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QUANTIFYING SPATIAL MISALLOCATION IN CENTRALLY
PROVIDED PUBLIC GOODS

SIVA ATHREYA AND ROHINI SOMANATHAN

Abstract. We show how an optimization algorithm can be used to approximately quan-

tify the costs to users of spatial misallocation in centrally provided public goods. This

method can be employed to evaluate the large programs of public good construction that

have been central features of economic plans in many developing countries. We apply

these methods to the allocation of post-offices in an administrative block of South India

between 1981-1991 and find that more appropriate choices for post office locations could

have reduced aggregate costs of travel to citizens in this area by at least 20%.

May 18, 2004

1. Introduction

Many countries, at some point during their development process, have initiated large

construction programs to make public goods accessible to their citizens. A major thrust

of the Second Five Year Plan in Indonesia in the 1970s was to improve access to primary

schools ([4]). At roughly the same time, the Indian government, under the Minimum

Needs Programme began constructing a variety of infrastructural projects in rural areas

([10]). The stated objective in these and other similar programs was to bring amenities

close to their potential users.

There are plausible reasons why factors other than the proximity of users may have

influenced actual allocations. The political power of local elites or differences in the

strength of collective action across settlements could bias allocations in favor of some
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support and to Abhijit Banerjee, Satish Rao and E. Somanathan for very useful discussions.
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sections of the population ([14]). A substantial body of empirical work suggests that

social cohesion and local collective action does vary across communities and that these

variables influence the level and quality of public goods ([1] [11] [7]). This appears to be

true even when public goods are centrally financed ([8] [3]). While the existing empirical

literature has established the importance of a community’s characteristics in determining

its share of total allocations, there is no work, to our knowledge, on measuring the total

welfare loss resulting from these biased allocations.

In this paper, we propose a method which can be used to quantify the costs of misallo-

cation in public goods, relative to an allocation which minimizes the aggregate distance

traveled by users. Specifically, we are concerned with the problem in which at some initial

time period, there is an arbitrary spatial distribution of users residing in a large but finite

set of locations and an existing set of public facilities. Citizens are identical in all respects

other than their location and use the facility closest to them. Their travel costs are linear

in the distance traveled to a facility. During a subsequent period, a planner allocates a

given number of additional facilities. At the end of the program, we are interested in

computing the difference between travel costs corresponding to the observed location of

facilities and those that would occur if facilities were located with the objective of mini-

mizing such costs. This difference provides us with a measure of the cost of misallocating

public goods in the area.

With a small number of locations, the allocation of a set of public facilities which minimizes

aggregate travel costs can be easily computed. This is because the number of possible

configurations is small and a comparison of the travel costs associated with them is all that

is required. As the number of habitations increases, the number of computations required

increases exponentially and this optimization problem becomes intractable. Problems

of this type have been shown to be NP-hard [9]; in other words, for large numbers of

users and locations, the number of calculations needed for an optimal solution using any

possible algorithm is so huge that a computer cannot do them in a reasonable amount of

time.
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A variety of algorithms have been developed to obtain ε-suboptimal solutions to such

problems. That is, suppose Z is the optimal cost for the above problem, Zε is said to

be ε-suboptimal if Zε < (1 + ε)Z. For this epsilon price in optimality, the algorithms are

able to provide allocations which can be computed in reasonable (or polynomial) time.

Such algorithms guarantee a value for the objective function that does not deviate from

the optimized value by more than a (1 + ε) factor. In this paper, we show that our public

goods location problem can be written as a version of a problem in this literature and

this allows us to adapt an existing algorithm to compute an allocation for our problem in

which travel costs are at most 1.61 times those in the optimal allocation. The difference

between computed costs based on the allocation by the algorithm and those based on the

observed location of public goods is a lower bound for the cost of misallocating public

goods.

We apply the algorithm to data on the location of villages and post offices in an admin-

istrative block in South India for two census years, 1981 and 1991. We use post offices

as our public amenity since the services they provide are fairly uniform, they are used

by most households and do not have any close substitutes in rural India. We focus on a

region in South India because geo-coded spatial data is available for this part of the coun-

try. We combine data on village locations with census data on village populations and

post offices. It would have been ideal to use data from the 1971 Census, since the rapid

growth of infrastructural facilities in rural areas began in the 1970s, but we were not able

to obtain village level for this period. Between 1981 and 1991, there was a 23% increase in

the number of villages with post office facilities in the area we study. Our objective is to

find the allocation of these additional post offices which would have minimized aggregate

travel costs in 1991.

