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Abstract
In this article, we take up the construction of spectral triples and associated calculus in the

context of SUq(2) and S2
qc. In order to construct explicit spectral triples, we begin with the

computation of K-groups, and then from explicit generators we construct spectral triples which

induce generating elements in K-homology. Using these spectral triples, we compute a modified

version of the space of Connes-de Rham forms and the associated calculus. The space of L2 forms

have also been described explicitly.
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1 Introduction

Quantum SU(2)-group is one of the most well-known examples of a noncommutative space.
This was studied in the topological setting by Woronowicz, and subsequently by many others.
In the present article, we study a class of spectral triples on this noncommutative space and
compute the exterior complexes corresponding to these. We begin with computation of K-
groups, and then from explicit generators we construct spectral triples which induce generating
elements in K-homology.

Let us start with a brief description of the C∗-algebra of continuous functions on the quan-
tum SU(2), to be denoted by C(SUq(2)). This is the canonical C∗-algebra generated by two
elements α and β satisfying the following relations:

α∗α+ β∗β = I, αα∗ + q2ββ∗ = I,

αβ − qβα = 0, αβ∗ − qβ∗α = 0,

β∗β = ββ∗.

The C∗-algebra C(SUq(2)) can be described more concretely as follows. Let {ei}i≥0 and
{ei}i∈Z be the canonical orthonormal bases for L2(N) and L2(Z) respectively. We denote by
∗The first author would like to acknowledge support from the National Board of Higher Mathematics, India.
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the same symbol N the operator ek 7→ kek, k ≥ 0, on L2(N) and ek 7→ kek, k ∈ Z, on L2(Z).
Similarly, denote by the same symbol ` the operator ek 7→ ek−1, k ≥ 1, e0 7→ 0 on L2(N) and
the operator ek 7→ ek−1, k ∈ Z on L2(Z). Now take H to be the Hilbert space L2(N)⊗ L2(Z),
and define π to be the following representation of C(SUq(2)) on H:

π(α) = `
√
I − q2N ⊗ I, π(β) = qN ⊗ `.

Then π is a faithful representation of C(SUq(2)), so that one can identify C(SUq(2)) with the
C∗-subalgebra of L(H) generated by π(α) and π(β). Image of π contains K⊗C(S1) as an ideal
with C(S1) as the quotient algebra, that is we have a useful short exact sequence

0 −→ K⊗ C(S1) i−→ A σ−→ C(S1) −→ 0. (1.1)

The Haar state h on C(SUq(2)) is given by,

h : a 7→ (1− q2)
∞∑
i=0

q2i〈ei0, aei0〉.

Remark 1.1 This representation admits a nice interpretation. LetM be a compact topological
manifold and E, a Hermitian vector bundle on M . Let Γ(M,E) be the space of continuous
sections. Then Γ(M,E) is a finitely generated projective C(M) module. Define an inner
product on Γ(M,E) as

〈s1, s2〉 :=
∫

(s1(m), s2(m))mdν(m),

where ν is a smooth measure on M and (·, ·)m is the inner product on the fibre on m. Let
HE be the Hilbert space completion of Γ(M,E). Then we have a natural representation of
C(M) in L(HE). The same program can be carried out in the noncommutative context also.
Let A be a C∗-algebra and E a Hilbert A-module with its A valued inner product 〈·, ·〉A. Let
τ be a state on A. Consider the inner product on E given by 〈e1, e2〉 = τ(〈e1, e2〉A). If we
denote by HE the Hilbert space completion of E, then we get a natural representation of A in
L(HE). Now in the context of C(SUq(2)), let p = |e0〉〈e0| ⊗ I ∈ C(SUq(2)). Then it is easy
to verify that HE = l2(N)⊗ l2(Z) for E = C(SUq(2))p with its natural left Hilbert C(SUq(2))-
module structure. Moreover, the associated representation is nothing but the representation of
C(SUq(2)) described above.

2 Generators of K-homology

One way to have some idea about spectral triples is to compute the generators of K-homology.
We will write A for the C∗-algebra C(SUq(2)) and Af for the *-subalgebra of C(SUq(2))
generated by the two elements α and β. Restriction of π to Af gives a representation of Af on
H, which we denote by the same symbol π. The short exact sequence

0 −→ K⊗ C(S1) i−→ A σ−→ C(S1) −→ 0 (2.1)

gives rise to the folowing six-term exact sequence
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K0(C(S1)) σ0

−→ K0(A) i0−→ K0(K ⊗ C(S1))
↑ ↓

K1(K ⊗ C(S1)) i1←− K1(A) σ1

←− K1(C(S1)).

