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Abstract Consider the d-dimensional lattice Zd where each vertex is ‘open’ or ‘closed’ with probability p or

1 − p respectively. An open vertex v is connected by an edge to the closest open vertex w such that the dth

co-ordinates of v and w satisfy w(d) = v(d) − 1. In case of non-uniqueness of such a vertex w, we choose any

one of the closest vertices with equal probability and independently of the other random mechanisms. It is

shown that this random graph is a tree almost surely for d = 2 and it is a infinite collection of distinct trees for

d ≥ 4. In addition, for any dimension, we obtain central limit theorems of (a) the number of vertices of a fixed

degree ν and (b) of the number of edges of a fixed length l. These results are obtained by using the martingale

convergence theorem and a coupling of the process with independent random walks.
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1 Introduction

Leopold and Langbein [1962] introduced a geometric model of natural drainage network which
they described as “using a sheet of rectangular cross-section graph paper, each square is pre-
sumed to represent a unit area. Each square is to be drained, but the drainage channel from
each square has equal chance of leading off in any of the four cardinal directions, subject only
to the condition that, having made a choice, flow in the reverse direction is not possible. Under
these conditions it is possible for one or more streams to flow into a unit area, but only one
can flow out”. Subsequently Scheidegger [1967] introduced a direction of flow. In his study
of Alpine valleys, he imposed conditions on the Leopold and Langbein model by requiring
that the drainage paths be in the “direction of high gradients between watershed and main
valleys”. Thus the drainage forms an oriented network, with a square emptying to one of its
two neighbours in a preferred direction. Howard [1971] removed the restriction of drainage to
a neighbouring square and modelled a network to include “headward growth and branching in
a random fashion”. Rodriguez-Iturbe and Rinaldo [1997] presents a survey of the development
of this field.

The random graph we study here follows the one described by Howard [1971] with the
caveat that a stream is not permitted to terminate or become inactive. Thus we consider the
d-dimensional lattice Zd where each vertex is ‘open’ or ‘closed’ with probability p or 1 − p

respectively. The open vertices representing the water sources. An open vertex v is connected
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by an edge to the closest open vertex w such that the dth co-ordinates of v and w satisfy
w(d) = v(d)−1. In case of non-uniqueness of such a vertex w, we choose any one of the closest
vertices with equal probability and independently of the other random mechanisms. These
edges represent the channels of flow in the drainage network.

Our main result is that for d = 2, there is one single main river, with all other rivers being
tributaries of this river. While for d ≥ 4, there are infinitely many rivers, with each having its
own distinct set of tributaries. Unfortunately, we do not have any result for 3 dimensions. In
addition, for any dimension, we obtain central limit theorems of (a) the number of sites where
a fixed number ν of tributaries drain, as well as of (b) the number of channels of a fixed length
l.

In 2-dimensions we obtain the main result by showing that the distance between two streams
starting at two different sites forms a martingale and thereby invoking the martingale conver-
gence theorem. While in 4 or higher dimensions we couple the streams starting at two different
sites with two independent and identically distributed random walks starting at these two sites.
The limit theorems are obtained by checking that the random processes satisfy the conditions
needed to apply Lyapunov’s central limit theorem.

The formal details of the model and the statements of results are given in the next section.

2 The model and statement of results

Let Ω = {0, 1}Zd and F the σ algebra generated by finite dimensional cylinder sets. On (Ω,F)
we assign a product probability measure Pp which is defined by its marginals as

Pp{ω : ω(u) = 1} = 1− Pp{ω : ω(u) = 0} = p, for u ∈ Zd and 0 ≤ p ≤ 1.

Let {Uu,v : u, v ∈ Zd, v(d) = u(d) − 1} be i.i.d. uniform (0, 1] random variables on some
probability space (Ξ,G, µ). Here and subsequently we express the co-ordinates of a vector u as
u = (u(1), . . . , u(d)).

Consider the product space (Ω×Ξ,F ×G,P := Pp×µ). For (ω, ξ) ∈ Ω×Ξ let V(= V(ω, ξ))
be the random vertex set defined by

V(ω, ξ) = {u ∈ Zd : ω(u) = 1}.

Note that if u ∈ V(ω, ξ) for some ξ ∈ Ξ then u ∈ V(ω, ξ′) for all ξ′ ∈ Ξ and thus we say that a
vertex u is open in a configuration ω if u ∈ V(ω, ξ) for some ξ ∈ Ξ.

For u ∈ Zd let

Nu = Nu(ω, ξ) =
{
v ∈ V(ω, ξ) : v(d) = u(d)− 1 and

d∑
i=1

|v(i)− u(i)| =

min{
∑d

i=1 |w(i)− u(i)| : w ∈ V(ω, ξ), w(d) = u(d)− 1}
}
.
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Note that for p > 0, Nu is non-empty almost surely and that Nu is defined for all u, irrespective
of it being open or closed. For u ∈ Zd let

h(u) ∈ Nu(ω, ξ) be such that Uu,h(u)(ξ) = min{Uu,v(ξ) : v ∈ Nu(ω, ξ)}. (1)

Again note that for p > 0 and for each u ∈ Zd, h(u) is open, almost surely unique and
h(u)(d) = u(d)−1. On V(ω, ξ) we assign the edge set E = E(ω, ξ) := {< u, h(u) >: u ∈ V(ω, ξ)}.

Consider that graph G = (V, E) consisting of the vertex set V and edge set E . For p = 0,
V = ∅ almost surely, and, for p = 1, < u, v >∈ E if and only if u(i) = v(i) for all i 6= d and
|u(d) − v(d)| = 1. Also, for a vertex u ∈ V(ω, ξ), there is exactly one edge ‘going down’ from
u, i.e., there is a unique edge < u, v > with v(d) ≤ u(d); thus the graph G contains no loops
almost surely. Hence, for 0 < p < 1, the graph G consists of only trees. Our first result is

Theorem 2.1 Let 0 < p < 1. For d = 2, G consists of one single tree P–almost surely; while
for d ≥ 4, G is a forest consisting of infinitely many disjoint trees P–almost surely.

