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Abstract

Let {X1, . . . , Xm} and {Y1, . . . , Yn} be two samples independent of each other, but the
random variables within each sample are stationary associated with one dimensional marginal
distribution functions F and G, respectively. We study the properties of the classical Wilcoxon-
Mann-Whitney statistic for testing for stochastic dominance in the above set up.
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variables .

1



1 INTRODUCTION

Suppose that two samples {X1, . . . , Xm} and {Y1, . . . , Yn} are independent of each other,
but the random variables within each sample are stationary associated with one dimensional
marginal distribution functions F and G respectively. Assume that the density functions f and
g of F and G respectively , exist . We wish to test for the equality of the two marginal distri-
bution functions F and G. A commonly used statistic for this nonparametric testing problem
is the Wilcoxon Mann-Whitney statistic when the observations Xi, 1 ≤ i ≤ m are independent
and identically distributed (i.i.d.) and Yj , 1 ≤ j ≤ n are i.i.d. However, most often the X
and the Y observations are not i.i.d. Suppose the samples are from a stationary associated
stochastic process.

A finite family {X1, ..., Xn} of random variables is said to be associated if

Cov(h1(X1, ..., Xn), h2(X1, ..., Xn)) ≥ 0

for any coordinatewise nondecreasing functions h1, h2 on Rn such that the covariance exists. An
infinite family of random variables is said to be associated if every finite subfamily is associated.
(cf. Esary, Proschan and Walkup (1967)).

We wish to test the hypothesis that

H0 : F (x) = G(x) for all x, (1.1)

against the alternative
H1 : F (x) ≥ G(x) for all x, (1.2)

with strict inequality for some x. We can test the above hypothesis conservatively by testing

H ′0 : γ = 0, (1.3)

against the alternative
H ′1 : γ > 0, (1.4)

where γ = 2P (Y > X)− 1 = P (Y > X)− P (Y < X).
Probabilisic aspects of associated random variables have been extensively studied (see, for

example, Prakasa Rao and Dewan (2001) and Roussas(1999)). Here we extend the Wilcoxon -
Mann - Whitney statistic to stationary sequences of associated variables. Serfling (1980) studied
the Wilcoxon statistic when the samples are from stationary mixing processes. Louhichi (2000)
gave an example of a sequence of random variables which is associated but not mixing. This
shows that tests for samples from stationary associated random sequences need to be studied
separately.

In section 2 we state some results that are used to study the properties of Wilcoxon statistic
for associated random variables. In section 3 we discuss the asymptotic normality of the
Wilcoxon statistic based on independent sequences of stationary associated variables.
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2 Preliminaries

We state some theorems that are used in proving the main results in the next section.

Theorem 2.1 : (Bagai and Prakasa Rao(1991)). Suppose X and Y are associated random
variables with bounded continuous densities fX and fY , respectively. Then there exists an
absolute constant C > 0 such that

sup
x,y
|P [X ≤ x, Y ≤ y]− P [X ≤ x]P [Y ≤ y]|

≤ C{max(sup
x
fX(x), sup

x
fY (x))}2/3(Cov(X,Y ))1/3.

(2.1)

The following Theorem gives the asymptotic normality of a sequence of associated variables.

Theorem 2.2 : (Newman (1980, 1984)). Let {Xn, n ≥ 1} be a stationary associated sequence

of random variables with E[X2
1 ] < ∞ and 0 < σ2 = V (X1) + 2

∞∑
j=2

Cov(X1, Xj) < ∞. Then,

n−1/2(Sn − E(Sn)) L→ N(0, σ2) as n→∞.