It is known that K0(A) = Z = K1(A). Since these are free abelian groups, It follows from the
results of Rosenberg-Schochet ([6]) that K0(A) = Z = K1(A). Therefore the six term sequence
above becomes

Z
σ0

−→ Z
i0−→ Z

↑ ↓

K1(K ⊗ C(S1)) i1←− Z
σ1

←− K1(C(S1))

Lemma 2.1 i1 and σ0 are isomorphisms while i0 and σ1 are zero morphisms.

Proof : We know that K1(K ⊗ C(S1)) ∼= K1(C(S1)) ∼= Z. Therefore by the exactness of the
diagram above it is enough to show that i1 is onto. For that observe H = L2(N)⊗ L2(Z) and
F = I ⊗ S, where S denotes the operator

S : ek 7→
{
ek if k ≥ 0,
−ek if k < 0,

is an odd Fredholm module on A and hence on i(K ⊗ C(S1)) ⊆ A. Moreover this Fredholm
module is a generator of K1(K ⊗ C(S1)) implying surjectivity of i1. 2

Remark 2.2 Proof of the above lemma also shows that (H, F ) is a generating Fredholm
module for K1(A).

3 Spectral triples

In this section we construct spectral triples with nontrivial Chern character. For p ∈ [0,∞),
let Dp be the operator Np ⊗ S + I ⊗N on H = L2(N)⊗ L2(Z) with S as defined above.

Proposition 3.1 Let µn(T ) denote the nth largest singular value of an opeartor T . Then

µn(|Dp|−1− 1
p ) ∼ 1

n
.

Proof : Check that the action of |Dp| on H is given by ei ⊗ ej 7→ (ip + |j|)ei ⊗ ej . If we denote
by λr the number of elements in {(i, j) : i, j ∈ N, ip + j ≤ r}, then a simple calculation tells us
that λr

r
1+ 1

p
→ 2p

1+p as r →∞. It follows from this that the nth eigenvalue of |Dp| is of the order

of n
1

1+1/p , which gives us the required result. 2

Lemma 3.2 Define a functional φ on Af by

φ(a) := lim
t→0

t1+1/p tr (a exp(−tD2
p)).

Then φ(αiβjβ∗k) = δi0δj0δk0. In particular, φ does not depend on p.
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Proof : Observe that exp(−tD2
p)er ⊗ es = exp(−t(rp + |s|)2)er ⊗ es, and

αiβ
jβ∗ker ⊗ es

{
= q2rker ⊗ es if i = 0, j = k

∈ Cer−i ⊗ es+j−k otherwise.

Hence we have

tr (αiβjβ∗
k exp(−tD2

p)) =
{∑∞

r=0

∑
s∈Z q

2rk exp(−t(rp + |s|)2) if i = 0, j = k

0 otherwise.

Therefore it follows that φ(αiβjβ∗k) = 0 for i 6= 0. Now note that

∞∑
r=0

∑
s∈Z

q2rk exp(−t(rp + |s|)2) = 2
∞∑
r=0

∞∑
s=1

q2rk exp(−t(rp + |s|)2) +
∞∑
r=0

q2rk exp(−tr2p),

and
∞∑
s=1

q2rk exp(−t(rp + |s|)2) <

∫ ∞
0

exp(−t(rp + x)2) dx

=
1√
2t

∫ ∞
rp
√

2t
exp(−1

2
y2) dy

<
1√
2t
.

Hence for i = 0 and j = k 6= 0, φ(αiβjβ∗k) = limt→0 t
1+1/ptr (αiβjβ∗k exp(−tD2

p)) = 0. Finally,
from the previous lemma, it follows that φ(I) = trω(|Dp|−1−1/p) = 1. 2

Proposition 3.3 For each p ∈ (0, 1], Sp := (Af ,H, Dp) defines an odd spectral triple.

Proof : Self-adjointness of Dp is trivial, and it follows from proposition 3.1 that Dp has compact
resolvent. Let H0 = span {ei⊗ ej : i ∈ N, j ∈ Z}. Then H0 is dense in H and is invariant under
the actions of Dp and the elements of Af . In view of this and the self-adjointness of Dp, it is
enough to show that [Dp, α] and [Dp, β] are bounded. Straightforward calculation now gives

[Dp, α] = α(((N − I)p −Np)⊗ S),

[Dp, β] = qNNp ⊗ [S, `∗] + β. (3.2)

Therefore Sp is a spectral triple. 2

Remark 3.4 The circle group S1 has an action on A given by φz : α 7→ zα, β 7→ β, where
z ∈ S1. Dp is equivariant with respect to this action. Equivariance follows from the fact that
Dp commutes with the generator of the action N ⊗ I + I ⊗N .