Now for ν ≥ 0 let Sn be the number of vertices in V ∩ ([1, n]d) of the graph G with degree
ν + 1. Also, for l ≥ 1 let Ln be the number of edges of (L1)length l in the graph G with one
end vertex in V ∩ ([1, n]d).

Theorem 2.2 As n→∞,
(a) Sn−E(Sn)

nd/2
converges weakly to a normal random variable;

(b) Ln−E(Ln)

nd/2
converges weakly to a normal random variable.

Finally, for d = 2, given that a vertex v is open, the following proposition gives the exact
distribution of the degree of v.

Proposition 2.1 Given that a vertex v is open, the degree of the vertex in the graph G has the
same distribution as that of 1+Y +X1 +X2 where Y , X1 and X2 are independent non-negative
random variables such that

Y =

0 with probability 1− p

1 with probability p

P (X1 ≥ r) = P (X2 ≥ r) =

1 for r = 0
(1−p)2r−1(2−p)

2(3−3p+p2)r
for r ≥ 1.

Thus the expected degree of a vertex, given that it is open, is 2.

Remark: As in Lemma 7 of Aldous and Steele [1992], using the ergodicity of the process it
may be shown that in any dimension expected degree of a vertex, given that it is open, is 2.
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3 Proof of Theorem 2.1

We fix 0 < p < 1 and consider the 2-dimensional case first. Consider the graph H with vertices
V ∪ {(k, 0) : k ∈ Z} and edges E ∪ {< (k, 0), h(k, 0) >: k ∈ Z}. Note that in the graph
H vertices which are not open (i.e. vertices which are not in V) are of degree 1. Clearly,
if T1 and T2 are two disjoint maximal connected subgraphs of G then they are subgraphs
of two disjoint maximal connected subgraphs of H. Moreover if T1 and T2 are two disjoint
maximal connected subgraphs of H then T1 \ {< (k, 0), h(k, 0) >: k ∈ Z, (k, 0) 6∈ V} and
T2\{< (k, 0), h(k, 0) >: k ∈ Z, (k, 0) 6∈ V} are two disjoint maximal connected subgraphs of G.
Thus it suffices to show that the subgraph of H containing (0, 0) and any other point (k, 0)
(say) is connected.

Now let (Xn
j ,−n) := hn(j, 0) for j ∈ Z, where hn denotes the n-fold composition of h

defined in (1). Observe that for j < k, Xn
j ≤ Xn

k for every n ≥ 1. Fix i, j with i < j and
let Zn := Xn

j −Xn
i with Z0 = j − i. Since Zn depends only on the configuration on the line

{(k,−n) : k ∈ Z} and the value of Zn−1, {Zn, n ≥ 0} is a Markov chain.
For m ≥ 1 and k = 2m, it is easy to see that there are two possible ways to obtain

X1
1 −X1

0 = k, viz. (see Figure 1)

(a) all vertices between (−m+ 1,−1) and (m− 1,−1) are closed, both vertices (m,−1) and
(−m,−1) are open and U(0,0),(−m,−1) < U(0,0),(m,−1),

(b) all vertices between (−m+2,−1) and (m,−1) are closed, both vertices (−m+1,−1) and
(m+ 1,−1) are open and U(1,0),(m+1,−1) < U(1,0),(−m+1,−1);

while, for k = 2m+ 1, the only possible way to obtain X1
1 −X1

0 = k is (see Figure 1):

(c) all vertices between (−m + 1,−1) and (m,−1) are closed, both vertices (m,−1) and
(−m,−1) are open.

Now an easy calculation yields,

P(X1
1 −X1

0 = k) =

{
p if k = 0
p2(1− p)k−1 if k ≥ 1

and so we have, E(X1
1 −X1

0 ) = 1.
By the translation invariance of the model,

E(X1
j −X1

i ) =
j−i−1∑
k=0

E(X1
i+k+1 −X1

i+k) = (j − i)E(X1
1 −X1

0 ) = j − i. (2)

Also E(Zn|Zn−1 = k) = k, so {Zn, n ≥ 0} is a martingale. Since it is a non-negative martingale,
by the martingale convergence theorem (see Theorem 35.4, Billingsley [1979] pg. 416), Zn
converges almost surely as n → ∞. Let Z∞ denote this almost sure limit. We prove the first
part of Theorem 2.1 by showing that Z∞ = 0 with probability 1.
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Figure 1: The dark coloured circled points are open and the other circled points are closed.

To this end, for k, l ≥ 0, let pk,l := P(Zn = l|Zn−1 = k) denote the 1-step transition
probabilities of Zn. We first calculate pk,0. Clearly, p0,0 = 1. Now for k ≥ 1, the event
{h(0, 0) = h(k, 0) = (m,−1)} occurs if and only if

(a) for m ≤ 0, all vertices between (m − 1,−1) and (2k −m − 1,−1) are closed, (m,−1) is
open and, either (2k −m,−1) is closed, or if (2k −m,−1) is open then U(k,0),(m,−1) <

U(k,0),(2k−m,−1);

(b) for m ≥ k, all vertices between (m − 1,−1) and (2k − m − 1,−1) are closed, (2k −
m,−1) is open and, either (m,−1) is closed, or if (m,−1) is open then U(k,0),(2k−m,−1) <

U(k,0),(m,−1);

(c) for 1 ≤ m ≤ k−1, all vertices between (−m+1,−1) and (2k−m−1,−1) except (m,−1)
are closed, (m,−1) is open and, either both (−m,−1) and (2k − m,−1) are closed,
or if (−m,−1) [ respectively, (2k − m,−1)] is open then U(0,0),(m,−1) < U(0,0),(−m,−1) [
respectively, U(k,0),(m,−1) < U(k,0),(2k−m,−1)].

