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Summary

The results on optimal diallel cross designs are based on standard linear model assumptions
where the general combining ability effects are taken as fixed. In many practical situations,
this assumption may not be tenable since often one studies only a sample of inbred lines from a
possibly large hypothetical population. A random effects model is proposed in this paper that
allows us to obtain an interval estimate of a ratio of the variance components. We address the
issue of optimal designs by considering the Dl-optimality criteria. Designs that are Dl-optimal
for the estimation of heredity are obtained in the sense that the designs minimize the maximum
expected length of the h confidence intervals. The approach leads to certain connections with
the optimization problem under the fixed effects model.

Some key words : Dl-optimality; Variance components; Interval estimation; Heredity.

1. Introduction

Diallel crosses as mating designs are used to study the genetic properties of inbred lines
in plant breeding experiments. Plant breeders frequently need overall information on average
performance of individual inbred lines in crosses- known as general combining ability, for sub-
sequent choosing the best amongst them for further breeding. For this purpose diallel crossing
techniques are employed.

Consider a hypothetical population involving a large number of lines and crosses so that
all means are estimated without error. Crossing a line to several others provides the mean
performance of the line in all its crosses. This mean performance, when expressed as a deviation
from the mean of all crosses, is called the general combining ability of the line. Any particular
cross, then, has an expected value which is the sum of the general combining abilities of its two
parental lines. The cross may, however, deviate from this expected value to a greater or lesser
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extent. This deviation is called the specific combining ability of the two lines in combination.
In statistical terms, the general combining abilities are main effects and the specific combining
ability is an interaction. Griffing (1956) defines diallel crosses in terms of genotypic values
where the sum of general combining abilities for the two gametes is the breeding value of the
cross (i, j). Similarly, specific combining ability represents the dominance deviation value in
the simplest case ignoring epistatic deviation; see Kempthorne (1969) and Mayo (1980) for
details.

In practice, often a plant breeder carries out a diallel cross experiment by selecting p lines
randomly from a population consisting of a large number of lines. Since we are observing a
sample from a large hypothetical population of lines and crosses, the expected value of an
observation Yij , conditional on the realized value of the general combining ability and specific
combining ability, arising out of cross (i, j) involving lines i and j, i < j; i, j = 1, . . . , p is
modeled as

E(Yij) = µ+ g∗i + g∗j + s∗ij , (1.1)

where µ is the general mean, g∗i (g∗j ) is the realized value of gi (gj), the general combining ability
effect of sampled i-th (j-th) line and s∗ij is the realized value of sij , the specific combining ability
effect of cross (i, j).

Accordingly, in experimental mating design, the analysis of the observations arising out of
n crosses involving p lines will be carried out based on a model

Yijl = µ+ gi + gj + eijl ; i < j, (1.2)

where Yijl is the observation arising out of the l-th replication of the cross (i, j), gi is the i-th
line effect with E(gi) = 0, V ar(gi) = σ2

g ≥ 0, Cov(gi, gj) = 0, µ is the general mean and
eijl is the random error component, uncorrelated with gi, with expectation zero and variance
σ2
e > 0, 1 ≤ i < j ≤ p. Here µ, σ2

e and σ2
g are unknown parameters. Also, the specific

combining ability effects are assumed to be negligible and have been absorbed in the error
component; see Hinkelmann (1975) and Hinkelmann & Kempthorne (1963). This allows us
to estimate the genetic variance components leading to general combining ability analysis in
random effects. In addition to the fact that our model simplifies the estimation process, we
observe that Kempthorne & Curnow (1961) suggested to ignore the specific combining ability
effects in the model when the purpose of the study is to estimate the yielding capacities. In
the model, as given in (1.2), µ is a fixed effect while gi, gj (i < j) and eijl are random effects.

The basic idea in the study of variation among observations arising out of crosses is its parti-
tioning into components attributed to different causes like additive value, dominance deviation
and epistatic deviation; see Falconer (1991). The relative magnitude of these components de-
termines the genetic properties of the population. One of such property is heredity which is of
paramount interest to plant breeders. The ratio 4σ2

g/σ
2
p = h2 gives a measure of heredity, where

σ2
p = 2σ2

g + σ2
e is the phenotypic variance and σ2

g is the genotypic variance. Such a measure
expresses the extent to which individual’s phenotypes are determined by the genotypes.
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Our primary interest is thus in h2 = 4σ2
g/(2σ