Theorem 3.5 The spectral triple (Af ,H, Dp) has nontrivial Chern character.
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Proof : For this one only has to note that the operator F constructed in the proof of 2.1 is
nothing but sign(Dp). We give an explicit description of the pairing with K1(A). Let E =
1+F

2 = I(N ≥ 0) and u = I{1}(β∗β)(β−1)+1. u gives an element [u] ∈ K1(A). By proposition 2
(page 289 of [3]), EuE is a Fredholm operator and 〈[u], [(A,H, D)]〉 = Index(EuE). It is
easily seen that the last quantity is −1. Since K1(A) = Z, this shows [u] generates K1(A) and
describes the pairing with K1(A) completely. 2

Note that the following corollary is immediate from the proof of this theorem.

Corollary 3.6 Let u = I{1}(β∗β)(β − 1) + 1. Then [u] generates K1(A).

4 Modified Connes-de Rham complex

Let Ω•(Af ) = ⊕nΩn(Af ) be the universal graded differential algebra over Af , i.e. Ωn(Af ) =
span{a0(δa1) . . . (δan) : ai ∈ Af , δ(ab) = a(δb) + (δa)b}. The universal differential algebra
is not very interesting from the cohomological point of view. Interesting cohomologies are
obtained from the representations of the algebra. For the spectral triple (Af ,H, Dp), one has
the standard Connes-de Rham complex of noncommutative exterior forms Ω•D(Af ), given by

Ω•D(A) := Ω•(A)/(K + δK) ∼= π(Ω•(A))/π(δK).

where K = ⊕p≥0Kp is the two sided ideal of Ω•(A) given by Kp = {ω ∈ Ωp(A) : π(ω) = 0}.
But often, the explicit computation of this complex is rather difficult. What we will do is the
following. We will compute the complex obtained from the representation θ ◦ π : Ω•(A) →
Q(H) where θ : L(H) → Q(H) = L(H)/K(H) is the projection onto the Calkin algebra.
More specifically, let d̃ : Af → L(H) be given by d̃a = [Dp, π(a)]. Define πn : Ωn(Af ) →
L(H) by πn(a0(δa1) . . . (δan)) = π(a0)(d̃a1) . . . (d̃an). Define d = θ ◦ d̃, ψn = θ ◦ πn, and
ψ := ⊕ψn : ⊕Ωn → Q(H). Let Jn = kerψn. Define Ωn

d (Af ) = Ωn(Af )/(Jn + δJn−1).
Then Ωn

d (Af ) = ψ(Ωn(Af ))/ψ(δJn). We will compute these cohomologies Ωn
d (Af ). Before

entering the computations, it should be stressed here that by computing these rather than the
standard complex, we do not lose much. Because, first, since for a compact operator K one has
Trω(K|Dp|−1−1/p) = 0, proposition 5, page 550, [3] concerning the Yang-Mills functional holds
in our present case. Second, in the context of the canonical spectral triple associated with a
compact Riemannian spin manifold this prescription also gives back the exterior complex.

4.1 The case p = 1

We will write D for D1 throughout this subsection.
First, we need the following lemma which will be very useful for the computations.

Lemma 4.1 Assume a, b ∈ Af and c ∈ K(H). If a(I ⊗ S) + b = c, then a = b = 0.
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Proof : For a functional ρ on L(L2(N)), and T ∈ L(H), denote by aρ the operator (ρ ⊗ id)T .
Now observe that for any a ∈ Af and any functional ρ,

aρ` = `aρ. (4.3)

Write P = 1
2(I+S). It is easy to see that the given condition implies that (bρ−aρ)+2aρP =

cρ, which in turn implies that

(bρ − aρ)ei = cρei ∀i < 0, (4.4)

(bρ + aρ)ei = cρei ∀i ≥ 0. (4.5)

Now from (4.3) and (4.4), it follows that for any i, j ∈ Z and j < 0,

‖(bρ − aρ)ei‖ = ‖(bρ − aρ)`j−iej‖

= ‖`j−i(bρ − aρ)ej‖

= ‖(bρ − aρ)ej‖

= ‖cρej‖.

