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SUMMARY. Diallel cross experiments for control versus test comparisons among the lines
are studied under a completely randomized design model. A sufficient condition for designs
to be A- and MV -optimal in these experimental situations are derived and it is seen that the
class of Type-S designs yield efficient designs to estimate control versus test comparisons.
Efficient designs with lower bound to the efficiencies are also tabulated within a practical
range of parameters. The issue of efficient blocking of diallel crosses is also discussed.
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1. Introduction

Diallel crosses are commonly used to study the genetic properties of inbred lines in plant
and animal breeding experiments. Suppose there are p+1 inbred lines and let a cross between
lines i and j be denoted by (i, j), i < j = 0, 1, . . . , p. Suppose line 0 is a control or a standard
line and lines 1, . . . , p are test lines. Our interest lies in comparing the control line with the
test lines with respect to their general combining ability effects.

Designs for diallel crosses, where the interest lies in all general combining ability pairwise
comparisons among the lines, have been recently considered by several authors. Gupta
and Kageyama (1994) proved that an unblocked complete diallel cross design is universally
optimal (Kiefer, 1975). Optimal partial diallel crosses were studied by Mukerjee (1997) and
Das, Dean and Gupta (1998) with respect to the A-, D-, E- and MS-optimality criterion.

It is noteworthy that although designs for varietal trials and factorial experiments have
been extensively investigated in the literature over the past several decades, it was not
until recently that some progress in the design of diallel cross experiments has been made.
Designs for control versus test comparisons where the treatments form different levels of a
factor have also been extensively investigated in the literature; see Majumdar (1996). The
problem of deriving appropriate designs for diallel crosses being quite different from the
set-up of designs for varietal trials and factorial experiments, here we continue the work of
Gupta and Kageyama (1994) for studying optimal designs for control versus test comparisons
among the lines with respect to their general combining ability effects. Recently Choi, Gupta
and Kageyama (2002) introduced a class of designs, called the Type-S designs, for making
control-test comparisons in a diallel cross experiment. They studied various properties of
such Type-S designs. In Section 2 we derive sufficient conditions for designs to be φ-optimal
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for a fairly broad class of functions φ. As an important application we discuss A- and MV -
optimal designs. For cases where the derived sufficient conditions are not applicable, some
approximately optimal designs are suggested. In Section 3 we give a large number of highly
A- and/or MV -efficient Type-S designs. It is observed that the Type-S designs are likely
to be useful in practice as the A- and/or MV -efficiency of these designs is close to unity.
Note that the A-efficiency (MV -efficiency) of an A-optimal (MV -optimal) design is unity.
From practical considerations, it is useful to have a catalog of efficient designs. We present
a comprehensive catalog of highly A- and/or MV -efficient Type-S designs in the practically
useful ranges 3 ≤ p ≤ 30, n ≤ p(p + 9). The issue of efficient blocking of diallel crosses is
also discussed in Section 3.

2. Optimal Designs

We consider diallel cross experiments involving p + 1 inbred lines, giving rise to a total
of nc = (p+ 1)p/2 distinct crosses. Let a cross between lines i and j be denoted by (i, j), i <
j = 0, 1, . . . , p. Suppose line 0 is a control or a standard line and lines 1, . . . , p are test lines.
Our main interest lies in comparing the control line with the test lines with respect to their
general combining ability effects. Let sdj denote the total number of times that the jth line
occurs in the crosses in the design d, j = 0, 1, . . . , p. Further let sd = (sd0, sd1, . . . , sdp)

′ and
let n denote the total number of crosses in the design. Following e.g., Gupta and Kageyama
(1994), the model under the completely randomized set-up, for a design d, is assumed to be

Yd = µ1n + ∆d1τ + ε, (2.1)

where Yd is the n×1 vector of responses, µ is the overall mean, 1t is the t×1 column vector of
1’s, τ = (τ0, τ1, . . . , τp)

′ is the vector of p+ 1 general combining ability effects and ∆d1 is the
corresponding design matrix, that is, the (h, l)th element of ∆d1, is 1 if the hth observation
pertains to the lth line, and is zero otherwise, and ε is the n × 1 vector of independent
random errors with zero expectation and constant variance σ2. The normal equations for
estimating the vector of general combining ability parameters are then given by Cdτ = Qd

where Qd = ∆′d1(In − 1
n
1n1′n)Yd,

Cd = Gd −
1

n
sds
′
d (2.2)

and Gd = (gdii′), gdii = sdi, and for i 6= i′, gdii′ is the number of times the cross (i, i′) appears
in the design. We denote an identy matrix of order t by It.