2
g + σ2

e). In order to get a good estimate of h2

we propose optimal designs for interval estimation of σ2
g/σ

2
e since h2 = 4σ2

g

2σ2
g+σ2

e
= 4(σ2

g/σ
2
e)

2(σ2
g/σ

2
e)+1

. Let

T be an estimator of σ2
g/σ

2
e . Then an asymptotically unbiased estimator of h2 is 4T

2T+1 . Hence
an interval estimate of σ2

g/σ
2
e will lead to a meaningful interval estimate of h2. The problem

confronted in constructing a confidence interval on either σ2
g/(σ

2
g+σ2

e) or σ2
g/σ

2
e has been refered

in Burdick & Graybill (1992). An approximate solution to this interval estimation problem is
given by Burdick, Maqsood & Graybill (1986) by employing Thomas-Hultquist approximation
of χ2 distributions under certain parameter values of σ2

g/σ
2
e . The only exact interval estimate

of σ2
g/σ

2
e is due to Wald (1940), which is based on iterative solutions of non-linear equations.

We give a non-iterative method of constructing exact confidence interval of σ2
g/σ

2
e and study

their expected length.
An experiment is carried out using a diallel cross design with p lines and n crosses. A diallel

cross experiment is said to be complete if each of the
(p
2

)
crosses appear atleast once in the

experiment, otherwise it is said to be a partial diallel cross experiment and then necessarily
n <

(p
2

)
. Most of the theory of optimal diallel cross designs is based on standard linear

model assumptions where the general combining ability effects are taken as fixed and the
primary interest lies in comparing the lines with respect to their general combining ability
effects. Under such a model, among others, Gupta & Kageyama (1994), Dey & Midha (1996),
Mukerjee (1997), Das, Dey & Dean (1998) and Das, Dean & Gupta (1998) have characterised
and obtained optimal completely randomised designs and incomplete block designs for diallel
crosses. In many practical situations, the fixed effects assumption may not be tenable when
one is studying only a sample of inbred lines from a possibly large hypothetical population. A
random effects model is proposed in this paper that allows us to obtain an interval estimate of
the ratio of the variance components. We address the issue of optimal designs by considering the
Dl-optimality criteria. We obtain designs that are Dl-optimal for the estimation of heredity
in the sense that the designs minimize the maximum expected lengths of the k confidence
intervals based on k distinct eigenvalues of the information matrix. The approach leads to
certain connections with the optimaztion problem under the fixed effects model.

In §2 and §3, under unblocked and blocked models, we first obtain the interval estimate of
σ2
g/σ

2
e and then obtain suitable bounds of the expected confidence interval of these estimates.

In §4 we characterize Dl-optimal designs.

2. Unblocked Diallel Cross Experiments

Consider p inbred lines sampled from a hypothetical population involving a large number
of lines. The yield Yijl arising out of the lth replication of cross (i, j) involving ith and jth
sampled lines is modeled as in (1.2).

When an experiment is carried out using unblocked diallel cross design with p lines and n

crosses, we can represent the model (1.2) in matrix notation as

Y = µ1n +D′1g + e, (2.1)
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where Y is the vector of n observations, g is the p×1 vector of general combining ability effects
with E(g) = 0 and V ar(g) = σ2

gIp, e is the error vector with E(e) = 0 and V ar(e) = σ2
eIn,

and D1 = (d(1)
uv ) is the p × n line versus observation incidence matrix with d

(1)
uv = 1 if v-th

observation is out of a cross involving the u-th line and d
(1)
uv = 0 otherwise. Here 1t represents

a t × 1 column vector of all ones and It denotes an identity matrix of order t. In situations
where the order is evident from the context, we write respectively 1 and I instead of 1t and It.
We assume that D1 has full row rank. Equivalently, (2.1) can be written as

Y = X

(
µ

g

)
+ e,

where X = (1n D′1). Here,

E(Y ) = µ1n, Var (Y |σ2
g , σ

2
e) = σ2

gD
′
1D1 + σ2

eIn. (2.2)

As usual, we assume that
Y ∼ Nn(µ1n, σ2

gD
′
1D1 + σ2

eIn). (2.3)