Figure 2 illustrates all these three cases.
Thus, for k ≥ 1, taking q = 1− p we have

pk,0 = 2
∞∑
l=0

pq2(l+k)−1(q + p/2) +
k−1∑
l=1

pq2k−1(q2 + pq + p2/4)

= 2pq2k−1 q + p/2
1− q2

+ (k − 1)pq2(k−1(q2 + pq + p2/4). (3)
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Figure 2: The solid points are open, the other circled points are closed and the points at the
edges of each figure depicted by squares may be open or closed.

Now

P(Zn = 0) =
∞∑
k=0

pk,0P(Zn−1 = k)

= p0,0P(Zn−1 = 0) +
∞∑
k=1

pk,0P(Zn−1 = k). (4)

As n → ∞, Zn converges almost surely to Z∞ and thus Zn also converges in distribution
to Z∞. Moreover, from (3) we see that

∑∞
k=1 pk,0P(Zn−1 = k) ≤

∑∞
k=1 pk,0 <∞. Thus taking

limits on both sides of (4), as n→∞, we have

P(Z∞ = 0) = P(Z∞ = 0) +
∞∑
k=1

pk,0P(Z∞ = k). (5)

Since pk,0 6= 0 for k ≥ 1, we have our claim, viz., Z∞ = 0 with probability 1.
For the second part of Theorem 2.1 we first show that on Z4 the graph admits two distinct

trees with positive probability, i.e.

P{G is disconnected} > 0. (6)

Consider a random vector X ∈ Z3 defined as follows: for k ≥ 0 and || · || being the L1 norm,
let Dk := {v ∈ Z3 : ||v|| ≤ k} denote the ‘diamond’ of radius k and let δDk := {v ∈ Z3 : ||v|| =
k} denote its boundary. The distribution of the random vector X is given by

P(X = v) =

{
p if v = 0
(1−p)#Dk−1 (1−(1−p)#δDk )

#δDk
for v ∈ δDk, k ≥ 1

(7)
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where 0 = (0, 0, 0) and #A denotes the cardinality of the set A. It may easily be checked that∑
v∈Z3 P (X = v) = 1.
Next, for a fixed vector u = (u(1), . . . , u(4)) ∈ Z4 consider the graph H = (V ∪ {u}, E ∪ {<

u, h(u) >}). For n ≥ 0, let hn(u) := (gn(u), t) for gn(u) ∈ Z3 and t = u(4) − n ∈ Z.
Here we take h0(u) = u. Observe that for fixed u, gn(u) has the same distribution as
(u(1), u(2), u(3)) +

∑n
i=1Xi, where X1, X2, . . . are i.i.d. copies of X. Hence {gn(u) : n ≥ 0}

is a symmetric random walk starting at g0(u) = (u(1), u(2), u(3)), with i.i.d. steps, each
step size having distribution X. However, for v ∈ Z

4 with v(4) = u(4), in the graph
(V ∪ {u,v}, E ∪ {< u, h(u) >,< v, h(v) >}) the processes {gn(u)}n≥0 and {gn(v)}n≥0 are not
independent and so we cannot use the fact that two independent random walks on Z3 do not in-
tersect with positive probability to obtain our theorem. Nonetheless, if u and v are sufficiently
far apart their dependence on each other is sufficiently weak. In the remainder of this section
we formalize this notion of weak dependence by coupling two independent random walks and
the processes {gn(u), gn(v) : n ≥ 0} and obtain the desired result.

For v = (v(1), v(2), v(3), 0), given ε > 0 define the event

An,ε(v) := {gn4
(v) ∈ gn4

(0) + (Dn2(1+ε) \Dn2(1−ε)),

gi(v) 6= gi(0) for all i = 1, . . . , n4}, (8)

where 0 := (0, 0, 0, 0).

Lemma 3.1 For 0 < ε < 1/3 there exist constants C, β > 0 and n0 ≥ 1 such that, for all
n ≥ n0,

inf
g0(v)∈Dn1+ε\Dn1−ε

P(An,ε(v)) ≥ 1− Cn−β.

Assuming the above lemma we proceed to complete the proof of (6). We shall return to
the proof of the lemma later.

For i ≥ 1 and n ≥ n0, let τi := 1 + n4 + (n4)2 + · · ·+ (n4)2i−1
. For fixed v, we define

B0 = B0(v) := {g(v) ∈ g(0) + (Dn1+ε \Dn1−ε)},

and having defined B0, . . . , Bi−1 we define

Bi = Bi(v) := {gτi(v) ∈ gτi(0) + (D
n2i(1+ε) \Dn2i(1−ε)) and

gj(v) 6= gj(0) for all τi−1 + 1 ≤ j ≤ τi}.

Clearly,

P{gj(v) 6= gj(0) for all j ≥ 1} ≥ P(∩∞i=0Bi)

= lim
i→∞

P(∩ij=0Bj)

= lim
i→∞

i∏
l=1

P(Bl| ∩l−1
j=0 Bj)P(B0). (9)
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Since P(B0) > 0, from (9) we have that P(gj(v) 6= gj(0) for all j ≥ 1) > 0 if
∑∞

l=1 1 −
P(Bl| ∩l−1

j=0 Bj) <∞.
For fixed l ≥ 1, let u1 = hτl(0) and v1 = hτl(v). Now {(hn(0), hn(v)) : n ≥ 0} being

a Markov process and, for (ω, ξ) ∈ Bl(v), since g0(v1)(ω, ξ) ∈ g0(u1)(ω, ξ) + (D
n2l−1(1+ε) \