The difference in aggregate distance traveled under the allocation made by the algorithm

and the actual allocation recorded in the census data for 1991 is a little over 21%. Given

that costs associated with the computed allocation could be as much as 1.61 times the

costs corresponding to the minimized solution, this is a lower bound on the cost savings
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that could have been achieved by the planner. Such deviations from optimal allocations

could have resulted because the decision makers had a different objective function, in-

corporating, for example, the political influence enjoyed by different villages or other

community characteristics discussed is the literature. Or, they may simply reflect the

difficulties of solving the travel cost minimization problem.

Section 2 contains the statement of our problem and a brief description of the algorithm

we use to obtain an approximate solution. Section 3 applies the algorithm to data on

the location of villages and post offices in the administrative block of Vriddhachalam in

South India, and compares travel costs from the resulting allocation with actual travel

costs. Section 4 concludes with a mention of some possible directions for future research.

A detailed description of the algorithm and the mathematical analysis is presented in

Section 5.

2. Solving the planner’s problem

In keeping with the standard notion of public goods, we assume that they have no marginal

costs of additional users. A planner observes an existing distribution of these goods, and

would like to allocate a fixed number of additional facilities to minimize the total distance

traveled by users after the allocation. A precise statement of this problem is given below.

Problem 2.1. Suppose there are n villages with locations given by V = {v1, v2, . . . , vn} in

a specified geographical area and there are k1 facilities located at {s1, . . . sk1} (a subset of

V ). Let Pj be the population in village j. The planner wants to allocate an additional k2

facilities in a manner which minimizes aggregate distance traveled by the entire population.

In particular define

Z(n, S) =
n∑

j=1

Pj min
1≤i≤k1+k2

‖ vj − si ‖,

where S = {sk1+1, sk1+2, . . . , sk1+k2} ⊂ R2 is the set of positions of the k2 facilities and

‖ vj − si ‖ denotes the Euclidean distance between i-th village and the j-th facility. The
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planner needs to find an allocation S so as to achieve Z given by

(1) Z = min
S:|S|=k1+k2

Z(n, S),

where | S | is the number of elements in the set S.

This problem is a constrained version of the well known k-median problem, in which,

starting with no facilities, a total of k = k1 + k2 facilities are allocated to minimize

aggregate distance traveled. For large values of n this problem is known to be NP-hard

[9]. The main difference between the k-median problem and Problem 2.1 is in the location

of k1 facilities. These cannot be changed in Problem 2.1 and the planner allocates only

k − k1 facilities to minimize the same objective function.

A number of available algorithms can be used to obtain ε-suboptimal solutions to the k-

median problem (see for instance [2] and [13]). For obtaining a solution for Problem 2.1,

we adapt the algorithm presented in [6] for a related problem called the facility location

problem. This allows us to obtain a value of the objective function in Problem 2.1 which

is at most 1.61 times the minimized value.

We briefly describe the algorithm here for the case when k1 = 0 and show how it can be

adapted to provide a solution to Problem 2.1. Section 5 contains details of the algorithm

and we show there that the travel costs resulting from our solution to Problem 2.1 are at

most 0.61-suboptimal.

The algorithm proceeds by opening facilities at selected villages and connecting villages

to these facilities. People in a village will access the facility that the village is connected

to. The travel cost for each village is therefore equal to the distance of the facility from

the village multiplied by the village population.

It begins with some initial cost of opening a public facility at village i. Denote this by

fi. We discuss how to choose fi in the next paragraph. Let dij denote the distance from

village i to village j. We start at time 0. At this time, each village j has a budget, Bj,
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which is initialized to 0 and a potential facility. The budget of the village increases by

1 in each time period, as long as it is unconnected to an open facility. In each period,

if the budget of a village j is bigger than the distance to a potential facility i, it offers

that facility the difference (Bj − dij) times its population Pj. A facility i is opened the

moment that contributions to it reach the facility cost fi. Once a facility is opened, all

villages with positive contributions to it are connected to it. If a village j is already

connected to some other facility i′, then its offer to facility i in each period is equal to

Pj ∗ max(di′j − dij, 0) (the saving in travel cost for j incurred by switching from i′ to

i). The algorithm continues until all villages are connected to some open facility and the

total number of facilities opened is equal to the desired number k.