Let G = D1D
′
1 = (gij) and s = D11. Using the definition of D1 it can be verified that for

i 6= j, gij gives the number of times cross (i, j) appears in the design, gii = si where si is
the replication of the i-th line. Also, since we assume Rank(D1) = p, G is symmetric with
Rank(G) = p and tr(G) = 2n where for a square matrix A, tr(A) stands for the trace. Let
C0 = G − 1

nss
′ where s = (s1, s2, . . . , sp)′. Then, C01 = 0 and Rank(C0) ≤ p − 1. However,

since Rank(D1) = p, it follows that Rank(C0) = p− 1.
Let H be an n× (n− 1) matrix such that the columns of H form an orthonormal basis of

the orthocomplement of the space spaned by 1n in Rn. Thus H ′H = In−1, HH ′ = I − 11′/n
and Z = H ′Y ∼ Nn−1(0, σ2

gH
′D′1D1H + σ2

eIn−1).
We observe that the non-zero eigenvalues of H ′D′1D1H are the same as the non-zero eigen-

values of D1HH
′D′1 = D1(In− 1

n11′)D′1 = D1D
′
1− 1

nss
′ = G− 1

nss
′ = C0. This implies that the

eigenvalues of H ′D′1D1H are zero with multiplicity (n−p) and the remaining (p−1) eigenvalues
are identical to the eigenvalues of C0-matrix.

Let there be h + 1 distinct eigenvalues of H ′D′1D1H denoted by 0 = λ0 < λ1 < λ2 <

· · · < λh and let their respective multiplicities be m0 = n − p,m1,m2, . . . ,mh. Note that, as
a consequence of the argument in the previous paragraph, the non-zero eigenvalues of C0 are
λ1 < λ2 < · · · < λh with respective multiplicities m1,m2, . . . ,mh.

Now there exits a matrix P such that H ′D′1D1H = P∆P ′ where P is a (n − 1) × (p − 1)
matrix such that P ′P = Ip−1 and ∆ = diag(λ1Im1 , λ2Im2 , . . . , λhImh). Now, there exits a
matrix P̄ of order (n − 1) × (n − p) such that P ∗ = (P̄ P ) is an orthogonal matrix of order
n− 1. Applying the transformation Z∗ = P ∗

′
Z, it is easy to see that Z∗ = P ∗

′
Z ∼ Nn−1(0,Σ)

where Σ =

(
σ2
eIn−p 0

0 σ2
g∆ + σ2

eIp−1

)
.

Partitioning P , we write P = (P1 · · · Ph) where Pi, i = 1, . . . , h, corresponds to an (n−1)×
mi matrix whose columns are orthogonal eigenvectors of H ′D′1D1H corresponding to eigenvalue
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λi. Also, let P0 = P̄ and Z∗i = P ′iZ, i = 0, . . . , h. Then Qi = Z∗
′
i Z
∗
i = Z ′PiP

′
iZ, i = 0, 1, . . . , h

are independent and
(σ2
gλi + σ2

e)
−1Qi, (2.4)

follows a χ2-distribution with mi degrees of freedom, i = 0, 1, . . . , h.
We now construct the confidence interval of σ2

g/σ
2
e with confidence coefficient 1− α. From

(2.4) we get that for i = 0, 1, 2, . . . , h, (σ2
gλi+σ

2
e)
−1Qi follows a χ2-distribution with mi degrees

of freedom and furthermore they are independently distributed.
For i = 1, . . . , h, let Li = F1−α/2,mi,n−p and Ui = Fα/2,mi,n−p. Then

Pr

[
L1 ≤

m−1
1 (λ1σ

2
g + σ2

e)
−1Q1

(n− p)−1σ−2
e Q0

≤ U1

]
= 1− α

⇔ Pr

[
L1m1Q0

(n− p)Q1
≤ σ2

e

λ1σ2
g + σ2

e

≤ U1m1Q0

(n− p)Q1

]
= 1− α

⇔ Pr

[
(n− p)Q1

U1m1Q0
≤ 1 + λ1

σ2
g

σ2
e

≤ (n− p)Q1

L1m1Q0

]
= 1− α

⇔ Pr

[
(n− p)Q1

U1m1λ1Q0
− 1
λ1
≤
σ2
g

σ2
e

≤ (n− p)Q1

L1m1λ1Q0
− 1
λ1

]
= 1− α, (2.5)

and one has a confidence interval

I1 =
(

(n− p)Q1

U1m1λ1Q0
− 1
λ1
,

(n− p)Q1

L1m1λ1Q0
− 1
λ1

)
(2.6)

of σ2
g/σ

2
e with confidence coefficient 1− α.