Now we can be more precise about what we mean by comparing test lines with a control
line. In particular, because our primary goal is to determine which among the test lines might
be better than the control, we would like to estimate the magnitude of each τi − τ0; i =
1, . . . , p, with as much precision as possible. In assigning crosses to experimental units, we
have to make sure that the contrasts τi−τ0; i = 1, . . . , p, are estimable. A design d satisfying
this later condition is said to be connected and we shall restrict our attention to such designs.
It is known that a design d is connected if and only if its corresponding C-matrix Cd, as in
(2.2), has rank p. Clearly there are a number of designs available for the situation being
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considered here and we want to choose one which is best in some sense. We shall use the
notation D(p+1, n) to denote the set of all connected designs with p test lines, 1 control line
and n crosses. For a class of designs D, if τ̂di− τ̂d0 denotes the best linear unbiased estimator
(BLUE) of τi− τ0 using a design d, then a design is A-optimal for line-control contrasts if it
minimizes

∑p
i=1 V ar(τ̂di − τ̂d0) in D. A design is MV -optimal for line-control contrasts if it

minimizes max1≤i≤p V ar(τ̂di− τ̂d0) in D. A- and MV -optimality are statistically meaningful
criteria in the present setup.

Let P = (−1p Ip). Then the covariance matrix for the BLUE’s (τ̂d1 − τ̂d0, τ̂d2 −
τ̂d0, . . . , τ̂dp − τ̂d0) of the line-control contrast is σ2PC−d P

′. If one partitions Cd as:

Cd =

(
cd00 γ′d
γd Md

)
(2.3)

then it can be shown that (see Gupta, 1989),

(PC−d P
′)−1 = Md, (2.4)

i.e., Md is the Information matrix for the line-control contrasts. Clearly an A-optimal de-
sign minimizes tr(M−1

d ) in D(p+ 1, n) and an MV -optimal design minimizes the maximum
diagonal element of M−1

d in D(p+ 1, n).
We now present results about what designs are φ-optimal for a fairly broad class of

functions φ. As an important application we discuss A-optimal designs. We closely follow
the techniques of Majumdar and Notz (1983) in arriving at the results. Let us start with an
arbitrary design d in D(p+ 1, n). Using Kiefer’s (1975) technique of averaging, we obtain

tr(PC−d P
′) ≥ tr(PC̄−d P

′), (2.5)

where C̄d = 1
p!

∑
π πCdπ

′, the summation taken over all (p+1)×(p+1) permutation matrices

π that correspond to permutations of the p test treatments only. If we partition C̄d as in
(2.3), then we see that M̄d = (PC̄−d P

′)−1 is a completely symmetric matrix. In general, there
may be no design in D(p+ 1, n) for which M̄d is the Information matrix for the line-control
contrasts. If there is such a design, then for this design, call it d∗, Md∗ = M̄d∗ is completely
symmetric and γd∗ (see (2.3)) is a vector with all entries equal. That is, d∗ belongs to a class
of designs, called Type-S designs, introduced by Choi, Gupta and Kageyama (2002).

Definition 2.1. A design d ∈ D(p + 1, n) is called a Type-S design if there are positive
integers g0 and g1, such that:

gdii′ = g1 for i, i′ = 1, . . . , p (i 6= i′)
gd0i = g0 for i = 1, . . . , p.

We denote a Type-S design with parameters p, g0 and g1 by S(p, g0, g1).
For a Type-S S(p, g0, g1) design d Choi, Gupta and Kageyama (2002) have shown that

the following hold.

sd0 = pg0,
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sdi = g0 + (p− 1)g1 for i = 1, . . . , p,

n = (sd0 + psd1)/2,

V ar(τ̂di − τ̂d0) = f{a1−(p−2)b1}σ2

(a1+b1)p(p−1)g0g1
, i = 1, . . . , p,

Cov(τ̂di − τ̂d0, τ̂di′ − τ̂d0) = fb1σ2

(a1+b1)p(p−1)g0g1
, i 6= i′ = 1, . . . , p,

where

f = p{2g0 + (p− 1)g1},
a1 = (p− 1){g0 + (p− 1)g1}{2g0 + (p− 2)g1},
b1 = 2g0g1(p− 2) + (p− 1)(p− 2)g2

1 + 2g2
0.

