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Abstract

We consider a filtering model where the noise is an Ornstein-Uhlenbeck process independent of
the signal X. The signal is assumed to be a Markov difusion process. We derive the (analogue
of) Zakai equation in this setup. It is a system of two measure valued equations satisfied by the
unnormalised conditional distribution. We also prove uniqueness of solution to these equations.

1 Introduction

The process of interest - the system process X - is unobservable. We can observe the (observa-
tion) process Y - a (known) function h of X - which in addition is corrupted by noise N . We
want to filter out the noise N from the observations Y and get an estimate of the process X.
This is filtering theory. The filtering model can be written as

Yt =
∫ t

0
h(Xs)ds+Nt, 0 ≤ t ≤ T. (1.1)

The best estimate of X is the conditional distribution of Xt given the observations upto
time t - {Ys; 0 ≤ s ≤ t}. This is called the optimal filter and is denoted by πt.

In the classical theory of filtering the noise N is assumed to be a Brownian motion. In
this case πt is known to satisfy a measure valued stochastic differential equation called the
Fujisaki-Kallianpur-Kunita (FKK) equation. See [3] and [5].

The unnormalised conditional distribution µt of Xt given {Ys; 0 ≤ s ≤ t} has also been
studied extensively in the literature. µ also satisfies a stochastic differential equation called
the Zakai equation - which has the added advantage of being linear in µ and is driven by the
observation process Y . See [11]. Uniqueness of solution to the measure valued equations of
filtering under fairly general conditions on the observation function and on the signal process
X, when the noise is a Brownian motion has been established in [1].

Recently, interest has developed in filtering theory when the noise is a general Gaussian
process. See e.g. [7], [9] and [2]. Here the authors, under differing conditions, derive a Bayes’
formula for the optimal filter π - anologous to the classical case ([6]) - for the filtering problem
when the noise is a general Gaussian process. In [4] the authors use the result of [9] to derive
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a Zakai equation for µ when the noise process is connected to a Brownian motion via a certain
kernel.

In this article we consider the filtering problem when the noise is a Ornstein-Uhlenbeck
(velocity) process independent of the signal. In the next section we introduce the filtering
model. We derive the equations of filtering for the unnormalised conditional distribution when
the signal is a diffusion Markov process with smooth diffusion and drift coefficients. We need
to consider the pair (µt, σs,t) (see (2.11)-(2.12)). Here σs,t is the analogous two - parameter
unnormalised conditional distribution of X given Y . The interesting point is that the (analogue
of the) Zakai equation - unlike in the classical case - is a system of two measure valued SDE’s.
We derive these SDE’s via a particle representation proof based on the lines of Kurtz and Xiong
[8].

Uniqueness is proved in Section 3. We show that the pair (µt, σs,t) is the unique solution
of this system of equations under the additional assumption that the law of X0 has a density.

For the sake of notational simplicity we consider the one dimensional signal case. The
results are true for a general d-dimensional diffusion as well.

2 Zakai equation

Fix a probability space (Ω,F , P ). We will assume that the signal process, X, is a R valued
diffusion process governed by the SDE

dXt = b(Xt)dt+ c(Xt)dBt (2.1)

where b, c are bounded Lipschitz continuous real valued functions and B is a standard Brow-
nian motion independent of X0. It is well-known that SDE (2.1) admits a unique solution.
Furthermore the paths of this solution are continuous.

Let W be a Standard Brownian motion independent of X. We will investigate the nonlinear
filtering model where the observation process Y is given by

Yt =
∫ t

0
h(Xs)ds+Ot. (2.2)

Here, the observation function h is assumed to be a bounded continuous function and the noise
process Ot is an Ornstein-Uhlenbeck process satisfying the SDE

dOt = −βOtdt+ dWt (2.3)

with β > 0. The optimal filter πt is given by

πtf = E(f(Xt)|FYt ), ∀f ∈ Cb(R)

where FYt = σ{Ys : 0 ≤ s ≤ t} is the σ-field generated by all observations upto time t.
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We will recast (2.2) in a form which helps us in deriving an equation for the filter. For this
purpose we proceed as follows. Let C([0, T ],R) denote the space of all continuous functions
from [0, T ] to R. Let E = [0, T ]× C([0, T ],R). Define H : E → R by

H(t,x) =
d

dt

[
eβt
∫ t

0
h(x(r))dr

]
= βeβt

∫ t

0
h(x(r))dr + eβth(x(t)). (2.4)

For any x ∈ C([0, T ],R), let xt ∈ C([0, T ],R) denote the path x stopped at t. i.e. xt(r) =
x(t ∧ r), r ∈ [0, 1].