Assume that

sup
x
f(x) < c sup

x
g(x) < c. (2.2)

Further assume that ∞∑
j=2

Cov
1
3 (X1, Xj) <∞, (2.3)

and ∞∑
j=2

Cov
1
3 (Y1, Yj) <∞. (2.4)

This would imply
∞∑
j=2

Cov(X1, Xj) <∞, (2.5)

and ∞∑
j=2

Cov(Y1, Yj) <∞. (2.6)

Theorem 2.3 : (Peligard and Suresh (1995)). Let {Xn, n ≥ 1} be a stationary associated
sequence of random variables with E(X1) = µ, E(X2

1 ) <∞. Let {`n, n ≥ 1} be a sequence of
positive integers with 1 ≤ `n ≤ n. Let Sj(k) =

∑j+k
i=j+1Xi, X̄n = 1

n

∑n
i=1Xi. Let `n = o(n) as

n→∞.Assume that (2.5) holds. Then, with ` = `n
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Bn =
1

n− `
(
n−∑̀
j=0

|Sj(`)− `X̄n|√
`

)

→ (Var(X1) + 2
∞∑
i=2

Cov(X1, Xi))
√

2
π

in L2 −mean as n→∞. (2.7)

In addition assume that `n = O(n/(logn)2) as n→∞, the convergence above holds in the
almost sure sense.

Theorem 2.4 : (Roussas (1993)). Let {Xn, n ≥ 1} be a stationary associated sequence of
random variables with bounded one dimensional probability density function. Suppose

u(n) = 2
∞∑

j=n+1

Cov(X1, Xj)

= O(n−(s−2)/2) for some s > 2. (2.8)

Let ψn be any positive norming factor. Then, for any bounded interval IM = [−M,M ], we
have

sup
x∈IM

ψn|Fn(x)− F (x)| → 0, (2.9)

almost surely as n→∞, provided

∞∑
n=1

n−s/2ψs+2
n <∞. (2.10)

3 Wilcoxon Statistic

The Wilcoxon two-sample statistic is the U-statistic given by

U =
1
mn

m∑
i=1

n∑
j=1

φ(Yj −Xi), (3.1)

where

φ(u) =


1 if u > 0,
0 if u = 0,
−1 if u < 0.

Note that φ is a kernel of degree (1, 1) with Eφ(Y − X) = γ. We now obtain the limiting
distribution of the statistic U under some conditions.
Theorem 3.1: Le {Xi, i ≥ 1} and {Yj , j ≥ 1} be independent sequences of random variables

with one dimensional distribution functions F and G, respectively, such that each sequence is
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stationary associated satisfying conditions ( 2.3) to (2.6). Then , as m,n → ∞ such that
m
n → c ∈ (0,∞), we have

√
m(U − γ) L→ N(0, A2) as n→∞,

where A2 is as given by (3.19). If F = G, then

σ2
X = σ2

Y

= 4(
1
12

+ 2
∞∑
j=2

Cov(F (X1), F (Xj))), (3.2)

so that

A2 = 4(1 + c)(
1
12

+ 2
∞∑
j=2

Cov(F (X1), F (Xj))). (3.3)

Proof: Following Hoeffding’s decomposition (Lee (1980)), we can write U as

U = γ +H(1,0)
m,n +H(0,1)

m,n +H(1,1)
m,n , (3.4)

where

H(1,0)
m,n =

1
m

m∑
i=1

h(1,0)(Xi),

h(1,0)(x) = φ10(x)− γ, φ10(x) = 1− 2G(x),

H(0,1)
m,n =

1
n

n∑
j=1

h(0,1)(Yj),

h(0,1)(y) = φ01(y)− γ, φ01(y) = 2F (y)− 1,

and

H(1,1)
m,n =

1
mn

m∑
i=1

n∑
j=1

h(1,1)(Xi, Yj),

where
h(1,1)(x, y) = φ(x− y)− φ10(x)− φ01(y) + γ.