(2.6)

We would require the following three lemmas for our main result.

Lemma 2.1. If d ∈ D(p+ 1, n) then M̄d has eigenvalues µ(d1), µ(d2) = · · · = µ(dp) with

µ(d1) = sd0(n−sd0)
np

,

µ(d2) =
np(2n−sd0)−p

∑p

i=1
s2di−sd0(n−sd0)

np(p−1)
.

Proof. From (2.2) and (2.3), the entries of Md are

mdi1i2 =

{
sdi1 − s2

di1
/n (i1 = i2)

gdi1i2 − sdi1sdi2/n (i1 6= i2)

and the sum of the entries in the ith row (or ith column)
∑p
i1=1 mdi1i2 = −gd0i2 + sd0sdi2/n.

Thus it is straightforward to check that M̄d = aIp + b1p1
′
p with b = 1

p(p−1)

∑
1≤i1 6=i2≤pmdi1i2

and a = 1
p

∑p
i2=1 mdi2i2 − b. The result now follows, after some computations, from the

well known fact that aIp + b1p1
′
p has eigenvalues a with multiplicity p − 1 and a + bp with

multiplicity 1.

Lemma 2.2. Suppose φ is a convex real-valued possibly infinite function on the set of all
p × p non-negative definite matrices and φ is invariant under permutations, i.e., if πt is a
permutation matrix of order p, φ(πtMdπ

′
t) = φ(Md). Then for d ∈ D(p + 1, n), φ(M̄d) =

φ(Md).

Proof. This is Lemma 2.2 of Majumdar and Notz (1983).

Lemma 2.3. For given positive integers v and t, the minimum of n2
1 +n2

2 + · · ·+n2
v subject

to n1 + n2 + · · · + nv = t, where ni’s are non-negative integers, is obtained when t − v[t/v]
of the ni’s are equal to [t/v] + 1 and v − t + v[t/v] are equal to [t/v], where [z] denotes
the largest integer not exceeding z. The corresponding minimum of n2

1 + n2
2 + · · · + n2

v is
t(2[t/v] + 1)− v[t/v]([t/v] + 1).

From Lemmas 2.1, 2.2 and 2.3 we have
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Theorem 2.1. Suppose φ is a real-valued possibly infinite function on the set of all p × p
non-negative definite matrices satisfying φ(Md) =

∑p
i=1 f(µdi) where µd1 ≤ µd2 ≤ · · · ≤ µdp

are the eigenvalues of Md, f is a real valued possibly infinite function on the set of all non-
negative numbers which is continuous on the set of all positive numbers, has f ′ < 0 and
f ′′ > 0. Suppose there is a d∗ ∈ D(p+ 1, n) such that Md∗ is completely symmetric and sd∗0
is the value of the integer s, 1 ≤ s ≤ n− 1, which minimizes

g(s;n, p) = f(
s(n− s)
np

) + (p− 1)f(
np(2n− s)− ph(s;n, p)− s(n− s)

np(p− 1)
), (2.7)

where h(s;n, p) = px2 +(2n−s−px)(2x+1) and x = [2n−s
p

], the largest integer not exceeding
2n−s
p

.

It is known that in our setup A-optimal designs are statistically very meaningful (see,
Majumdar (1996)). In the notation of Theorem 2.1 A-optimality criteria means φ(Md) =
tr(M−1

d ) and f(µ) = 1/µ. Equation (2.7) then becomes

g(s;n, p) =
np

s(n− s)
+

np(p− 1)2

np(2n− s)− ph(s;n, p)− s(n− s)
, (2.8)

with h(s;n, p) = px2 + (2n− s− px)(2x+ 1) and x = [2n−s
p

].
The following result is a consequence of Theorem 2.1.

Theorem 2.2. Suppose Q is the value of the integer s, 1 ≤ s ≤ n − 1, which minimizes
g(s;n, p) as given in (2.8). Also suppose d∗ ∈ D(p + 1, n) is a Type-S design such that
sd∗0 = Q. Then d∗ is A-optimal over D(p+ 1, n).

