scheme of the paper is as follows. After discussing the background material in the following 

section, we present the characterization theorems in section 3. Finally, section 4 concludes the 

treatise.  

 

2. The Background 

For a population of size n, the vector ( )nxxxx ,..,, 21=  represents the distribution of income, 

where each ix  is assumed to be drawn from the non-degenerate interval [ )∞,υ  in the positive 

part 1
++R of the real line 1R .  Here ix  stands for the income of person i  of the population. For any 



i , ∈ix [ )∞,υ  and so, [ )nnDx ∞=∈ ,υ , the n-fold Cartesian product of[ )∞,υ .  The set of all 

possible income distributions is ∪
Nn

nDD
∈

= , where N is the set of natural numbers. For all

Nn∈ , for all n
n Dxxxx ∈= ),....,,( 21 , ( )∑

=

n

i
i nx

1
, the mean of x , is denoted by ( )xλ (or simply by

λ ). For all Nn∈ , n1  denotes the n-coordinated vector of ones. The non-negative orthant of the 

n -dimensional Euclidean space nR is denoted by nR+ . An inequality index is a function

1: +→ RDI .  

An index of inequality can satisfy invariance of two types viz. scale invariance and 

translation invariance. A scale invariant (relative) index remains constant under equi-

proportionate changes in all incomes. In contrast, a translation invariant (absolute) index remains 

unaltered under equal absolute changes in all incomes. These two concepts of relative and 

absolute inequality express two different notions of value judgments about inequality 

equivalence. As labeled by Kolm (1976), the former refers to the ‘rightist’ view and the latter to 

the ‘leftist’ view. Apart from these two extreme modes of invariance, there is a notion of 

intermediate invariance which corresponds to the so-called ‘centralist’ viewpoint (see 

Chakravarty and Tyagarupananda, 2009). 

To be precise, an inequality index 1: +→ RDIR  is a relative or scale invariant index if 

proportional changes in all incomes do not change inequality, that is, for all Nn∈ , nDx∈ , 

)()( xIcxI RR = ,                                                                             (1)                                                                

where  0>c  is any scalar. Similarly, an inequality index 1: +→ RDI A  is absolute / translation 

invariant if for all Nn∈ , nDx∈ ,                                                                              

( ) ( )xIcxI A
n

A =+ 1 ,                                                          (2) 

where c  is a scalar such that nn Dcx ∈+ 1 . 

The following postulates are considered to be standard regularity conditions of an 

arbitrary inequality index 1: +→ RDI  (whether relative or absolute). 

Symmetry (SYM): For an arbitrary Nn∈ , if nDx∈ , then )()( yIxI = , where y  is any 

permutation of x . 



Principle of Transfers (POT): For an arbitrary Nn∈ and nDx∈ , suppose that y  is obtained 

from x  by the following transformation 

jii ycxy ≤+= , 

cxy jj −= , 

and             kk xy =  for all jik ,≠ ,                                                (3)                                    

where 0>c . Then )()( xIyI < . 

Principle of Population (POP): For all Nn∈ , nDx∈ , )()( yIxI = , where ),....,,( 21 lxxxy = , 

each xxi =  and 2≥l  is arbitrary.  

Normalization (NOM): For all Nn∈ , ( )1 0nI c = for all 0>c .  

Non-negativity (NON): For all Nn∈ , nDx∈ , ( ) 0I x =  if and only if ( )1nx xλ= . 

According to SYM, a condition of anonymity, I  remains invariant under reordering of all 

incomes. Thus, SYM implies that any characteristic other than income has no relevance in the 

measurement of inequality. POT (popularly known as the Pigou-Dalton principle; also referred 

to as strict Schur-concavity) says that a transfer of income from a rich person j to a poor person i  

that does not change their relative positions reduces inequality while the reverse happens in case 

of a transfer from a poor to a rich. According to POP, inequality remains unaltered under 

replications of the population. Thus, POP plays significant role in cross population comparisons 

of inequality. NOM stipulates that inequality vanishes if there is perfect equality in the 

underlying distribution. Finally, NON imposes a typical restriction on NOM. It demands that the 

inequality index can never vanish unless there is perfect equality. 