For I = {x : a ≤ x ≤ b}, we define l(I) = b − a. Now, using the result E(Fp1,p2) = p2

p2−2 ,
where Fp1,p2 follows an F -distribution with p1 and p2 degrees of freedom, we get

E(l(I1)) = E

(
(n− p)Q1

L1m1λ1Q0
− (n− p)Q1

U1m1λ1Q0

)
= E

(
Q1(λ1σ

2
g + σ2

e)
−1m−1

1

Q0σ
−2
e (n− p)−1

(
σ2
e + λ1σ

2
g

σ2
e

)
1

L1λ1
)

)

−E
(
Q1(λ1σ

2
g + σ2

e)
−1m−1

1

Q0σ
−2
e (n− p)−1

(
σ2
e + λ1σ

2
g

σ2
e

)
1

U1λ1

)

=

(
1
λ1

+
σ2
g

σ2
e

)
1
L1
E(Fm1,n−p)−

(
1
λ1

+
σ2
g

σ2
e

)
1
U1
E(Fm1,n−p).

Thus,

E(l(I1)) =
(

n− p
n− p− 2

)(
1
λ1

+
σ2
g

σ2
e

)(
1
L1
− 1
U1

)
. (2.7)

Now, the pair (L1, U1) is not unique as a confidence interval for σ2
g/σ

2
e with confidence

coefficient 1 − α. Hence we normalize the expected length of the confidence interval I1 by
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dividing the distance between L1 and U1 defined by 1
L1
− 1

U1
. Note that the distance d(a, b) =

| 1a −
1
b |, a > 0, b > 0, satisfies the three properties of the distance function since (i) d(a, b) =

| 1a −
1
b | ≥ 0, d(a, b) = 0 if and only if a = b; (ii) d(a, b) = | 1a −

1
b | = |1b −

1
a | = d(b, a); (iii) for

c > 0, d(a, b) = | 1a −
1
b | = | 1a −

1
c + 1

c −
1
b | ≤ |

1
a −

1
c | + |

1
c −

1
b | = d(a, c) + d(c, b). Hence, the

normalized expected length comes out as

EN (l(I1)) = E(l(I1))/(
1
L1
− 1
U1

) = (
n− p

n− p− 2
)

(
1
λ1

+
σ2
g

σ2
e

)
. (2.8)

The other h−1 confidence intervals of σ2
g/σ

2
e are constructed, on similar lines, and are given

by

Ii =
(

(n− p)Qi
miUiQ0λi

− 1
λi
,

(n− p)Qi
miLiQ0λi

− 1
λi

)
, i = 2, . . . , h (2.9)

each with confidence coefficient 1− α. Then the normalized expected length of the i-th confi-
dence interval is

EN (l(Ii)) =
(

n− p
n− p− 2

)(
1
λi

+
σ2
g

σ2
e

)
, i = 2, . . . , h. (2.10)

The motivation for quantifying the loss function of interval estimation is easy to see since
we have constructed the h confidence intervals Ii (each with confidence coefficient 1 − α),
i = 1, . . . , h, and then considered the normalized expected length(s), EN (l(Ii)), i = 1, . . . , h.
Define φ0 = max1≤i≤hEN (l(Ii)) which represents the maximum loss due to h individual con-
fidence intervals with confidence coefficient 1 − α. Now, since for every s (s = 1, . . . , h − 1),
EN (l(Is+1)) < EN (l(Is)), it follows that for every i = 1, . . . , h

EN (l(Ii)) ≤ φ0 =
(

n− p
n− p− 2

)(
1
λ1

+
σ2
g

σ2
e

)
= EN (l(I1)). (2.11)

The performance criterion of a design has been taken as the maximum loss which is the max-
imum normalized expected lengths of Ii, i = 1, . . . , h. Hence the loss function for interval
estimation of the ratio of variance components has been taken as φ0 and our interest in this
study is to discriminate among designs with respect to this performance criterion.

Remark 2.1 Let α∗1, α
∗
2, . . . , α

∗
h be h positive numbers such that

∑h
i=1 α

∗
i = α. On lines similar

to (2.6) and (2.9), for i = 1, . . . , h define I∗i as a confidence interval of σ2
g/σ

2
e with confidence

coefficient 1− α∗i . Then by applying Bonferroni’s inequality we have,

Pr

[
Y :

σ2
g

σ2
e

∈ ∩hi=1I
∗
i

]
= Pr

[
∩hi=1{Y :

σ2
g

σ2
e

∈ I∗i }
]

≥
h∑
i=1

(1− α∗i )− (h− 1) = 1− α,

which gives the confidence interval I∗ = ∩hi=1I
∗
i of σ2

g/σ
2
e with confidence coefficient 1 − α.