The integer s which minimizes g(s;n, p) can easily be found using a computer. As an
example, s = 30 minimizes g(s; 75, 10) and thus the Type-S S(10, 3, 1) design is A-optimal
over D(11, 75).

Remark 2.1. It follows from the fact, max1≤i≤p V ar(τ̂di − τ̂d0) = 1
p

∑p
i=1 V ar(τ̂di − τ̂d0) for

a Type-S design d, that all Type-S designs that are A-optimal are also MV -optimal.

3. Efficient blocking and a catalog of efficient Type-S designs

The A-efficiency of a design d ∈ D for making test line-control comparisons is defined as

EAd =
∑p

i=1
V ar(τ̂dAi−τ̂dA0)∑p

i=1
V ar(τ̂di−τ̂d0)

where dA is an A-optimal design in D. Based on Theorem 2.2, a

lower bound to the A-efficiency of a Type-S design d with parameters p, g0, g1 is given by

eAd = g(Q;n, p)/Bd ≤ EAd (3.1)

where Bd = g(sd0;n, p) = f{a1−(p−2)b1}
(a1+b1)(p−1)g0g1

; f, a1 and b1 being as in (2.6). The MV -efficiency

(EMd) of a design d ∈ D can be similarly defined by using the maximum variance of the

(τ̂di − τ̂d0)’s, instead of their sum, i.e., EMd =
max1≤i≤p V ar(τ̂dMi−τ̂dM 0)

max1≤i≤p V ar(τ̂di−τ̂d0)
where dM is an MV -

optimal design in D. Again, based on Theorem 2.2, EMd ≥ eMd = eAd if d is a Type-S
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design. High values of EAd and/or EMd would indicate that the design d is highly efficient,
and hence approximately optimal under A-optimality and/or MV -optimality.

For situations where blocking is necessary, one way to obtain an optimal block design is
to construct, if possible, an orthogonal block design. Let D(p+ 1, b, k) be the class of diallel
crosses involving p test lines, 1 control line and bk crosses arranged in b blocks each of size
k. For any design d ∈ D(p + 1, b, k), the model resembles (2.1) with n = bk. The only
change is that an extra term ∆d2β will now appear in the right-hand side of (2.1), where β
is the vector of block effects and ∆d2 is the associated design matrix. As noted in Gupta
and Kageyama (1994), the information matrix for τ , under d, is Ad = Gd− k−1NdN

′
d, where

Gd is defined just after (2.2) and Nd = ∆′d1∆d2 is the (p + 1) × b incidence matrix of lines
versus blocks. For d ∈ D(p + 1, b, k), let Cd be defined as in (2.2) with n = bk. Note that
Cd is the information matrix for τ ignoring blocks. As noted in Gupta, Das and Kageyama
(1995), for any d ∈ D(p+ 1, b, k), Cd−Ad is nonnegative definite and furthermore, Cd = Ad
if and only if the condition

Nd = b−1sd1
′
b (3.2)

for orthogonal blocking holds. This has useful implications with respect to the construction
of optimal or efficient block designs for diallel cross experiments. In an unblocked set-up
suppose an A- and/or MV -efficient design da is available inD(p+1, bk). Let da be partitioned
to yield a orthogonal block design d′ ∈ D(p+1, b, k). Then d′ is also A-efficient (MV -efficient)
over D(p + 1, b, k) since the A-efficiency (MV -efficiency) of d′ ∈ D(p + 1, b, k) is at least as
large as eAda (eMda).

Example 3.1. Suppose p = 5, b = 5 and k = 6. We have a Type-S S(5, 2, 2) design d with
eAd = eMd = 0.957. For such a design n = 30. Thus partitioning the crosses of the design
d into 5 groups (blocks) of size 6 each such that (3.2) is satisfied, we have the following
orthogonal block design d′ ∈ D(6, 5, 6) with eAd′ = eMd′ = 0.957. (Rows are blocks)

(1, 4) (2, 5) (3, 1) (4, 2) (5, 0) (3, 0)
(2, 3) (3, 4) (4, 5) (5, 1) (1, 0) (2, 0)
(2, 5) (3, 1) (4, 2) (5, 3) (1, 0) (4, 0)
(3, 4) (4, 5) (5, 1) (1, 2) (2, 0) (3, 0)
(5, 3) (1, 2) (1, 4) (2, 3) (4, 0) (5, 0)

.