Define an operator A on Cb(R) as follows. Let D(A) = C2
b (R), the space of twice continu-

ously differentiable functions on R with bounded derivatives. Let

Af(x) =
1
2
c2(x)f ′′(x) + b(x)f ′(x). (2.5)

Then A uniquely determines the Markov processes X as a solution of its martingale problem.
(See Stroock and Varadhan [10].)

Define St ≡ (t,Xt). It is well-known that S is an E-valued Markov process. Also S is a
unique solution of the martingale problem for an operator Ā on Cb(E) which can be defined as
follows. Let D(Ā) be the algebra generated by functions of the form {F : E → R : F (t,x) =
g(t)f(xt), g ∈ C[0, T ] ∩ C1(0, T ), f ∈ D(A)}. Define

ĀF (t,x) = g′(t)f(xt) + g(t)Af(x(t)). (2.6)

Now let Mt = eβtOt. Then (2.3) implies that

Mt =
∫ t

0
eβsdWs.

Clearly M is a FWt martingale. Correspondingly, let Zt = eβtYt. The filtering model (2.2) can
now be rewritten as

Zt = eβt
∫ t

0
h(Xs)ds+Mt

=
∫ t

0
H(Su)du+Mt (2.7)

where H is as in (2.4). Let

Λ−1
t ≡ exp

{
−
∫ t

0
e−2βuH(Su)dMu −

1
2

∫ t

0
e−2βu|H(Su)|2du

}
Note that independence of X and W implies that S is independent of M . Hence Λ−1

t is a
P -martingale. Morevoer P0 defined by

dP0

dP
= Λ−1

T
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is a probability measure on (Ω,F). Also, Girsanov’s theorem implies that under P0, Z is a
martingale independent of S and that the law of S under the two measures P and P0 remains
unchanged. In particular, under P0, S is a Markov process and is the unique solution of the
martingale problem for Ā.

Now, the optimal filter π̄t for the model (2.7) satisfies ∀F ∈ Cb(E),

π̄tF ≡ E(F (St)|FZt )

= E(F (St)|FYt )

= EP0(F (St)Λt|FYt )/EP0(Λt|FYt )

≡ µ̄tF/µ̄t1,

where µ̄t is the unnormalised conditional distribution of St given FZt . We now derive the Zakai
equation for µ̄t.

Proposition 2.1. µ̄t satisfies the equation

µ̄tF = µ̄0F +
∫ t

0
µ̄s(ĀF )ds+

∫ t

0
e−2βsµ̄s(HF )dZs. ∀F ∈ D(Ā)

Proof: Fix F ∈ D(Ā). Consider independent copies Si of S. Let

N i
t = F (Sit)− F (Si0)−

∫ t

0
ĀF (Siu)du.

Then {N i, i ≥ 1} are independent P0-martingales that are also independent of the P0-martingale
Zt. Let

dΛit = e−2βtΛitH(Sit)dZt.

Then it is easy to see that

Λit = exp
{∫ t

0
e−2βuH(Siu)dZu −

1
2

∫ t

0
e−2βu|H(Siu)|2du

}
.

By Itô’s formula, we have

d(F (Sit)Λ
i
t) = e−2βtF (Sit)H(Sit)Λ

i
tdZt + Λit[ĀF (Sit)]dt+ ΛitdN

i
t . (2.8)

It is clear that the sequence of processes {(Λi, F (Si)) : i ≥ 1} is exchangable. Thus the limit
limn→∞

1
n

∑n
i=1 ΛitF (Sit) exists under P0 and the ergodic theorem implies that

lim
n→∞

1
n

n∑
i=1

ΛitF (Sit) = EP0(ΛtF (St)|I) (2.9)

where I is the invariant σ-field of the stationary sequence {(Si, N i, Z) : i ≥ 1}. As in Kurtz
and Xiong ([8, Theorem 2.3]) we use the independence of (Si, N i) to note that I is contained
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in the completion of the σ-field generated by Z. Now (2.9) implies

lim
n→∞

1
n

n∑
i=1

ΛitF (Sit) = EP0(ΛtF (St)|FZT )

= EP0(ΛtF (St)|FZt )

= µ̄tF. (2.10)

Arguing similarly as above, using (2.8), (2.9), (2.10) and the fact thatN1 and Z are independent
under P0 we get

µ̄tF = µ̄0F +
∫ t

0
e−2βsµ̄s(HF )dZs +

∫ t

0
µ̄s(ĀF )ds.