Thus we may construct infinitely many confidence intervals of σ2
g/σ

2
e . We define the normalized

expected lengths of the confidence interval I∗ by E∗Ni(l(I
∗)), i = 1, . . . , h, normalized by the
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respective distances between L∗i and U∗i which are the lower and upper cut off points of the
F -distribution with probability α∗i . Now using the fact EN (l(I∗i )) = EN (l(Ii)), i = 1, . . . , h,
for any choice of α∗1, α

∗
2, . . . , α

∗
h and observing that the confidence interval, I∗ being subset of

I∗i for each i = 1, . . . , h, we have E∗Ni(l(I
∗)) ≤ EN (l(I∗i )) = EN (l(Ii)), i = 1, . . . , h. This gives

E∗N (l(I∗)) = max1≤i≤hE
∗
Ni

(l(I∗)) ≤ max1≤i≤hEN (l(Ii)) = φ0 for all I∗.

Remark 2.2 It is to be noted that the upper and lower confidence limits of I∗ comes out as
the order statistic of the upper and lower confidence limits of I∗i , i = 1, . . . , h. Further the
order statistic is based on two sets of h random variables which are neither independently nor
identically distributed. We have taken this detour in order to set a well defined loss function
to carry out the design optimization. It is interesting to note that the method of normalization
disentangles the effect of nuisance parameters, i.e., the lower and upper cutoff values, from the
effect of design parameters. In our approach a natural way to set the loss function in terms of
the maximum normalized expected length of the interval estimate has been adopted which is
in agreement with the minimax principle.

3. Blocked Diallel Cross Experiments

The study with respect to interval estimation of ratio of variance components for a diallel
cross experiment in blocks can be carried out on lines similar to the designs in an unblocked
diallel cross experment. Consider an experiment carried out using a diallel cross design with p
lines and b blocks each having k crosses (n = bk). Here our model is

Y = µ1n +D′2β +D′1g + e, (3.1)

where as before, Y is the vector of n observations, g is the p × 1 vector of general combining
ability effects with E(g) = 0 and V ar(g) = σ2

gI, β is the fixed effect due to blocks and e is
the error vector with E(e) = 0 and V ar(e) = σ2

eI. Also, D1 = (d(1)
uv ) is the p × n line versus

observation incidence matrix, as mentioned earlier, and D2 = (d(2)
uv ) is the b × n block versus

observation incidence matrix with d
(2)
uv = 1 if the v-th observation arise from the u-th block

and d
(2)
uv = 0 otherwise. Equivalently, we can write (3.1) as

Y = X


µ

β

g

+ e,

where X = (1 D′2 D′1). Here, E(Y ) = µ1n, Var (Y |σ2
g , σ

2
e) = σ2

gD
′
1D1 +σ2

eIn. Again, as in the
unblocked case, we assume that Y ∼ Nn(µ1n, σ2

gD
′
1D1 + σ2

eIn). Let N = (nij) be the incidence
matrix with nij indicating the number of times the i-th line occurs in the j-th block. Also, let
C = G−k−1NN ′. It is easy to see that Rank(C) ≤ p−1. In our model (3.1) we may consider β
to be a random effects block parameter. Such a consideration do not alter the results obtained
here.
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Let HB be an n× (n− b) matrix such that the columns of HB form an orthonormal basis of
the orthocomplement of the space spaned by (1 D′2) in Rn. Thus H ′BHB = In−b and HBH

′
B =

I−(1 D′2)[(1 D′2)′(1 D′2)]−(1 D′2)′ where T− is a generalized-inverse of a matrix T . Note that
D2HB = 0 and 1′nHB = 0. Hence, Z(n−b)×1

B = H ′BY ∼ Nn−b(0, σ2
gH
′
BD
′
1D1HB + σ2

eIn−b).
We observe that the non-zero eigenvalues of H ′BD

′
1D1HB are the same as the non-zero

eigenvalues of D1HBH
′
BD
′
1 = D1(I − (1 D′2)

(
0 0
0 k−1Ib

)
(1 D′2)′)D′1 = D1D

′
1 − 1

kNN
′ =

G − 1
kNN

′ = C. This implies that the eigenvalues of H ′BD
′
1D1HB are zero with multiplicity

((n− b)− (p− 1)) = ne and the remaining (p− 1) eigenvalues are identical to the eigenvalues
of the C-matrix.