If for a Type-S design d, eAd = eMd = 1 then the design is A- and MV -optimal. Using the
expression given in (3.1), we have computed lower bounds to the A- and/or MV -efficiency
of Type-S designs. In a Table, we present a catalog of highly A- and MV -efficient Type-S
designs (e ≥ 0.950) in the practically useful ranges 3 ≤ p ≤ 30, g0 ≤ 10, g1 ≤ 2. Note that
e is a lower bound to the A- and MV -efficiency of Type-S designs. The catalog of designs
presented in the Table contains 322 designs in the ranges of parameters specified above. Out
of these, 11 are A- and/or MV -optimal designs and are marked with a “∗” in the table. The
value of e is rounded to three decimal places.
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Table

Catalog of A-efficient Type-S designs with 3 ≤ p ≤ 30, g0 ≤ 10, g1 ≤ 2

No. p n g0 g1 e No. p n g0 g1 e No. p n g0 g1 e

∗1 3 6 1 1 1.000 47 9 108 4 2 0.984 93 13 130 4 1 0.999
∗2 3 12 2 2 1.000 48 9 117 5 2 0.998 94 13 143 5 1 0.990
3 3 15 3 2 0.977 49 9 126 6 2 1.000 95 13 156 6 1 0.975
4 4 10 1 1 0.989 50 9 135 7 2 0.995 96 13 169 7 1 0.958
5 4 14 2 1 0.981 51 9 144 8 2 0.986 97 13 208 4 2 0.956
6 4 20 2 2 0.987 52 9 153 9 2 0.975 98 13 221 5 2 0.983
∗7 4 24 3 2 1.000 53 9 162 10 2 0.963 99 13 234 6 2 0.995
8 4 28 4 2 0.979 54 10 65 2 1 0.977 100 13 247 7 2 1.000
9 5 15 1 1 0.959 ∗55 10 75 3 1 1.000 101 13 260 8 2 0.999

10 5 20 2 1 0.998 56 10 85 4 1 0.992 102 13 273 9 2 0.995
11 5 25 3 1 0.958 57 10 95 5 1 0.973 103 13 286 10 2 0.990
12 5 30 2 2 0.957 58 10 105 6 1 0.951 104 14 133 3 1 0.993
13 5 35 3 2 0.998 59 10 130 4 2 0.977 105 14 147 4 1 1.000
14 5 40 4 2 0.997 60 10 140 5 2 0.995 106 14 161 5 1 0.993
15 5 45 5 2 0.980 61 10 150 6 2 1.000 107 14 175 6 1 0.980
16 5 50 6 2 0.957 62 10 160 7 2 0.998 108 14 189 7 1 0.964
∗17 6 27 2 1 1.000 63 10 170 8 2 0.992 109 14 252 5 2 0.978
18 6 33 3 1 0.980 64 10 180 9 2 0.983 110 14 266 6 2 0.993
19 6 48 3 2 0.987 65 10 190 10 2 0.973 111 14 280 7 2 0.999
∗20 6 54 4 2 1.000 66 11 77 2 1 0.970 112 14 294 8 2 1.000
21 6 60 5 2 0.994 67 11 88 3 1 0.999 113 14 308 9 2 0.997
22 6 66 6 2 0.980 68 11 99 4 1 0.996 114 14 322 10 2 0.993
23 6 72 7 2 0.961 69 11 110 5 1 0.980 115 15 150 3 1 0.990
24 7 35 2 1 0.997 70 11 121 6 1 0.961 ∗116 15 165 4 1 1.000
25 7 42 3 1 0.992 71 11 154 4 2 0.970 117 15 180 5 1 0.995
26 7 49 4 1 0.963 72 11 165 5 2 0.991 118 15 195 6 1 0.984
27 7 63 3 2 0.974 73 11 176 6 2 0.999 119 15 210 7 1 0.970
28 7 70 4 2 0.997 74 11 187 7 2 1.000 120 15 225 8 1 0.955
29 7 77 5 2 0.999 75 11 198 8 2 0.995 121 15 285 5 2 0.974
30 7 84 6 2 0.992 76 11 209 9 2 0.989 122 15 300 6 2 0.990
31 7 91 7 2 0.979 77 11 220 10 2 0.980 123 15 315 7 2 0.998
32 7 98 8 2 0.963 78 12 90 2 1 0.963 ∗124 15 330 8 2 1.000
33 8 44 2 1 0.992 79 12 102 3 1 0.998 125 15 345 9 2 0.999
34 8 52 3 1 0.997 80 12 114 4 1 0.998 126 15 360 10 2 0.995
35 8 60 4 1 0.977 81 12 126 5 1 0.986 127 16 168 3 1 0.988
36 8 80 3 2 0.960 82 12 138 6 1 0.969 128 16 184 4 1 1.000
37 8 88 4 2 0.991 83 12 150 7 1 0.950 129 16 200 5 1 0.997
38 8 96 5 2 1.000 84 12 180 4 2 0.963 130 16 216 6 1 0.987
39 8 104 6 2 0.997 85 12 192 5 2 0.987 131 16 232 7 1 0.974
40 8 112 7 2 0.989 86 12 204 6 2 0.997 132 16 248 8 1 0.960
41 8 120 8 2 0.977 ∗87 12 216 7 2 1.000 133 16 320 5 2 0.970
42 8 128 9 2 0.964 88 12 228 8 2 0.998 134 16 336 6 2 0.988
43 9 54 2 1 0.985 89 12 240 9 2 0.993 135 16 352 7 2 0.996
44 9 63 3 1 1.000 90 12 252 10 2 0.986 136 16 368 8 2 1.000
45 9 72 4 1 0.986 91 13 104 2 1 0.956 137 16 384 9 2 0.999
46 9 81 5 1 0.963 92 13 117 3 1 0.995 138 16 400 10 2 0.997
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Table (Contd.)