This completes the proof.

Remark 2.2. The above Proposition can also be proved along the lines of the proof of the
classical Zakai equation. Here we have given a different particle-representation proof. See
Kurtz and Xiong [8].

Let µt denote the unnormalized conditional distribution of Xt given FYt . i.e.

µtf = EP0

[
f(Xt)Λt|FYt

]
. (2.11)

Also for 0 ≤ s, t ≤ T , let σs,t be defined by

σs,tf = EP0

[
h(Xs)f(Xt)Λt|FYt

]
. (2.12)

Note that σt,tf = µt(hf). We will now use Proposition 2.1 to derive the analogue of the Zakai
equation for (µt) which involves (σs,t).

Proposition 2.3. µt and σs,t satisfy the system of equations

µtf = µ0f +
∫ t

0
µs(Af)ds+

∫ t

0
e−βs

(
β

∫ s

0
σu,sfdu+ µs(hf)

)
dZs, (2.13)

σs,tf = µs(hf) +
∫ t

s
σs,u(Af)du+

∫ t

s
e−2β(u−s)σs,u(hf)dZu, ∀f ∈ D(A). (2.14)

Proof: Fix f ∈ D(A). Let F ∈ D(Ā) be defined by F (t,x) = f(xt). Note that Af(xt) =
ĀF (t,xt). It follows from (2.1) that

µtf = µ0f +
∫ t

0
µs(Af)ds+

∫ t

0
e−2βsµ̄s(HF )dZs.

As

(HF )(s,xs) =
(
βeβs

∫ s

0
h(xu)du+ eβsh(xs)

)
f(xs)

= βeβs
∫ s

0
h(xu)f(xu)du+ eβsh(xs)f(xs),

5



(2.13) follows.
(2.14) follows from the same arguments as in the proof of Proposition 2.1 by noting that

Ns,t = h(Xs)

f(Xt)− f(Xs)−
t∫
s

Af(Xu)du


is a martingale for t ≥ s.

3 Uniqueness

In this section we will show uniqueness of solution to the system of equations (2.13)-(2.14).
For f ∈ Cb(R), let F (t, xt) = f(xt). Then µtf = µ̄tF . For δ > 0, let pδ denote the density
kernel of a normal random variable with variance δ. For a measure ν on R, let Tδν denote the
function defined by Tδν(x) =

∫
pδ(x− y)ν(dy). Define

σδs,t = Tδσs,t and µδt = Tδµt.

Then σδs,t and µδt are H0 ≡ L2(R)-valued processes. With an abuse of notation, for f ∈ Cb(R),
Tδf will denote the function

∫
pδ(x − y)f(y)dy. Note that Tδf ∈ D(A). Thus recalling the

definition of the operator A (see (2.5)) and using (2.14) we get〈
σδs,t, f

〉
0

= σs,t(Tδf)

= µs(hTδf) +
∫ t

s
σs,u(

c2

2
(Tδf)′′ + b(Tδf)′)du+

∫ t

s
e−2β(u−s)σs,u(hTδf)dZu

= 〈Tδ(hµs), f〉0 +
∫ t

s

〈
(Tδ(

c2

2
σs,u))′′ − (Tδ(bσs,u)′, f

〉
0

du

+
∫ t

s
e−2β(u−s) 〈(Tδ(hσs,u), f〉0 dZu.