We now fix our attention to the notion of decomposability of an inequality index. An 

inequality index is said to be population subgroup decomposable if it satisfies the following 

axiom: 

Subgroup Decomposability (SUD): For all 2≥k  and for all Dxxx k ∈,....,, 21 , 

( ) ( )knk
nnIxI 1,.......,1,1 21

21 λλλ= + ( ) ( )∑
=

k

i

i
i xIn

1
,λω ,                    (4)                                                      



where in  is the population size associated with the distribution ix , ∑=
=

k

i
inn

1
, )( ii xλλ = = mean 

of the distribution ix , ( )kλλλλ ,.....,, 21= , knnnn ,......,,( 21= ), ),( λω ni  is the positive weight 

attached to inequality in ix , assumed to depend on the vectors n  andλ , and ( )kxxxx ,.....,, 21= . 

SUD shows that for any partitioning of the population, total inequality can be broken down into 

its between-group and within-group components. The between-group term ( )BI  gives the level 

of inequality that would arise if each income in a subgroup were replaced by the mean income of 

the subgroup and the within- group term ( )WI  is the weighted sum of inequalities in different 

subgroups (see Foster, 1985 and Chakravarty, 2009).  

Shorrocks (1980) demonstrated that a twice continuously differentiable inequality index 
1: +→ RDI  satisfying scale invariance, SUD, POP, SYM and NON must be a positive multiple 

of the following form: 
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                              (5)                                                                                                                          

The family eI , which is popularly known as the generalized entropy family, satisfies POT. A 

transfer from a rich person to a poor decreases cI  by a larger amount the lower is the value of c .  

Proceeding analogously, Chakravarty and Tyagarupananda (2009) characterized the 

SUD-family of absolute inequality indices. To be specific, the class of twice continuous 

differentiable inequality indices satisfying SUD, POP, SYM and NON that remains invariant 

under equal translation of all incomes comprises: 

                                     [ ]∑ −=
=

−n

i

xie
n

xI
1

)( 11)( λθ
θ , 0≠θ ,                                                    

                                     2

1

21)( λ−∑=
=

n

i
iV x

n
xI .                                                                     (6) 



The variance VI  and the index θI (commonly known as the Kolm absolute measure of 

inequality), satisfy POT for all real non-zero values of θ  (see Chakravarty and Tyagarupananda, 

2009).  

Bosmans and Cowell (2010) introduced the notion of ‘absolute decomposability’ of an inequality 

measure. According to their definition, an inequality measure 1: +→ RDI  is decomposable if 

there exists a function A such that for all 𝑥,𝑦𝜖𝐷,  

   𝐼 𝑥,𝑦 = 𝐴 𝐼 𝑥 , 𝐼 𝑦 , 𝜆 𝑥 , 𝜆 𝑦 ,𝑛 𝑥 ,𝑛 𝑦 ,          (7) 

where A is continuous and strictly increasing in its first two arguments and 𝑛 𝑥  denotes the 

dimension of 𝑥. 

They then demonstrated that an inequality measure 𝐼:𝐷 → 𝑅 satisfies SYM, POT, POP, 

absolute decomposability and translation invariance if and only if there exists a real number 𝜃 

and a continuous and strictly increasing function 𝑓:𝑅 → 𝑅 with 𝑓 0 = 0 and such that for all 

𝑥𝜖𝐷,  

     𝑓 𝐼 𝑥 = 𝐼! 𝑥  or 𝐼! 𝑥             (8) 

as defined in Chakravarty and Tyagarupananda (2009). 

 

Zheng (2007) argued that the notion of scale/translation invariance of an inequality index should 

be replaced by that of ‘unit consistency’. The latter demands that for any two distributions 

𝑥,𝑦 ∈ 𝐷 if  𝐼 𝑥 < 𝐼 𝑦 , then 𝐼 𝜅𝑥 < 𝐼 𝜅𝑦  for all 𝜅 ∈ 𝑅!!!  . The author then characterized all 

differentiable, unit-consistent SUD inequality indices satisfying SYM, POP, POT and NOM. 

The resulting index is a positive multiple of 
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                              (9) 

for 𝛼,𝛽 ∈ 𝑅.  



Clearly, this family is a two parameter extension of the generalized entropy family; if 𝛼 = 𝛽, 

then 𝐼!,! coincides with 𝐼!.  

3. The Characterization Theorem 

We begin this section with the formal definition of translation consistency of an inequality 

measure. 

Definition 1: An inequality index 1: +→ RDI  is said to be translation consistent if for all

, ,nx y D∈ ( ) ( )I x I y<  implies ( ) ( )1 1n nI x c I y c+ < +  for all scalar c such that

1 , 1n n nx c y c D+ + ∈ .  