For the case where k1 = 0, we set all fi to be a constant f . From the discussion on

page 244-245 in [13], or the detailed description of the algorithm in Section 5, it is easy

to observe that the number of facilities opened is a decreasing function of facility cost

f . Hence if the number of facilities opened by the algorithm is less (greater) than k,

the facility cost f is lowered (raised) and the algorithm is run again, until the number

of additional facilities, after all connections have been made, is exactly equal to k. For

Problem 2.1, we must ensure that our algorithm opens k1 facilities at villages that have

pre-existing facilities and an additional k2 facilities elsewhere. For this to happen we

set fi = 0 if village i has an opened facility in period 1, else we set it to a constant f .

By design the algorithm will open the existing k1 facilities. If the number of additional

facilities opened by the algorithm is less (greater) than k2, the facility cost f is lowered

(raised) and the algorithm is run again, until the number of additional facilities, after all

connections have been made, is exactly equal to k2.

At times a situation may arise where one cannot find a f that produces k1 + k2 facilities.

In such cases an approach laid out in pages 247-251 [13] is used. It involves a procedure

called randomized rounding. However this has a doubling effect on the optimality factor.

For our dataset we were able to find such an f and did not have to use this (See Section

5).
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Table 1. Summary of Results

Quantity 1981 1991 Algorithm

Actual Actual 1991-1981

Total travel cost in kms. 133747 115197 94887

Average population in 1991 of

of villages without 1120 1079 998

post offices.

Average distance in kms.

to nearest 1.59 1.51 1.37

post office

(for villages without post offices)

Population in 1991

of largest village 3407 2634 2502

without post office

3. Post offices of South India

In this section we apply the algorithm for Problem 2.1 to data from the administrative

block of Vriddhachalam in South India. We use data from the Census of India for 1981 and

1991 on village populations and the availability of post offices in each village. We combine

these with geo-coded data for village locations available in the South India Population

Information System which has been put together by the French Institute in Pondicherry.
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According to the census data, out of a total of 156 villages in the area, there were 70

villages with post office facilities in 1981. This figure went up to 86 in 1991.1 We calculate

the travel cost per village as the product of the population of the village and the distance,

in kilometers, to the nearest village with a post office facility.2 We have used the Euclidean

distance between the two villages rather than the actual road distance. The data on road

distance is hard to obtain. In addition, the shortest route taken to a post office from any

village in this area is not likely be on paved roads, but through fields and footpaths. Since

we are dealing with facilities that are fairly numerous in fairly flat terrain, it is reasonable

to assume that ordering of distances based on routes actually taken by villagers will not

be too different from the Euclidean distances.

Our results are presented in Table 1. For purposes of comparison, we list some charac-

teristics of the allocation in 1981 and 1991 which we observe in the census data. Of the

16 new post office facilities allocated during this period, we have five matches between

algorithm and actual allocations. Aggregate travel costs in 1991 are 21% higher than

those corresponding to the algorithm for Problem 2.1. As can be seen from Table 1, the

cost saving achieved by the algorithm seems to result both from locating post offices in

more densely clustered areas as well as in bigger villages.

4. Discussion

We have proposed a method, based on the literature on optimization algorithms, for

calculating a lower bound on the extent of misallocation in programs of public good

construction. The procedure outlined in this paper allows for allocations to be constrained

by the distribution of pre-existing facilities. In this sense it solves a two-period problem.

The algorithm used is an adaptation of static algorithm in the literature which has an

1There were 11 villages for which post office facilities were recorded in the census data of 1981 but

they were not marked in the 1991 census data. Conversations with census officials led us to believe these

were errors of omission in 1991. Our figure of 86 for 1991 therefore includes these.
2This means that the village has either a post office or a post and telegraph office.
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optimality factor of no less than 1.61 and we show that our algorithm maintains the same

optimality factor.

The two-period nature of our problem deserves emphasis. Had we not taken account of

pre-existing facilities, the difference between the observed allocation and the one given by

the algorithm could not be attributed to misallocation. On the other hand, had period

2 not been the final period, we would not be able to term the differences between actual

and computed allocations as inefficiency. The actual allocation may be part of a solution

to a dynamic problem in this class, which will not, in general, minimize travel costs every

period. It is for these reasons that our methods are best suited to evaluate time-bound

programs of expansion in public amenities in which the goals of the program are stated

in terms of benefits and costs in the final period alone. An obvious extension of this work

would be to examine multi-period problems of public good locations. This is an open

area in terms of both analytical solutions for small finite populations and algorithms for

larger populations.