D
n2l−1(1−ε)), we have

P

(
Bl+1| ∩lj=0 Bj) ≥ inf

1
P

{
g(n4)2l

(v1) ∈ g(n4)2l

(u1) + (D
n2l(1+ε) \Dn2l(1−ε)),

gk(u1) 6= gk(v1) for all k = 1, 2, . . . , (n4)2l
}

= inf
2
P

(
A
n2l ,ε

(u)
)

≥ 1− C(n2l)−β, (10)

where inf1 is the infimum over all u1,v1 ∈ Z4 with g0(v1) ∈ g0(u1) + (D
n2l−1(1+ε) \Dn2l−1(1−ε))

and inf2 is the infimum over all u with g0(u) ∈ (D
n2l−1(1+ε) \Dn2l−1(1−ε)) and the last inequality

follows from Lemma 3.1. Thus
∑∞

l=1

(
1− P(Bl| ∩l−1

j=0 Bj)
)
≤ C

∑∞
l=1(n2l)−β < ∞; thereby

completing the proof (6).
To prove Lemma 3.1, we have to compare the trees {hn(0)} and {hn(v)} and indepen-

dent “random walks” {0 + (
∑n

i=1Xi,−n)} and {v + (
∑n

i=1 Yi,−n)} where {X1, X2, . . .} and
{Y1, Y2 . . .} are independent collections of i.i.d. copies of the random variable X given in (7).

We now describe a method to couple the trees and the independent random walks. Before
embarking on the formal details of the coupling procedure we present the main idea. Henceforth,
the boldface symbols u, v denote vectors in Z4 while the fraktur symbols u, v denote vectors
in Z3.

From a vertex 0 we construct the ‘path’ {0 + (
∑n

i=1Xi,−n)}. Now consider the vertex
v with v = (v1, v2, v3, 0). In case the diamond D = {u ∈ Z3 : ||u|| ≤ ||X1||} is disjoint from
the diamond D′ = {u ∈ Z3 : ||u − (v1, v2, v3)|| ≤ ||Y1||} then we take h1(v) = {v + (Y1,−1)}.
While if the two diamonds are not disjoint, then we have to define h1(v) taking into account
the configuration inside the diamond D. Similarly, we may obtain h2(v) by considering the
diamonds {u ∈ Z3 : ||u −X1|| ≤ ||X2||} and {u ∈ Z3 : ||u − g1(v)|| ≤ ||Y2||}. Note that if, for
each i = 1, . . . , n the two diamonds involved in the ith stage are disjoint, then the growth of the
tree {(hi(0), hi(v)) : 0 ≤ i ≤ n} is stochastically equivalent to that of the pair of independent
‘random walks’ (0 + (

∑n
i=1Xi,−n),v + (

∑n
i=1 Yi,−n)).

We start with two vertices u = (u, 0) and v = (v, 0) in Z4 with u, v ∈ Z3. Let {Uu
1 (z) : z ∈

Z
3}, {Uu

2 (z) : z ∈ Z3} and {Uv
1 (z) : z ∈ Z3}, {Uv

2 (z) : z ∈ Z3} be four independent collections of
i.i.d. random variables, each of these random variables being uniformly distributed on [0, 1].

Let ku and lv be defined as

ku := min{k : Uu
1 (z) < p for some z ∈ (u +Dk)}

lv := min{l : Uv
1 (z) < p for some z ∈ (v +Dl)}.

8



Now define mv as

mv := min{m : either Uv
1 (z) < p for some z ∈ (v +Dm) \ (u +Dku)

or Uu
1 (z) < p for some z ∈ (v +Dm) ∩ (u +Dku)}.

Also, define the sets

Nu := {z ∈ (u +Dku) : Uu
1 (z) < p}

N1
v := {z ∈ (v +Dlv) : Uv

1 (z) < p}

N2
v := {z ∈ (v +Dmv) \ (u +Dku) : Uv

1 (z) < p}

∪{z ∈ (v +Dmv) ∩ (u +Dku) : Uu
1 (z) < p}.

We pick

(a) φ(u) ∈ Nu such that Uu
2 (φ(u)) = min{Uu

2 (z) : z ∈ Nu};

(b) ζ(v) ∈ N1
v such that Uv

2 (ζ(v)) = min{Uv
2 (z) : z ∈ N1

v };

(c) ψ(v) ∈ N2
v such that Uv

2 (ψ(v)) = min{Uv
2 (z) : z ∈ N2

v }.

Taking φ0(u) = u, φn(u) = φ(φn−1(u)), and similarly for ζn(v) and ψn(v), we note
that the distribution of

{(
(φn(u),−n), (ζn(v),−n)

)
: n ≥ 0

}
is the same as that of

{(
(u +∑n

i=1Xi,−n), (v +
∑n

i=1 Yi,−n)
)
: n ≥ 0

}
, i.e. two independent “random walks” one starting

from (u, 0) and the other starting from (v, 0). Also the distribution of {(hn(u, 0), hn(v, 0)) :
n ≥ 0} and that of {((φn(u),−n), (ψn(v),−n)) : n ≥ 0} are identical. Thus, the procedure
described above may be used to construct the trees from (u, 0) and (v, 0).

Now observe that {(φn(u),−n)} describes both the random walk and the tree starting from
(u, 0). Also if Dku ∩ Dmv = ∅, then mv = lv and, more importantly, ζ(v) = ψ(v). Hence the
‘random walk’ and the tree from (u, 0) are coupled and so are the ‘random walk’ and the tree
from (v, 0). In particular, this happens when both ku < [||u− v||/2] and mv < [||u− v||/2]. Let
k0 = ||u− v||/2. From the above discussion we have

P

(
{ζ(v) 6= ψ(v)}

)
≤ P

(
{(Uu

1 (z)) > p for all z ∈ (u +Dk0)}

∪{(Uv
1 (z)) > p for all z ∈ (v +Dk0)}

)
= 2P

(
{(Uu

1 (z)) > p for all z ∈ (u +Dk0)}
)

= 2(1− p)#Dk0 .