No. p n g0 g1 e No. p n g0 g1 e No. p n g0 g1 e

139 17 187 3 1 0.985 186 20 480 5 2 0.954 233 24 372 4 1 0.992
140 17 204 4 1 0.999 187 20 500 6 2 0.977 234 24 396 5 1 1.000
141 17 221 5 1 0.998 188 20 520 7 2 0.990 235 24 420 6 1 0.998
142 17 238 6 1 0.989 189 20 540 8 2 0.997 236 24 444 7 1 0.993
143 17 255 7 1 0.978 190 20 560 9 2 1.000 237 24 468 8 1 0.984
144 17 272 8 1 0.965 191 20 580 10 2 1.000 238 24 492 9 1 0.975
145 17 289 9 1 0.951 192 21 273 3 1 0.974 239 24 516 10 1 0.965
146 17 357 5 2 0.966 193 21 294 4 1 0.996 240 24 696 6 2 0.967
147 17 374 6 2 0.985 194 21 315 5 1 1.000 241 24 720 7 2 0.982
148 17 391 7 2 0.995 195 21 336 6 1 0.996 242 24 744 8 2 0.992
149 17 408 8 2 0.999 196 21 357 7 1 0.988 243 24 768 9 2 0.997
150 17 425 9 2 1.000 197 21 378 8 1 0.978 244 24 792 10 2 1.000
151 17 442 10 2 0.998 198 21 399 9 1 0.967 245 25 375 3 1 0.964
152 18 207 3 1 0.982 199 21 420 10 1 0.955 246 25 400 4 1 0.991
153 18 225 4 1 0.999 200 21 525 5 2 0.951 247 25 425 5 1 0.999
154 18 243 5 1 0.999 201 21 546 6 2 0.974 248 25 450 6 1 0.999
155 18 261 6 1 0.992 202 21 567 7 2 0.988 249 25 475 7 1 0.994
156 18 279 7 1 0.981 203 21 588 8 2 0.996 250 25 500 8 1 0.986
157 18 297 8 1 0.969 204 21 609 9 2 0.999 251 25 525 9 1 0.977
158 18 315 9 1 0.956 205 21 630 10 2 1.000 252 25 550 10 1 0.967
159 18 396 5 2 0.962 206 22 297 3 1 0.972 253 25 750 6 2 0.964
160 18 414 6 2 0.982 207 22 319 4 1 0.995 254 25 775 7 2 0.981
161 18 432 7 2 0.993 ∗208 22 341 5 1 1.000 255 25 800 8 2 0.991
162 18 450 8 2 0.999 209 22 363 6 1 0.997 256 25 825 9 2 0.997
∗163 18 468 9 2 1.000 210 22 385 7 1 0.990 257 25 850 10 2 0.999
164 18 486 10 2 0.999 211 22 407 8 1 0.980 258 26 403 3 1 0.962
165 19 228 3 1 0.979 212 22 429 9 1 0.970 259 26 429 4 1 0.990
166 19 247 4 1 0.998 213 22 451 10 1 0.959 260 26 455 5 1 0.999
167 19 266 5 1 0.999 214 22 594 6 2 0.972 261 26 481 6 1 0.999
168 19 285 6 1 0.993 215 22 616 7 2 0.986 262 26 507 7 1 0.995
169 19 304 7 1 0.984 216 22 638 8 2 0.995 263 26 533 8 1 0.988
170 19 323 8 1 0.972 217 22 660 9 2 0.999 264 26 559 9 1 0.979