Geo-coded data is rapidly becoming available for many parts of the world. The methods

proposed here can be used to generate variables which capture the quality of governance.

The difference between actual and optimal solutions to the spatial location problem can

be correlated with other characteristics of geographical areas to provide insight into the

mechanisms used by governments to provide public goods.

5. Algorithm and Analysis

In this section will present a method to find an allocation that will provide an 0.61-

suboptimal solution to Problem 2.1. The first two steps of the solution involve adapting

an algorithm presented in [6] for a closely related problem. This algorithm opens a certain

number of facilities and connects villages to them with the objective of minimizing total

travel plus facility costs. The last step of the solution adjusts opening costs to so as to
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open a pre-assigned number of facilities. In Section 5.1 we provide a detailed analysis of

the solution.

Steps to solve Problem 2.1

Let V be as before. Let dij =‖ vj − vi ‖ be the distance between villages.

(1) For each village i, we define fi to be the cost of opening a facility at village i. We

set fi = 0 for all i if the facility i was opened in period 1. For all other i set fi = f

an initial constant.

(2) In this step we perform the following algorithm for the chosen f .

Algorithm A (From [6]).

(a) We introduce a notion of time. The algorithm starts at time 0. At this time,

all villages are unconnected, all facilities are unopened, and the budget of

every village j, denoted by Bj, is initialized to 0. At every moment, each

village j offers some money from its budget to each unopened facility i. The

amount of this offer is computed as follows: If j is unconnected , the offer is

equal to Pj ∗ max(Bj − dij, 0) (i.e., if the budget of j is more than the cost

that it has to pay to get connected to i, it offers to pay this extra budget to

i); If j is already connected to some other facility i′, then its offer to facility

i is equal to Pj ∗ max(di′j − dij, 0) (i.e., the amount that j offers to pay i is

equal to the amount j would save by switching its facility from i′ to i).

(b) While there is an unconnected village, increase the time, and simultaneously,

increase the budget of each unconnected village at the same rate (i.e., every

unconnected village j has Bj = t at time t), until one of the following events

occur. If multiple events occur at the same time, process them in an arbitrary

order.

(i) For some unopened facility i, the total offer that it receives from villages

is equal to the cost of opening i. In this case, we open facility i, and for
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every village j (connected or unconnected) which has a non-zero offer

to i, we connect j to i.

(ii) For some unconnected village j, and some facility i that is already open,

the budget of j is equal to the connection cost between j and i. In this

case we connect village j to facility i.

(c) Perform this step after (a) and (b) are completed and all villages are connected

to a open facility. Reassign the connections of each village to the nearest open

facility.

(3) The f chosen in Step 1, may open exactly k1 + k2 facilities. If it does then we

are done. Otherwise notice that the algorithm will open more facilities for small

values of f and less facilities for large values of f . Hence via binary search or

otherwise arrive at a value of f that opens k1 + k2 facilities

For our dataset the correct value of f = 3400. It maybe happen that one cannot

find a f that produces k1 +k2 facilities then an approach laid out in pages 247-251

[13] could be used. It involves a procedure called randomized rounding. However

this has a doubling effect on the optimality factor.

5.1. Analysis. In this section we discuss the validity and the optimality of the solution

provided above. For Problem 2.1, we need to address two issues. First is that, the solution

opens k1 facilities at places which had facilities in time period 1. This is achieved because

once a facility i has fi = 0, the algorithm A will open it straightaway. This is seen easily

on a second reading of the algorithm. As soon as we find an f that opens k1 +k2 facilities,

we have opened the additional k2 facilities as desired.

The second issue is of the optimality factor. This analysis relies on the ideas presented

in pages 244-245 [13] and the result in [6]. For completeness we present the statement

and the argument in its entirety below. We present the broad intuitive idea first. In [6]

it is shown that Algorithm A provides a 0.61-suboptimal solution for a closely related

problem called the Facility Location problem. It so happens that the objective function

and of this problem and Problem 2.1 are very similar. The key difference being that the
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former does not impose any direct bound on the number of facilities opened. However

knowing that Step 3 was successful in our solution and using a standard theorem in the

Linear programming literature called the LP-duality Theorem we are able to obtain the

optimality factor of our solution to Problem 2.1.

Proposition 5.1. Assume that Step 3 in our Solution to Problem 2.1 is successful. Then

the allocation provided by this solution is a 0.61-suboptimal solution of Problem 2.1.

Before we provide the proof of this proposition we need some preliminary facts and results

from the Linear Programming literature.