Since (1/2)k3 ≤ #Dk ≤ 2k3, the above inequality gives

P({ζ(v) = ψ(v)}) ≥ 1− C1 exp(−C2||u− v||3) (11)
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for constants C1 = 2 and C2 = (1/2)| log(1− p)|.
With the above estimate at hand, we look at the process {(φn(u), ζn(v)) : n ≥ 0}. Without

loss of generality we take u = 0. For ε > 0 and constant K > 0 (to be specified later) define

Bn,ε(v) := {ζn4
(v) ∈ φn4

(0) + (Dn2(1+ε) \Dn2(1−ε)),

||ζi(v)− φi(0)|| ≥ K log n for all i = 1, . . . , n4}. (12)

This event is an independent random walk version of the event An,ε(v, 0) defined in (8), except
that here we require that the two random walks come no closer than K log n at any stage.

We will show that there exists α > 0 such that

sup
v∈(D

n(1+ε)\Dn(1−ε) )
P

(
(Bn,ε(v))c

)
< C3n

−α (13)

for some constant C3 > 0.
Since (Bn,ε(v))c ⊆ En,ε(v) ∪ Fn,ε(v) ∪Gn,ε(v) where

En,ε(v) :=
{
||ζi(v)− φi(0)|| ≤ K log n for some i = 1, . . . , n4

}
,

Fn,ε(v) :=
{
ζn

4
(v) 6∈ φn4

(0) +Dn2(1+ε)

}
,

Gn,ε(v) :=
{
ζn

4
(v) ∈ φn4

(0) +Dn2(1−ε)
}
,

to prove (13) it suffices to show

Lemma 3.2 There exist α > 0 and constants C4, C5, C6 > 0 such that for all n sufficiently
large we have

(a) supv∈(D
n(1+ε)\Dn(1−ε) ) P(En,ε(v)) < C4n

−α,

(b) supv∈(D
n(1+ε)\Dn(1−ε) ) P(Fn,ε(v)) < C5n

−α,

(c) supv∈(D
n(1+ε)\Dn(1−ε) ) P(Gn,ε(v)) < C6n

−α.

Proof: First we fix v ∈ (Dn(1+ε) \Dn(1−ε)). Since {(φn(0), ζn(v)) : n ≥ 0} and {(
∑n

i=1Xi, v +∑n
i=1 Yi) : n ≥ 0} have the same distribution, we have

P(En,ε(v))

= P

{
||

i∑
j=1

Xj − (v +
i∑

j=1

Yj)|| ≤ K log n for some i = 1, . . . , n4

}

= P

{ i∑
j=1

Xj −
i∑

j=1

Yj ∈ (v +DK logn) for some i = 1, . . . , n4

}

≤ P

{ i∑
j=1

Xj −
i∑

j=1

Yj ∈ (v +DK logn) for some i ≥ 1
}

= P

( ⋃
z∈(v+DK logn)

{ i∑
j=1

Xj −
i∑

j=1

Yj = z for some i ≥ 1
})

.

10



Now
∑i

j=1(Xj − Yj) is an aperiodic, isotropic, symmetric random walk whose steps are
i.i.d. with each step having the same distribution as X − Y where Y is an independent copy
of X. Since Var(X − Y ) = 2Var(X) = 2σ2I (where σ2 = Var(X(1)) and Var(X) denotes the
variance-covariance matrix of X) and

∑
u∈Z3 |u|2P(X − Y = u) < ∞, by Proposition P26.1 of

Spitzer [1964] (pg. 308),

lim
|z|→∞

|z|P
{ i∑
j=1

Xj −
i∑

j=1

Yj = z for some i ≥ 1
}

= (4πVar(X(1)))−1. (14)

For v ∈ (Dn(1+ε) \Dn(1−ε)) and z ∈ v+DK logn, we must have that for all n sufficiently large
|z| ≥ n1−ε/2. Thus for all n sufficiently large, for some constants C7, C8, C9 > 0 we have, using
(14),

P

(
En,ε(v)

)
≤

∑
z∈(v+DK logn)

P

{ i∑
j=1

Xj −
i∑

j=1

Yj = z for some i ≥ 1
}

≤ C7(K log n)3C8(n−(1−ε))

≤ C9n
−(1−ε/2)

for all n sufficiently large. This completes the proof of Lemma 3.2 (a).
For the next part of the Lemma observe that for sufficiently large n and all v ∈ Dn(1+ε) \

Dn(1−ε) ,

P

(
Fn,ε(v)

)
= P

{
v +

n4∑
j=1

(Xj − Yj) 6∈ Dn2(1+ε)

}

= P

{
||v +

n4∑
j=1

(Xj − Yj)|| > n2(1+ε)

}

≤ P

{
||

n4∑
j=1

(Xj − Yj)|| > n2(1+ε) − n(1+ε)

}

≤ P

{
||

n4∑
j=1

(Xj − Yj)|| > n2(1+ε)/2
}
. (15)

To estimate the above probability let X −Y = Z = (Z(1), Z(2), Z(3)), where E(Z(i)) = 0 and
Var(Z(i)) = 2σ2. Then, letting

∑k
j=1(Xj − Yj)(i) denote the ith co-ordinate of the process∑k

j=1(Xj − Yj) and using Chebychev’s inequality, we have

P

{
||

n4∑
j=1

(Xj − Yj)|| > n2(1+ε)/2
}

≤ P

{ 3⋃
i=1

{
|
n4∑
j=1

(Xj − Yj)(i)| > n2(1+ε)/6
}}

11



≤ 3P
{
|
n4∑
j=1

(Xj − Yj)(1)| > n2(1+ε)/6
}

≤ 3n4 Var(Z(1))
(n2(1+ε)/6)2

≤ C11

n4ε
,

for some constant C11 > 0. Combining the above inequality with that obtained in (15) we have

sup
v∈(D

n(1+ε)\Dn(1−ε) )
P

(
Fn,ε(v)