Define 0 = λ∗0 < λ∗1 < · · · < λ∗h as the h + 1 distinct eigen values of H ′BD
′
1D1HB with

multiplicities m∗0 = ne,m
∗
1, . . . ,m

∗
h respectively. On lines similar to Section 2 we observe

that there exits an orthogonal matrix P ∗B = (P ∗(0) P
∗
(1) · · · P

∗
(h)) of order n − b such that

H ′BD
′
1D1HB = P ∗B

(
∆B 0
0 0

)
P ∗
′

B where ∆B = diag(λ∗1Im∗1 , λ
∗
2Im∗2 , . . . , λ

∗
hIm∗h). Define Z∗(i) =

P ′(i)ZB, i = 0, . . . , h. Then Q∗i = Z∗
′

(i)Z
∗
(i) are independent and

(σ2
gλ
∗
i + σ2

e)
−1Q∗i (3.2)

follows a χ2 distribution with m∗i degrees of freedom, i = 0, . . . , h. We now construct the
confidence interval of σ2

g/σ
2
e with confidence coefficient 1 − α. From (3.2) we get that for

i = 0, 1, 2, . . . , h, (σ2
gλ
∗
i + σ2

e)
−1Q∗i follows a χ2-distribution with m∗i degrees of freedom and

furthermore they are independently distributed.
For i = 1, . . . , h, let L′i = F1−α/2,m∗i ,ne and U ′i = Fα/2,m∗i ,ne . Then

Pr

[
L′1 ≤

m−1
1 (λ∗1σ

2
g + σ2

e)
−1Q∗1

n−1
e σ−2

e Q∗0
≤ U ′1

]
= 1− α

⇔ Pr

[
neQ

∗
1

U ′1m
∗
1λ
∗
1Q
∗
0

− 1
λ∗1
≤
σ2
g

σ2
e

≤ neQ
∗
1

L′1m
∗
1λ
∗
1Q
∗
0

− 1
λ∗1

]
= 1− α, (3.3)

giving a confidence interval

I ′1 =
(

neQ
∗
1

U ′1m
∗
1λ
∗
1Q
∗
0

− 1
λ∗1
,

neQ
∗
1

L′1m
∗
1λ
∗
1Q
∗
0

− 1
λ∗1

)
of σ2

g/σ
2
e with confidence coefficient 1− α.

Now, on lines similar to (2.7), we get

E(l(I ′1)) = E

(
neQ

∗
1

L′1m
∗
1λ
∗
1Q
∗
0

− neQ
∗
1

U ′1m
∗
1λ
∗
1Q
∗
0

)
=
(

ne
ne − 2

)(
1
λ∗1

+
σ2
g

σ2
e

)(
1
L′1
− 1
U ′1

)
. (3.4)

Now, the pair (L′1, U
′
1) is not unique for setting up the confidence interval with confidence

coefficient 1− α. As before, the normalized expected length comes out as

EN (l(I ′1)) = E(l(I ′1))/(
1
L′1
− 1
U ′1

) = (
ne

ne − 2
)

(
1
λ∗1

+
σ2
g

σ2
e

)
. (3.5)
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The other h−1 confidence intervals of σ2
g/σ

2
e are constructed, on similar lines, and are given

by

I ′i =

(
neQ

∗
i

m∗iU
′
iQ
∗
0λ
∗
i

− 1
λ∗i
,

neQ
∗
i

m∗iL
′
iQ
∗
0λ
∗
i

− 1
λ∗i

)
, i = 2, . . . , h (3.6)

each with confidence coefficient 1− α. Then the normalized expected length of the i-th confi-
dence interval is

EN (l(I ′i)) =

(
1
λ∗i

+
σ2
g

σ2
e

)(
ne

ne − 2

)
, i = 2, . . . , h. (3.7)

Now as in §2 we define φ = max1≤i≤hEN (l(I ′i)) which represents the maximum loss due
to h individual confidence intervals with confidence coefficient 1 − α. Furthermore, for every
i = 1, . . . , h

EN (l(I ′i)) ≤ φ =
(

ne
ne − 2

)(
1
λ∗1

+
σ2
g

σ2
e

)
= EN (l(I ′1)). (3.8)

It is to be noted that we may construct infinitely many confidence intervals, I∗B of σ2
g/σ

2
e

by taking the intersection of I ′
∗
i , i = 1, . . . , h where I ′

∗
i is the confidence interval of σ2

g/σ
2
e with

confidence coefficient 1− α∗i , α∗i > 0, i = 1, . . . , h such that
∑h
i=1 α

∗
i = α. After normalization

it can be seen that E∗N (l(I∗B)) = max1≤i≤hE
∗
Ni

(l(I∗B)) ≤ max1≤i≤hEN (l(I ′
∗
i )) = φ.