By Itô’s formula, we have〈
σδs,t, f

〉2

0
= 〈Tδ(hµs), f〉20 +

∫ t

s
2
〈
σδs,u, f

〉
0

〈
(Tδ(

c2

2
σs,u))′′ − (Tδ(bσs,u)′, f

〉
0

du

+
∫ t

s
2
〈
σδs,u, f

〉
0
〈(Tδ(hσs,u), f〉0 e

−2β(u−s)dZu

+
∫ t

s
e−2β(u−s) 〈(Tδ(hσs,u), f〉20 du. (3.1)

Let {fi : i ≥ 1} be a CONS in H0. Equation (3.1) holds for each fi. Adding over i and using
Lemmas 3.2 and 3.3 in Kurtz and Xiong [8], we get that there exists a constant K such that

E‖σδs,t‖20 = E‖Tδ(hµs)‖20 + E
∫ t

s
2
〈
σδs,u, (Tδ(

c2

2
σs,u))′′ − (Tδ(bσs,u)′

〉
0

du

+E
∫ t

s
e−2β(u−s)‖Tδ(hσs,u)‖20du

≤ KE‖µδs‖20 +KE
∫ t

s
‖Tδ(|σs,u|)‖20du. (3.2)
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We cannot directly use Gronwall’s inequality here. Hence we proceed as follows. Let ξ±t be inde-
pendent Markov processes which are solutions of the martingale problem for (A,µs(h±·)/µs(h±))
respectively. Then

σs,tf = E

(
f(ξ+

t ) exp
(∫ t

s
e−2β(u−s)h(ξ+

u ) ◦ dZu
) ∣∣∣∣∣FZu

)
µs(h+)

−E

(
f(ξ−t ) exp

(∫ t

s
e−2β(u−s)h(ξ−u ) ◦ dZu

) ∣∣∣∣∣FZu
)
µs(h−)

≡ σ+
s,tf − σ

−
s,tf.

As in (2.13), we have

σ±s,tf = µs(h±f) +
∫ t

s
σ±s,u(Af)du+

∫ t

s
e−2β(u−s)σ±s,u(hf)dZu.

Since σ±s,t are positive measures, arguing as in (3.2) we get

E‖σ±,δs,t ‖20 ≤ KE‖µδs‖20 +KE
∫ t

s
‖Tδ(|σ±s,u|)‖20du

= KE‖µδs‖20 +KE
∫ t

s
‖σ±,δs,u ‖20du

Now Gronwall’s inequality implies that

E‖σ±,δs,t ‖20 ≤ K1E‖µδs‖20.

Therefore
E‖Tδ(|σs,t|)‖20 ≤ K2E‖µδs‖20. (3.3)

Applying the same kind of arguement to (2.14), similar to (3.2), we get

E‖µδt‖20 ≤ ‖µδ0‖20 +K

∫ t

0
E‖µδs‖20ds. (3.4)

As a result we have the following proposition.

Proposition 3.1. If µ0 ∈ H0, then µt ∈ H0 and σs,t ∈ H0 a.s.

Proof: Applying Gronwall’s inequality to (3.4) we get

E‖µδt‖20 ≤ ‖µδ0‖20eKt.

Letting δ → 0, we have
E‖µt‖20 ≤ ‖µ0‖20eKt <∞,

and hence µt ∈ H0 a.s. the assertion that σs,t ∈ H0 a.s. also follows similarly from (3.3).
Now we are ready to state and prove the main theorem.
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Theorem 3.2. Suppose that µ0 has a square integrable density. Then the measure valued
processes (µt, σs,t : 0 ≤ s ≤ t ≤ T ) are such that πt = µt〈µt, 1〉−1 and are the unique solution
to the system of equations (2.13)–(2.14).

Proof: If there are two solutions, we use σ̃s,t and µ̃t to denote the difference. then, σ̃s,t, µ̃t ∈ H0

a.s. Similar to (3.2), we have

E‖σ̃δs,t‖20 ≤ KE‖Tδ(|µ̃s|)‖20 +KE
∫ t

s
‖Tδ(|σ̃s,u|)‖20du.

Taking δ → 0, we have

E‖σ̃s,t‖20 ≤ KE‖|µ̃s|‖20 +KE
∫ t

s
‖|σ̃s,u|‖20du

= KE‖µ̃s‖20 +KE
∫ t

s
‖σ̃s,u‖20du.

Similarly, applying (3.4), we have

E‖µ̃t‖20 ≤ K
∫ t

0
E‖µ̃s‖20ds

and hence, E‖µ̃t‖20 = 0. This in turn implies that E‖σ̃s,u‖20 = 0.
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