As already mentioned in the previous section, both variance and the Kolm measure, being 

translation invariant, are translation consistent as well. However, it can be demonstrated that no 

member of the generalized entropy class satisfies translation consistency. For example, with 

( )1,3,8x = , ( )2,3,10y =  and 10c =  we have, ( )2 1.625I x =  and ( )2 1.52I y =  while 

( )32 1 0.1326I x c+ =  and ( )32 1 0.1689I y c+ = . Thus, ( ) ( )2 2I x I y>  but 

( ) ( )3 3
2 21 1I x c I y c+ < + . In other words, 2I  fails to satisfy translation consistency. 

The first result of this section, whose proof is similar to that of Proposition 1 in Zheng (2007), is 

on the necessary and sufficient condition of translation consistency. 

Proposition 1: An inequality index 1: +→ RDI  is translation consistent if and only if for all 

x D∈  and for all 0c > , there exists a continuous function 1 1 1:f R R R++ + +× → , which is 

increasing in the second argument such that  

( ) ( )1 , ( )nI x c f c I x+ =           (10) 
      

We next mention a result borrowed from Shorrocks (1980). 
 

Proposition 2: A differentiable inequality index I satisfies SYM, POP, SUD and NOM if and 

only if these exist functions 1 1: R Rξ + ++→  and 1 1: R Rφ + +→  such that for any nx R+∈ ,  

( )
( )

1

1( ) ( ) ( )
( )

n

i
i

I x x x
n x

φ φ λ
ξ λ =

= −⎡ ⎤⎣ ⎦∑          (11) 

where ξ  is differentiable; φ  is strictly convex and continuously differentiable.  

 



The first major finding of this section is on the implication of translation consistency. 

 

Proposition 3: If an inequality index I satisfies SYM, NOM, SUD, POT and translation 

consistency, then  

  ( )1 ( )n cI x c I xτ+ =            (12) 

for all 0c >  and some constant 0>τ . 

 
Proof: Proceeding as in Proposition 3 of Zheng (2007) and maintaining the same set of notations 

we arrive at  

 
  ( , ) ( )f c k a c k=            (13) 

whenever 0c > , for some constant ( ) 0a c ≠ . 

(13), along with (10) implies that for any x D∈ , 

 
     ( 1 ) ( ) ( )nI x c a c I x+ =            (14) 

 
from which it follows that for arbitrary 1 2, 0c c > ,  

    ( ) ( )1 2 1 2 ( )nI x c c I a c c I x+ + = +           (15) 

and         ( ) ( ) )( 1221
nn IcxIcaIccxI +=++  

                          = )()()( 21 xIcaca           (16) 

 
(15) and (16) together yield: 

        )()()( 2121 cacacca =+            (17)  

for all 1 2, 0c c > .  

The only continuous solution to this equation is given by  
cca τ=)(             (18) 

 
where 0c > . Positivity of τ is a consequence of non-negativity of I . This completes the proof 

of the proposition. ∎  

 

We have now caught hold of all the machineries necessary for proving our main result.  



 
Theorem 1: An inequality index 1: +→ RDI  satisfies SYM, NOM, POP, SUD, POT, 

continuous differentiability and translation consistency if and only if it is a positive multiple of 

the form  
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Proof of the proposition uses the following lemma. 

 
Lemma 1: Whenever I satisfies (12) we have,  

 
( )

1
( ) (ln ) ( )

n x

i
i
I x I xτ

=

=∑ .               (20) 

 
 Proof of Lemma 1: Fix nx R++∈ and define 1 1:g R R+ +→  by 

)1()( ncxIcg +=            (21) 

By differentiability of I  it follows that  

          ( ) ( 1 ).1n ng c I x cʹ′ =∇ +            (22)  

where v∇  is the gradient of v .  

By continuous differentiability of I  we have,  

1
'(0) ( ).1 ( )

n
n

i
i

g I x I x
=

= ∇ =∑            (23) 

But    

( ) ( )cg c I xτ= .            (24)  

Differentiating both sides of (24) we get,  

( ) ln ( )cg c I xτ τʹ′ =             (25)  

From (25) it readily follows that 

'(0) ln ( )g I xτ=             (26) 
 
Comparing (23) and (26) we are done. ∎ 



 
Proof of Theorem 1: Let nx R++∈ . Differentiating (11) partially w.r.t. ix we get,  
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Next, taking sum over all i ,  
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2
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Differentiating both sides of (11) partially w.r.t. ix and making use of (21) we get,   

 