171 19 342 9 1 0.960 218 22 682 10 2 1.000 265 26 585 10 1 0.970
172 19 437 5 2 0.958 219 23 322 3 1 0.969 266 26 806 6 2 0.962
173 19 456 6 2 0.979 220 23 345 4 1 0.993 267 26 832 7 2 0.979
174 19 475 7 2 0.992 221 23 368 5 1 1.000 268 26 858 8 2 0.990
175 19 494 8 2 0.998 222 23 391 6 1 0.998 269 26 884 9 2 0.996
176 19 513 9 2 1.000 223 23 414 7 1 0.991 270 26 910 10 2 0.999
177 19 532 10 2 0.999 224 23 437 8 1 0.982 271 27 432 3 1 0.960
178 20 250 3 1 0.977 225 23 460 9 1 0.972 272 27 459 4 1 0.988
179 20 270 4 1 0.997 226 23 483 10 1 0.962 273 27 486 5 1 0.999
180 20 290 5 1 1.000 227 23 644 6 2 0.969 274 27 513 6 1 1.000
181 20 310 6 1 0.995 228 23 667 7 2 0.984 275 27 540 7 1 0.996
182 20 330 7 1 0.986 229 23 690 8 2 0.993 276 27 567 8 1 0.989
183 20 350 8 1 0.975 230 23 713 9 2 0.998 277 27 594 9 1 0.981
184 20 370 9 1 0.964 231 23 736 10 2 1.000 278 27 621 10 1 0.972
185 20 390 10 1 0.952 232 24 348 3 1 0.967 279 27 864 6 2 0.960
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Table (Contd.)

No. p n g0 g1 e No. p n g0 g1 e No. p n g0 g1 e

280 27 891 7 2 0.977 294 28 980 8 2 0.987 308 29 1073 9 2 0.993
281 27 918 8 2 0.988 295 28 1008 9 2 0.994 309 29 1102 10 2 0.998
282 27 945 9 2 0.995 296 28 1036 10 2 0.998 310 30 525 3 1 0.953
283 27 972 10 2 0.999 297 29 493 3 1 0.955 311 30 555 4 1 0.985
284 28 462 3 1 0.957 298 29 522 4 1 0.986 312 30 585 5 1 0.997
285 28 490 4 1 0.987 299 29 551 5 1 0.998 313 30 615 6 1 1.000
286 28 518 5 1 0.998 300 29 580 6 1 1.000 314 30 645 7 1 0.998
287 28 546 6 1 1.000 301 29 609 7 1 0.997 315 30 675 8 1 0.992
288 28 574 7 1 0.996 302 29 638 8 1 0.991 316 30 705 9 1 0.985
289 28 602 8 1 0.990 303 29 667 9 1 0.984 317 30 735 10 1 0.977
290 28 630 9 1 0.982 304 29 696 10 1 0.975 318 30 1050 6 2 0.953
291 28 658 10 1 0.974 305 29 986 6 2 0.955 319 30 1080 7 2 0.972
292 28 924 6 2 0.957 306 29 1015 7 2 0.974 320 30 1110 8 2 0.985
293 28 952 7 2 0.975 307 29 1044 8 2 0.986 321 30 1140 9 2 0.992

322 30 1170 10 2 0.997
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