4. Optimal Designs

In the previous sections we have explicitly obtained the maximum normalized expected
length (φ0 and φ) of the interval estimate of σ2

g/σ
2
e under an unblocked and a blocked model.

Our objective in obtaining an optimal design would be to minimize the loss function φ0 =(
n−p
n−p−2

)(
1
λ1

+ σ2
g

σ2
e

)
in case of an unblocked model and to minimize φ =

(
ne
ne−2

)(
1
λ∗1

+ σ2
g

σ2
e

)
in

case of a blocked model. Let D(p, n) be the class of diallel cross unblocked designs involving
p lines and n crosses and D(p, b, k), the class of diallel cross designs with p lines arranged
in b blocks of k crosses each. For a design d, let the non-zero eigenvalues of C0d (Cd) be
λ1d < λ2d < · · · < λhd (λ∗1d < λ∗2d < · · · < λ∗hd) with respective multiplicities m1d,m2d, . . . ,mhd

(m∗1d,m
∗
2d, . . . ,m

∗
hd). The corresponding loss functions are φ0d and φd. A design d∗ will be said

to be Dl-optimal if, among all designs in D, d∗ minimizes φ0d (or φd). It is easy to see that a
Dl-optimal design maximizes λ1d (λ∗1d) within the competing class of designs. Thus we see a
connection between Dl-optimal designs in our set-up and E-optimal diallel cross designs under
a fixed effects model.

It is well-known that under fixed effects model, a complete diallel cross design is universally
optimal in D(p, n). Since a universally optimal design is E-optimal as well, it follows that
complete diallel cross designs are Dl-optimal in D(p, n) under our setup.

Under the fixed effects model, Gupta & Kageyama (1994), Dey & Midha (1996) and Das,
Dey & Dean (1998) have obtained universally optimal (and hence E-optimal) diallel cross
designs. It thus follows that their designs are Dl-optimal under our setup.

The close connection between nested balanced incomplete block design of Preece (1967) and
optimal designs for diallel crosses under a fixed effects model was first observed by Gupta &
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Kageyama (1994). A nested balanced incomplete block design with parameters (v, b1, k1, r, µ1, b2,

k2, µ2,m) is a design for v treatments, each replicated r times with two systems of blocks such
that: (a) the second system is nested within the first, with each block from the first system,
called henceforth as ‘block’ containing exactly m blocks from the second system, called here-
after as ‘sub-blocks’; (b) ignoring the second system leaves a balanced incomplete block design
with usual parameters v, b1, k1, r, µ1; (c) ignoring the first system leaves a balanced incomplete
block design with parameters v, b2, k2, r, µ2.

Consider now a nested balanced incomplete block design d with parameters v = p, b1, k1, k2 =
2, r. If we identify the treatments of d as lines of a diallel cross experiment and perform crosses
among the lines appearing in the same sub-block of d, we get a block design d∗ for a diallel cross
experiment involving p lines with vc = p(p − 1)/2 crosses, each replicated r = 2b2/{p(p − 1)}
times, and b = b1 blocks, each of size k = k1/2. Such a design d∗ ∈ D(p, b, k) and is universally
optimal in D(p, b, k) under the fixed effects model. Summarizing, therefore, we have

Theorem 4.1 The existence of a nested balanced incomplete block design d with parameters
v = p, b1 = b, b2 = bk, k1 = 2k, k2 = 2 implies the existence of a Dl-optimal incomplete block
design d∗ for diallel crosses.

The construction methods and elaborate tables of nested balanced incomplete block designs
are available in a recent review paper by Morgan, Preece & Rees (2001). The tables in their
paper provide solutions to our Dl-optimal diallel cross designs within the parametric range
2k < p < 16, s ≤ 30. The case 2k = p is dealt in Gupta & Kageyama (1994). The nested
balanced incomplete block designs have been extended to nested balanced block designs and a
series of designs, Dl-optimal under our set-up, is given in Das, Dey & Dean (1998).

Mukerjee (1997) has obtained E-optimal partial diallel cross designs under the fixed effects
model. Following Mukerjee (1997) we have the following results on Dl-optimal designs for the
estimation of σ2

g/σ
2
e .