[ ] [ ]
1
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Rearranging we get,  
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1 1
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µ
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Differentiating (23) partially w.r.t. ix we get,  
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1 1( ) (ln ) ( ) ( ) ( )
n

i
i

x
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Replacing ix  and jx in (24) and taking difference of both sides we get, 

 
{ } { }( ) ( ) ( ) ( ) (ln ) ( ) ( ) ( )i j i jx x x xψ λ φ φ ψ λ τ ψ λ φ φʹ′ʹ′ ʹ′ʹ′ ʹ′ ʹ′ ʹ′⎡ ⎤− = + −⎣ ⎦         (32) 

 



Since this holds for all 1,i jx x R++∈ ,  it follows that  

( ) ,
( )

ψ λ
δ

ψ λ
ʹ′

=  a constant.            (33) 

 
Solution to (33) is given by:  

 
( ) K λψ λ δ=             (34) 

for some constant .K Since ψ  is positive-valued, it follows that 0.K >  

 
Substituting (34) in (32) we get,  

 ( )( ) ( ) ln ( ) ( )i j i jx x x xφ φ δ τ φ φʹ′ʹ′ ʹ′ʹ′ ʹ′ ʹ′⎡ ⎤− = + −⎣ ⎦ ,         (35) 

that is, 

( ) ( )( ) ln ( ) ( ) ln ( )i i j jx x x xφ δ τ φ φ δ τ φʹ′ʹ′ ʹ′ ʹ′ʹ′ ʹ′− + = − +     (36) 

It follows that  

 
( )( ) ln ( )i ix x bφ δ τ φʹ′ʹ′ ʹ′− + =            (37) 

for some constant b.  

 
Thus, ( )y xφ= satisfies the differential equation  

( )2D D y bγ− =             (38) 
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2
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The complete solution to (38) is given by  

   

2
0 1 0

1 2 1 2

; , , , ( 0)
2( )

; , , ( 0)x

bc c x x b c c R
y x

bc x c e c c b Rγ

γ
φ

γ
γ

⎧ + + ∈ =⎪⎪
= = ⎨

⎪ − + ∈ ≠
⎪⎩

        (39) 

Using strict convexity of φ  it further follows that  

0>b  in the first case and 02 >c in the second. 

 
Simplified forms of I  corresponding to the solutions in (39) can be described as follows.  
 



Case I: 0γ = .  
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Case II:  0.γ ≠  

    
( ) ( ) ( )

( )
( ){ }2

1 2 1 2 2
1

1( ) i i

n
x xx x

ix x
i

cb bI x c x c e c x c e e c e
Kn Kn

γλ γλγ γ
λ λ

λ
α αδ δ=

⎡ ⎤= − + − + − = −⎢ ⎥⎣ ⎦
∑       (41) 

(40) and (41) can be clubbed together to produce a positive multiple of (19). ∎ 

 

Remark 1: The substitution eγδ =  transforms ,Iγ δ
 
to eI . Thus, ,Iγ δ

 
can be viewed as a 2-

parameter extension of the family ( ), VI Iθ  characterized by Chakravarty and Tyagarupananda 

(1998). 

Remark 2: It can be easily verified that none of the measures ,Iγ δ

 

is scale invariant. However, 

the variance is the only member of this family which is unit consistent. Thus, there is a subgroup 

decomposable inequality index which is both unit consistent and translation consistent. 

 

Zheng (2007) talks of extreme rightist and extreme leftist views of inequality measurement. An 

extreme rightist measure I is one which is reduce when all the incomes are increased by the same 

proportion, that is, if ( ) ( )I ax I x<  for all 1a > . One can easily see that none of the ,Iγ δ  indices 

agrees with the extreme rightist view. Similarly, I is an extreme leftist measure if it is increased 

when all the incomes are increased by the same amount, that is, if ( ) ( )1nI x c I x+ >  for all 

0c > . A simple calculation shows that ,Iγ δ  conforms to the extreme leftist view if eγδ < .  

 

4. Conclusion 
Following Zheng (2007), we have thus identified in this paper a generalization of the class of 

subgroup-decomposable absolute indices of inequality. A number of questions are yet to be 

answered. For example, one may be interested to know whether any member of the generalized 

family satisfies the principle of ‘diminishing transfers’ suggested by Kolm (1976). One may also 

feel inclined to enquire whether the axiom of ‘intermediate invariance’ mentioned in 



Chakravarty and Tyagarupananda (2009) can be relaxed to a condition of ‘intermediate 

consistency’ to classify a new family of subgroup-decomposable indices. We leave these 

problems for future research programs.  
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