)
≤ C11

n4ε
,

which proves Lemma 3.2 (b).
Finally, for the last part of the Lemma, we have that if 0 < ε < 1/3 and v ∈ Dn(1+ε) \Dn(1−ε) ,

for all sufficiently large n, ||v|| < n2(1−ε). Therefore,

P

(
Gn,ε(v)

)
≤ P

{
||v +

n4∑
j=1

(Xj − Yj)|| < n2(1−ε)
}

≤ P

{
||

n4∑
j=1

(Xj − Yj)|| < ||v||+ n2(1−ε)
}

≤ P

{
||

n4∑
j=1

(Xj − Yj)|| < 2n2(1−ε)
}

≤ P

{ 3⋃
i=1

{∣∣∣ n4∑
j=1

(Xj − Yj)(i)
∣∣∣ < 2n2(1−ε)/3

}}

≤ 3P
{∣∣∣ n4∑

j=1

(Xj − Yj)(1)
∣∣∣ < 2n2(1−ε)/3

}

= 3P
{∣∣∑n4

j=1(Xj − Yj)(1)
∣∣

n2
< 2n−2ε/3

}
. (16)

By the central limit theorem, as n → ∞,
∑n4

j=1(Xj − Yj)(1)/(
√

2σn2) converges in distri-
bution to a random variable N (say) with a standard normal distribution. Thus

P

{∣∣∑n4

j=1(Xj − Yj)(1)
∣∣

n2
< 2n−2ε/3

}
≤

∣∣∣∣P{
∣∣∑n4

j=1(Xj − Yj)(1)
∣∣

√
2σn2

<

√
2n−2ε

3σ

}
− P

{
|N | <

√
2n−2ε

3σ

}∣∣∣∣
+P
{
|N | <

√
2n−2ε

3σ

}
. (17)

Of the terms in the above inequality we have

P

{
|N | ≤

√
2n−2ε

3σ

}
=

∫ √2n−2ε(3σ)−1

−
√

2n−2ε(3σ)−1

1√
2π

exp(−x2/2)dx

12



≤ 2
√

2n−2ε(3σ)−1

√
2π

, (18)

and, we use Berry–Essen bounds (see Chow and Teicher [1978] Corollary 9.4, pg 300), to obtain∣∣∣∣P{
∣∣∑n4

j=1(Xj − Yj)(1)
∣∣

√
2σn2

<

√
2n−2ε

3σ

}
− P

{
|N | <

√
2n−2ε

3σ

}∣∣∣∣
≤

∣∣∣∣P{
∑n4

j=1(Xj − Yj)(1)
√

2σn2
<

√
2n−2ε

3σ

}
− P

{
N <

√
2n−2ε

3σ

}∣∣∣∣
+
∣∣∣∣P{

∑n4

j=1(Xj − Yj)(1)
√

2σn2
≤ −
√

2n−2ε

3σ
}
}
− P

{
N ≤ −

√
2n−2ε

3σ

}∣∣∣∣
≤ 2 sup

x∈R

∣∣∣∣P{
∑n4

j=1(Xj − Yj)(1)
√

2σn2
≤ x

}
− P

{
N ≤ x

}∣∣∣∣
≤ C12E(Z4

1 )
n4σ4

, (19)

for some constant C12 > 0. Combining (16), (17) and (18), we have Lemma 3.2(c).

Proof of Lemma 3.1 Let v = (v, 0) ∈ Z4. Observe that An,ε(v) ⊇ Bn,ε(v) ∩ {gi(0) =∑i
j=1Xj , g

i(v) = v +
∑i

j=1 Yj for all 1 ≤ i ≤ n4}. Hence

P

(
An,ε(v)

)
≥ P

{
Bn,ε(v) ∩

{
gi(0) =

i∑
j=1

Xj , g
i(v) = v +

i∑
j=1

Yj for 1 ≤ i ≤ n4
}}

= P
{
Bn,ε(v) ∩

{
gi(0) =

i∑
j=1

Xj , g
i(v) = v +

i∑
j=1

Yj for 1 ≤ i ≤ n4 − 1
}}

× P
{
gn

4
(0) =

n4∑
j=1

Xj , g
n4

(v) = v +
n4∑
j=1

Yj

∣∣∣∣ Bn,ε(v) ∩
{
gi(0) =

i∑
j=1

Xj ,

gi(v) = v +
i∑

j=1

Yj for 1 ≤ i ≤ n4 − 1
}}

≥ P
{
Bn,ε(v) ∩

{
gi(0) =

i∑
j=1

Xj , g
i(v) = v +

i∑
j=1

Yj for 1 ≤ i ≤ n4 − 1
}}

×
(

1− C1 exp(−C2(K log n)3
)
,

where the last inequality follows from (11) after noting that given Bn,ε(v), gi(0) =
∑i

j=1Xj

and gi(v) = v +
∑i

j=1 Yj for all 1 ≤ i ≤ n4 − 1, we have ||gn4−1(0) − gn4−1(v)|| ≥ K log n.
Iterating the above argument for i = 1, . . . , n4 − 1 and using (13) we have

P

(
An,ε(v)

)
≥

(
1− C1 exp(−C2(K log n)3)

)n4

P

(
Bn,ε(v)

)
≥

(
1− C1n

4 exp(−C2K
3 log n)

)(
1− C3n

−α
)

13



≥
(

1− C1n
4n−C2K3

)(
1− C3n

−α
)

=
(

1− C1n
−C2K3+4

)(
1− C3n

−α
)
.