Let p = n1n2 where n1 ≥ 2, n2 ≥ 3. Partition the set {1, . . . , p} into n1 mutually exclusive
and exhaustive subsets S1, . . . , Sn1 each of cardinality n2. Let

d∗1 = {(i, j) : 1 ≤ i < j ≤ p and i, j ∈ Su for some u}. (4.1)

Then d∗1 ∈ D(p, n), where n = 1
2n1n2(n2 − 1), and D1d∗ is the incidence matrix of a group

divisible design with the usual parameters p = n1n2, k = 2, λ1 = 1, λ2 = 0.

Theorem 4.2 For each n1 ≥ 2 and n2 ≥ 3, up to isomorphism, the design d∗1 is uniquely
Dl-optimal in D(p, n), where p = n1n2 and n = 1

2n1n2(n2 − 1).

Example 4.1 Suppose we have p = 12 lines and n = 18 crosses. Then n1 = 3, n2 = 4 and the
subsets are S1 = {1, 2, 3, 4}, S2 = {5, 6, 7, 9}, S3 = {9, 10, 11, 12}. Consider the following de-
sign: {(1, 2); (1, 3); (1, 4); (2, 3); (2, 4); (3, 4); (5, 6); (5, 7); (5, 8); (6, 7); (6, 8); (7, 8); (9, 10); (9, 11);
(9, 12); (10, 11); (10, 12); (11, 12)}. Following Theorem 4.2, this design isDl-optimal inD(12, 18).
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Let p = n1n2 + t, where n1 ≥ 2, n2 ≥ 3 and t (1 ≤ t ≤ n1 − 1) are positive integers.
Partition {1, . . . , p} into n1 mutually exclusive and exhaustive subsets S1, . . . , Sn1 such that
S1, . . . , Sn1−t have cardinality n2 and Sn1−t+1, . . . , Sn1 have cardinality n2 + 1. Analogous to
(4.1), let

d∗2 = {(i, j) : 1 ≤ i < j ≤ p and i, j ∈ Su for some u}. (4.2)

Then d∗2 ∈ D(p, n), where n = 1
2n1n2(n2 − 1) + n2t.

Theorem 4.3 For n1 ≥ 2, n2 ≥ 3, p = n1n2+t, n = 1
2n1n2(n2−1)+n2t and 1 ≤ t ≤ n1−1, the

design d∗2 is Dl-optimal in D(p, n), provided (n1−t)n2f > 1 where f = n−1(n2−1)2−p−1(n2−2).

Example 4.2 Suppose we have p = 13 lines and n = 22 crosses. Then n1 = 3, n2 = 4, t = 1
and the subsets are S1 = {1, 2, 3, 4}, S2 = {5, 6, 7, 9}, S3 = {9, 10, 11, 12, 13}. Consider the
following design: {(1, 2); (1, 3); (1, 4); (2, 3); (2, 4); (3, 4); (5, 6); (5, 7); (5, 8); (6, 7); (6, 8); (7, 8);
(9, 10); (9, 11); (9, 12); (9, 13); (10, 11); (10, 12); (10, 13); (11, 12); (11, 13); (12, 13)}. Following The-
orem 4.3, since (n1 − t)n2f = 2.04 > 1, this design is Dl-optimal in D(13, 22).

The condition (4.2) holds in a large number of cases over a practicable range. Thus, among
the 79 cases of (n1, n2, t) satisfying n1 ≥ 2, n2 ≥ 3, 1 ≤ t ≤ n1 − 1, p = n1n2 + t ≤ 30, there
are as many as 57 where the condition holds and hence d0 is Dl-optimal.

The blocking of optimal designs of Theorems 4.2 and 4.3 is given in Mukerjee (1997) where
orthogonal blocking has been achieved for designs corresponding to Theorem 4.2. Thus, Muk-
erjee’s method of constuction of orthogonal block designs lead to Dl-optimal diallel cross block
designs in D(p, b, k).

Example 4.3 Consider the following design (rows are blocks) with parameters p = 12, b = 3
and k = 6.

(1, 2) (3, 4) (5, 6) (7, 8) (9, 10) (11, 12)
(1, 3) (2, 4) (5, 7) (6, 8) (9, 11) (10, 12)
(1, 4) (2, 3) (5, 8) (6, 7) (9, 12) (10, 11)

This design is Dl-optimal in D(12, 3, 6).

In our model (3.1) we may consider β to be a random effects block parameter. Such
a consideration do not alter the optimality results obtained here. With the increase in the
number of lines, the optimality criteria based on the interval estimation of h2 = 4σ2

g/(2σ
2
g +σ2

e)
is same as that obtained for the interval estimation of σ2

g/σ
2
e . Thus the design optimality results

obtained here would remain valid for estimation of heredity.
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