It is easy to see that

E(φ10(X)) = γ,

E(φ2
10(X)) = 4

∫ ∞
−∞

G2(x)dF (x)− 4
∫ ∞
−∞

G(x)dF (x) + 1,

and
Cov(φ10(Xi), φ01(Xj)) = 4 Cov(G(Xi), G(Xj)). (3.5)
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Since the random variables X1, . . . , Xm are associated , so are φ10(X1), . . . , φ10(Xm) since
φ is monotone (see, Esary, Proschan and Walkup (1967)). Furthermore conditions (2.2), (2.5)
and (2.6) imply that

∞∑
j=2

Cov(G(X1), G(Xj)) <∞,

and ∞∑
j=2

Cov(F (Y1), F (Yj) <∞,

since
|Cov(G(X1), G(Xj))| < (sup

x
g)Cov(X1, Xj),

and
|Cov(F (Y1), F (Yj))| < (sup

x
f)Cov(Y1, Yj),

by Newman’s inequality (1980). Following Newman (1980,1984), we get that

m−1/2
m∑
i=1

(φ10(Xi)− γ) L→ N(0, σ2
X) as n→∞, (3.6)

where

σ2
X = 4

∫ ∞
−∞

G2(x)dF (x)− 4
∫ ∞
−∞

G(x)dF (x) + 1 + 8
∞∑
j=2

Cov(G(X1), G(Xj)). (3.7)

Similarly, we see that

n−1/2
n∑
j=1

(φ01(Yj)− γ) L→ N(0, σ2
Y ) as n→∞, (3.8)

where

σ2
Y = 4

∫ ∞
−∞

F 2(x)dG(x)− 4
∫ ∞
−∞

F (x)dG(x) + 1 + 8
∞∑
j=2

Cov(F (Yi), F (Yj)). (3.9)

Note that E(H(1,1)
m,n ) = 0. Consider

Var(H(1,1)
m,n ) = E(H(1,1)

m,n )2

=
∆

m2n2
, (3.10)

where

∆ =
m∑
i=1

n∑
j=1

m∑
i′=1

n∑
j′=1

∆(i, j; i′, j′), (3.11)

and
∆(i, j; i′, j′) = Cov(h(1,1)(Xi, Yj), h(1,1)(Xi′ , Yj′)). (3.12)
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Following Serfling (1980),

∆(i, j; i′, j′) = 4(E(Fi,i′(Yj , Yj′)− F (Yj)F (Yj′))

−Cov(G(Xi, Xi′)))

= 4(E(Gj,j′(Xi, Xi′)−G(Xi)G(Xi′))

−Cov(F (Yj , Yj′)), (3.13)

where Fi,i′ is the joint distribution function of (Xi, Xi′) and Gj,j′ is the joint distribution
function of (Yj , Yj′).

Then, by Theorem 2.1, there exists a constant C > 0 such that

∆(i, j; i′, j′) ≤ C[Cov
1
3 (Xi, Xi′) + Cov(Xi, Xi′)]

= r1(|i− i′|) (say), (3.14)

by stationarity and

∆(i, j; i′, j′) ≤ C[Cov
1
3 (Yj , Yj′) + Cov(Yj , Yj′)]

= r2(|j − j′|) (say), (3.15)

by stationarity. Note that
∞∑
k=1

r1(k) <∞,
∞∑
k=1

r2(k) <∞. (3.16)

by (2.3) - (2.6). Then, following Serfling (1980), we have

∆ = o(mn2) (3.17)

as m and n→∞ such that m
n has a limit c ∈ (0,∞).

Hence, from (3.4), we have

√
m(U − γ) =

√
m

1
m

m∑
i=1

h(1,0)(Xi) +
√
m

n

1√
n

n∑
j=1

h(0,1)(Yj) +
√
mH(1,1)

m,n

L→ N(0, A2), (3.18)

where
A2 = σ2

X + cσ2
Y , (3.19)

since E(H(1,1)
m,n ) = 0 and Var(

√
mH

(1,1)
m,n )→ 0 as m,n→∞ such that m

n → c ∈ (0,∞). This
completes the proof of the theorem.
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Estimation of the limiting variance