Taking K such that C2K
3 > 4 (i.e. K3 > 8| log(1− p)|−1) we have

P

(
An,ε(v)

)
≥ 1− C1n

−C2K3+4 − C3n
−α

≥ 1− Cn−β,

for some constant C > 0 and β := min{α,C2K
3 − 4} > 0. This completes the proof of Lemma

3.1.

Finally to complete the theorem we need to show that G admits infinitely many trees
almost surely. For k ≥ 2, define Dk(n, ε) = {(u1,u2, . . . ,uk) : ui ∈ Z4 such that n1−ε ≤
||g0(ui) − g0(uj)|| ≤ n1+ε for all i 6= j}. Define the event A(n, ε,u1,u2, . . . ,uk) = {n2(1−ε) ≤
||gn4

(ui)− gn
4
(uj)|| ≤ n2(1+ε) and gt(ui) 6= gt(uj) for all t = 1, . . . , n4 and for all i 6= j}. Using

Lemma 3.1, we can easily show, for 0 < ε < 1/3 and for all large n

inf
{
P(A(n, ε,u1,u2, . . . ,uk) : (u1,u2, . . . ,uk) ∈ Dk(n, ε)

}
≥ 1− Ck

nβ
(20)

where Ck is a constant independent of n (depending on k) and β is as in Lemma 3.1. We may
now imitate the method following the statement of Lemma 3.1 to obtain

P

{
gt(ui) 6= gt(uj) for all t ≥ 1 and for 1 ≤ i 6= j ≤ k

}
> 0.

Thus, by translation invariance and ergodicity, we have that for all k ≥ 2

P

{
G contains at least k trees

}
= 1.

This shows that G contains infinitely many trees almost surely.

4 Limit theorem

We first prove Theorem 2.2 (a). The proof of the next part of the theorem is similar and thus
omitted. For simplicity in notation we shall prove the result for d = 2, however our method is
also valid for higher dimensions.

Fix ν ≥ 0. Let Bn = [1, n] × [1, n] be a box of width n and, for (i, j) ∈ Bn ∩ Z2, define
random variables Yi,j as

Yi,j :=

1 if the degree of the vertex (i, j) in Bn ∩ V is ν + 1

0 otherwise.

Note for a vertex (i, j), Yi,j = 1 if and only if there are exactly ν edges ‘going up’ from (i, j)
and one edge going down from it.

14



Let Y (n)
j :=

∑n
i=1(Yi,j − E(Yi,j)) and Sn :=

∑n
j=1 Y

(n)
j . To prove Theorem 2.2 we need to

show that the distribution of Sn/n is asymptotically normal.
Towards this end, first observe that, for fixed j, {Yi,j}i≥1 is an α-mixing sequence of random

variables, i.e., for all m ≥ 1, A ∈ σ(Y1,j , Y2,j , . . . , Ym,j) and B ∈ σ(Ym+n,j , Ym+n+1,j , . . .) we
have |P(A ∩B)− P(A)P(B)| ≤ αn where αn → 0 as n→∞. Indeed, given A and B as above,
define

E =
{

there exists an open vertex in each of the sets{
(i, j) : m+

n

4
≤ i ≤ m+

3n
8
}
,
{

(i, j + 1) : m+
3n
8
≤ i ≤ m+

n

2
}
,{

(i, j + 1) : m+
n

2
≤ i ≤ m+

5n
8
}
,
{

(i, j) : m+
3n
8
≤ i ≤ m+

3n
4
}}
.

Now P(E) =
(

1− (1− p)n/8
)4
→ 1 as n→∞. Also, given E, the event A depends only on the

configuration of the vertices {(i, j−1) : i ≤ m+ n
4 }, {(i, j) : i ≤ m} and {(i, j+1) : i < m+ n

2 },
while the event B depends on the vertices {(i, j − 1) : i ≥ m + 3n

4 }, {(i, j) : i ≥ m + n} and
{(i, j+1) : i > m+ n

2 }. These sets of vertices being disjoint, given E, A and B are conditionally
independent. A simple conditioning argument now yields that, for n large enough,

|P(A ∩B)− P(A)P(B)| ≤ 5P(Ec)

≤ C1 exp(−C2n) for constants C1, C2 > 0. (21)

Also observe that for fixed i, {Yi,j}j≥1 is a 1-dependent sequence of random variables, i.e.
for fixed i, Yi,j is independent of Yi,j′ for j′ 6= j − 1, j, j + 1.

Now, for some 0 < δ < 1 to be chosen later and for 0 ≤ k < rn, where rn :=
⌊

n
bnδc+1

⌋
, let

W
(n)
k+1 := Y

(n)

kbnδc+k+1
+ · · ·+ Y

(n)

(k+1)bnδc+k,

η
(n)
k+1 := Y

(n)

(k+1)bnδc+k+1
,

En := Y
(n)

rn(bnδc+1)+1
+ · · ·+ Y (n)

n .

First we show that, for any r ≥ 1, there exists a constant C > 0 such that

E(Y (n)
1 + · · ·+ Y (n)

r )4 ≤ Cr2n2. (22)

Indeed note that, as in the proof of the first part of Theorem 27.5, Billingsley [1979], we
have E(Y (n)

i )4 = E(Y (n)
1 )4 ≤ Kn2 for some constant K > 0. Now

E(
r∑

k=1

Y
(n)
k )4 =

r∑
k,l,s,t=1

E(Y (n)
k Y

(n)
l Y (n)

s Y
(n)
t ), (23)

and using the fact that {Y (n)
k }k≥1 is 1-dependent sequence of random variables, the Cauchy-

Schwarz inequality and that EY (n)
1 = 0, we obtain after some elementary calculations

E(
∑r

k=1 Y
(n)
k )4 ≤ 2rE(Y (n)

1 )4 + r2
E(Y (n)

1 )4. Here the term 2rE(Y (n)
1 )4 comes from the terms
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in the sum
∑r

j,k,s,t=1 E(Y (n)
j Y

(n)
k Y

(n)
s Y

(n)
t ) when j, k, s, t are close to each other so as to have

dependence among all the 4 random variables making the product, while the term r2
E(Y (n)

1 )4

comes from the terms of the sum when j, k are close to each other, s, t are close to each other,
but there is independence between (Y (n)

j , Y
(n)
k ) and (Y (n)

s , Y
(n)
t ). This proves (22).