5.1.1. Preliminaries. Let fi, Pj, dij be as before. We proceed to state the result from [6].

Consider the following integer Linear programming problem called the Facility Location

problem (FLP) and the dual problem associated with the relaxed LP3.

FLP Dual

minimise
n∑

i,j=1

xijPjdij +
n∑

i=1

yifi,(2)

Subject to:
n∑

i=1

xij ≥ 1 ∀j.(3)

yi − xij ≥ 0 ∀i, j.(4)

yi ∈ {0, 1}, xij ∈ {0, 1} ∀i, j.(5)

maximise
n∑

j=1

αj ,(6)

Subject to:

αj − βij ≤ Pjdij , ∀i, j.
n∑

i=1

βij ≤ fi ∀j.

αj ≥ 0, βij ≥ 0 ∀i, j.

The above problem is known as the Facility Location problem.The variable xij = 1 implies

that village j is connected to facility in village i (i.e. people from village j would be using

the facility in village i) and yi = 1 implies that the facility in village i is opened. (3)

3The relaxed problem is the facility location problem but with constraint (5) replaced by xij ≥ 0 and

yi ≥ 0.
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ensures that every village is connected to at least one facility and (4) ensures that facility

is open. The objective function calculates the net costs of opening facilities and traveling

to them.

Theorem 5.1. (From [6]). Algorithm A provides a 0.61-suboptimal solution to the facility

location problem (2). Moreover the allocation provided by Algorithm A satisfies the

(7)
n∑

i,j=1

xijPjdij + (1.61)
n∑

i=1

yifi ≤ (1.61)
n∑

j=1

αj,

where αj is a feasible solution of the dual problem (6).

Next we observe that Problem 2.1 can be represented as a integer linear programming

model as follows. Rename the villages by the index set I = {1, . . . , n}. Let I1 ⊂ {1, . . . , n}

be the set of villages that have opened facilities in period 1. We now present the LP and

the dual to the relaxed LP.

Integer LP (≡ Problem 2.1) Dual

minimise
n∑

i,j=1

xijPjdij(8)

Subject to:
n∑

i=1

xij ≥ 1 ∀j.

yi − xij ≥ 0 ∀i, j.∑
i∈I\I1

−yi ≥ −k2

∑
i∈I1

yi ≥ k1

yi ∈ {0, 1},

xij ∈ {0, 1} ∀i, j.

maximise
n∑

j=1

αj − ak2 + bk1,(9)

Subject to:

αj − βij ≤ Pjdij , ∀i, j.
n∑

j=1

βij ≤ −b ∀i ∈ I1.

n∑
j=1

βij ≤ a ∀i ∈ I\I1.

αj ≥ 0, βij ≥ 0 ∀i, j.

a, b ≥ 0
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Note that in the LP the constraints force yi = 1∀i ∈ I1 and in the dual problem the

constraints force b = 0 and βij = 0 for all i ∈ I1, j ∈ I.

5.1.2. Proof of Proposition 5.1. By our hypothesis we have found fi (equivalently a value

of f) that opens k1 + k2 facilities in our solution for Problem 2.1. Now consider the

allocation (x̄, ȳ) and (ᾱ, β̄)4 given by our algorithm. Note that these are feasible solutions

to (9) and (8) respectively. From (7), we have that

n∑
i,j=1

xijPjdij ≤ 1.61[
∑n

j=1 ᾱj −
∑n

i=1 fiyi]

= 1.61[
∑n

j=1 ᾱj − fk2](10)

Suppose (x̂, ŷ) and α̂, â are optimal solutions of the relaxed problem (8) and (9) then

(11) Z≡
n∑

i,j=1

x̂ijPjdij =
n∑

j=1

α̂j − âk2

where Z is as in (1). The first equivalence is straightforward by definition. The second

equality is by the LP-duality theorem (see page 95 and 244 [13]). Using (10) and (11) we

have that the algorithm has found a 0.61-suboptimal solution for Problem 2.1. �

Remark: The above proposition does have an analogue if we are not able to find an f that

opened exactly k1 +k2 facilities. The optimality factor analysis is more complicated. The

interested reader can imitate the arguments in pages 245-248 to achieve a 2.32-suboptimal

solution at all times for Problem2.1.

4By the comment on the variables it is easy to see how to find x̄, ȳ given an allocation. From Algorithm

A, one observes that ᾱj is PjBj at the time of connection and β̄ij is the net contribution given by village

j to village i.
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