Note that the limiting variance A2 depends on the unknown distribution F even under the
null hypothesis. We need to estimate it so that the proposed test statistic can be used for
testing purposes. The unknown variance A2 can be estimated using the estimators given by
Peligard and Suresh (1995). We now give a consistent estimator of the unknown variance A2

under some conditions.
Let N = m+n. Under the hypothesis F = G, the random variables X1, . . . , Xm, Y1, . . . , Yn

are associated with the one-dimensional marginal distribution function F . Denote Y1, . . . , Yn

as Xm+1, . . . , XN . Then X1, . . . , XN are associated as independent sets of associated random
variables are associated (cf. Esary, Proschan and Walkup (1967)).

Let {`N , N ≥ 1} be a sequence of positive integers with 1 ≤ `N ≤ N . Let Sj(k) =∑j+k
i=j+1 φ10(Xi), φ̄N = 1

N

∑N
i=1 φ10(Xi). Define ` = `N and

BN =
1

N − `
[
N−`∑
j=0

|Sj(`)− `φ̄N |√
`

]. (3.20)

Note that BN depends on the unknown function F . Let φ̂10(x) = 1−2FN (x) where FN is the
empirical distribution function corresponding to F based on the associated random variables
X1, . . . , XN . Let Ŝj(k), ˆ̄φN and B̂N be expressions analogous to Sj(k), φ̄N and BN with
φ10 replaced by φ̂10. Let Zi = φ10(Xi)− φ̂10(Xi). Then

|BN − B̂N |

= | 1
N − `

N−`∑
j=0

|Sj(`)− `φ̄|√
`

− 1
N − `

N−`∑
j=0

|Ŝj(`)− `ˆ̄φ|√
`

|

≤ 1
(N − `)

√
`

N−`∑
j=0

|Sj(`)− Ŝj(`)− `(φ̄− ˆ̄φ)|

=
1

(N − `)
√
`

N−`∑
j=0

|
j+∑̀
i=j+1

Zi − `
1
N

N∑
i=1

Zi|

≤ 1
(N − `)

√
`

N−`∑
j=0

{
j+∑̀
i=j+1

|Zi|+ `
1
N

N∑
i=1

|Zi|}. (3.21)

Note that
|Zi| = 2|FN (Xi)− F (Xi)|.

Suppose that the density function corresponding to F has a bounded support. Then, for
sufficiently large M > 0, with probability 1,

sup
x∈R
|FN (x)− F (x)| = max{ sup

x∈[−M,M ]
|FN (x)− F (x)|, sup

x∈[−M,M ]c
|FN (x)− F (x)|}

= sup
x∈[−M,M ]

|FN (x)− F (x)|. (3.22)
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Hence, from (3.21) and Theorem 2.4 we get

|BN − B̂N | ≤
2

(N − `)
√
`

(N − `) ` sup
x
|FN (x)− F (x)|

= 2
√
` ψ−1

N sup
x

ψN |FN (x)− F (x)|

→ 0 as N →∞ (3.23)

provided
√
` ψ−1

N = O(1) or `N = O(ψ2
N ). Therefore we get,

|BN − B̂N | → 0 a.s. as n→∞. (3.24)

Hence, from Theorem 2.3,

π

2
B̂2
N → 4(

1
12

+ 2
∞∑
j=2

Cov(F (X1), F (Xj))) (3.25)

as n→∞. Define J2
N = (1 + c)π2 B̂

2
N .

Then,√
N(U−γ)
JN

L→ N(0, 1) as m,n→∞ such that m
n → c ∈ (0,∞); asn→∞.

Hence the statistic
√
N(U−γ)
JN

can be used as a test statistic for testing H ′0 : γ = 0 against
H ′1 = γ > 0.

On the other hand, by using Newman’s inequality, one could obtain an upper bound on A2

given by

4(1 + c)(
1
12

+ 2
∞∑
j=2

Cov(X1, Xj)) (3.26)

and we can have conservative tests and estimates of power based on (3.27).
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