Now taking r = bnδc, and using the fact that W (n)
1 ,W

(n)
2 , . . . are i.i.d. random variables,

we have from (22) that E(W (n)
k )4 ≤ Cn2+2δ for all k ≥ 1.

Also

Var(W (n)
1 ) = E

(bnδc∑
j=1

Y
(n)
j

)2

= bnδcE(Y (n)
1 )2 + 2

bnδc−1∑
j=1

Cov(Y (n)
j , Y

(n)
j+1)

= bnδcE(Y (n)
1 )2 + 2(bnδc − 1)Cov(Y (n)

1 , Y
(n)

2 ). (24)

In the above expression,

E(Y (n)
1 )2 = nVar(Y1,1) + 2

n−1∑
s=1

n−s∑
t=1

Cov(Ys,1, Ys+t,1)

= nVar(Y1,1) + 2
n−1∑
s=1

(n− s) Cov(Y1,1, Y1+s,1)

= O(n) as n→∞,

where the last equality follows because from the α-mixing of the sequence {Yt,1}t≥1 we have∑∞
t=2 Cov(Y1,1, Yt,1) ≤ C

∑∞
t=2 αt < ∞ for some constant C > 0. Moreover, by Cauchy-

Schwarz inequality,
Cov(Y (n)

1 , Y
(n)

2 ) ≤ E(Y (n)
1 )2.

Thus, from (24), we have Var(W (n)
1 ) = O(n1+δ) as n→∞ and

Var(
rn∑
k=1

W
(n)
k ) = O(n(1−δ)+(1+δ)) = O(n2) as n→∞. (25)

Finally, for 0 < δ < 1,

lim
n→∞

rn∑
k=1

1

(Var
∑rn

k=1W
(n)
k )2

E(W (n)
k )4 ≤ lim

n→∞

rn∑
k=1

C
n2+2δ

n4

= lim
n→∞

Cnδ−1

= 0.

Thus by Lyapunov’s central limit theorem (see Theorem 27.3, pg 312 Billingsley [1979]) we
have that for 0 < δ < 1, 1√∑rn

k=1 V ar(W
(n)
k )

∑rn
k=1W

(n)
k converges in probability to a standard

normal random variable.
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Now let ηn :=
∑rn

k=1 η
(n)
k . We will show that

ηn/n→ 0 in probability as n→∞. (26)

Indeed,

E(η(n)
k )2 ≤

n∑
i=1

Var(Yi,k) + 2n
n∑
i=2

Cov(Y1,k, Yi,k)

≤ n Var(Y1,1) + 2n
∞∑
i=2

C1 exp(−C2i)

≤ Mn for some constant M > 0.

Thus, using the fact that rn = O(n1−δ) as n→∞, we have, for ε > 0,

P(|ηn| > nε) ≤ E(η2
n)

n2ε2

=
MnO(n1−δ)

n2ε2

→ 0 as n→∞.

This proves (26).
To complete the proof, we have to show that En

n → 0 in probability as n → ∞. First
observe that number of terms in En is at most bnδc. Therefore taking δ = 1/2, from (22) we
have E(E4

n) ≤ Cn3. Hence, for ε > 0,

P(|En| > nε) ≤ E(E4
n)

n4ε4
→ 0 as n→∞. (27)

Theorem 2.2 (a) now follows by combining the equations (26) and (27) and the fact
that

∑rn
k=1Wk

(n)/n has asymptotically a N(0, s2) distribution, where s2 = Var(Y1,1) +
2
∑∞

i=2 Cov(Y1,1, Yi,1)+2
∑∞

i=1 Cov(Y1,1, Yi,2)+2
∑∞

i=2 Cov(Y1,2, Yi,1). Note that to compute s2

we use the fact that {(Yi,j , Yi,j+1)}i≥1 is an α-mixing sequence.

5 Degree of a vertex

To prove Proposition 2.1 observe that, given the vertex (0,−1) is open, let

Y =

1 if the vertex (0, 0) is open

0 otherwise,

X1 = #{(i, 0) : i ≤ −1 : (i, 0) is connected by an edge to (0,−1)},

X2 = #{(i, 0) : i ≥ 1 : (i, 0) is connected by an edge to (0,−1)}.

Clearly the degree of (0,−1) equals Y + X1 + X2. Now given the vertex (0,−1) is open,
the probability that the vertex (−l, 0) is connected to (0,−1) and that there are exactly r − 1

17



vertices in {(i, 0) : −l+1 ≤ i ≤ −1} which are connected to (0,−1) equals
(
l−1
r−1

)
pr(1−p)l−r(1−

p)2l−1((1 − p) + 1
2p). Thus P (X1 ≥ r) =

∑∞
l=r

(
l−1
r−1

)
pr(1 − p)l−r(1 − p)2l−1((1 − p) + 1

2p). An
easy calculation now completes the proof of the proposition.

Similarly in 2-dimensions, given that a vertex v is open, the distribution of the number of
edges of length l ‘going up’ from v is binomial with parameters 2 and (1− p

2)(1− p)2l−1.

Remark From the above distributions we may calculate the quantities E(Sn), Var(Sn), s2 and
the related quantities involving Ln required in Theorem 2.2 for 2-dimensions.
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