Since c is compact, limj→−∞ ‖cρej‖ = 0. Hence (bρ − aρ)ei = 0 for all i. In other words,
(bρ − aρ) = 0. Since this is true for any ρ, we get a = b. Using this equality, together with
equations (4.3) and (4.5), a similar reasoning yields a = 0. 2

Lemma 4.2 Let Iβ denote the ideal in Af generated by β and β∗. Then for n ≥ 1, we have

ψ(Ωn(Af )) = (I ⊗ S)nAf + (I ⊗ S)n+1Iβ. (4.6)

Proof : Let us first prove the equality for n = 1. Let Zk = qN+k(N+k), Bjk =
∑j

i=j−k+1 |ei−1〉〈ei|,
and

Cj =
{∑j−1

i=0 |ei〉〈ei−1| if j ≥ 1,
0 if j = 0.

It follows from (3.2) that

[D,αiβjβ∗
k] = −i(I ⊗ S)αiβjβ∗

k + (j − k)αiβjβ∗
k + 2(Zi ⊗ Cj)αiβj−1β∗k

−2(Zi ⊗Bjk)αiβjβ∗k−1. (4.7)

Hence d(αiβjβ∗k) = −i(I ⊗ S)αiβjβ∗k + (j − k)αiβjβ∗k. Thus for any a ∈ Af ,

da = (I ⊗ S)b+ c, where b ∈ Af , c ∈ Iβ. (4.8)

Note that for any a′ ∈ Af , ψ(a′)(I⊗S) = (I⊗S)ψ(a′) in Q(H). Hence ψ(a′(δa)) is again of the
form (I⊗S)b+ c, where b ∈ Af , c ∈ Iβ, i.e. is a member of (I⊗S)Af +Iβ. Thus ψ(Ω1(Af )) ⊆
(I⊗S)Af +Iβ. For the reverse inclusion, observe that (I⊗S) = (1−q2)−1((dα)α∗+q2(dα∗)α),
β = dβ and β∗ = −dβ∗.

The inductive step follows easily from (4.8). 2
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Lemma 4.3 J0 = {0}, and for n ≥ 1, we have

ψ(δJn) = (I ⊗ S)n+1Af + (I ⊗ S)n+2Iβ. (4.9)

Proof : By lemma 4.1, ψ : Af → Q(H) is faithful. Hence it follows that J0 = {0}.
We will prove here (4.9) by induction. From lemma 4.2, we have ψ(δJ1) ⊆ ψ(Ω2(Af )) =

Af + (I ⊗ S)Iβ . Let us show that I, (I ⊗ S)β and (I ⊗ S)β∗ are all members of ψ(δJ1).
Choose ω ∈ Ω1(Af ) such that ψ(ω) = (I ⊗ S). Let ωk = kαkω − δ(αk), k = ±1. Then

it follows from (3.2) that ψ(ωk) = kαk(I ⊗ S) − kαk(I ⊗ S) = 0, so that ωk ∈ J1. ψ(δωk) =
ψ(k(δαk)ω) = k2αk = αk ∈ ψ(δJ1), i.e. both α and α∗ are in ψ(δJ1). It follows from this that
I ∈ ψ(δJ1).

Next we show that (I⊗S)β ∈ ψ(δJ1). Take ω = 1
2(α(δβ)−δ(αβ)+qβ(δα)). Then ψ(ω) = 0

and ψ(δω) = (I ⊗ S)αβ. So (I ⊗ S)αβ ∈ ψ(δJ1). Similarly taking ω = 1
2(α∗(δβ) − δ(α∗β) +

q−1β(δα∗)), it follows that (I ⊗S)α∗β ∈ ψ(δJ1). These two together imply (I ⊗S)β ∈ ψ(δJ1).
A similar argument shows that (I ⊗S)β∗ is also in ψ(δJ1). Thus Af + (I ⊗S)Iβ = ψ(δJ1).
For the inductive step, notice that ψ(δJn) ⊆ ψ(Ωn+1(Af )) = (I ⊗S)n+1Af + (I ⊗S)n+2Iβ .

We will show that the following are all elements of ψ(δJn):

(I ⊗ S)n+1α, (I ⊗ S)n+2αβ, (I ⊗ S)n+2αβ∗,

(I ⊗ S)n+1α∗, (I ⊗ S)n+2α∗β, (I ⊗ S)n+2α∗β∗.

From the right Af -module structure of ψ(δJn), it will then follow that (I⊗S)n+1, (I⊗S)n+2β

and (I ⊗ S)n+2β∗ are in ψ(δJn), giving us the other inclusion.
Choose ω ∈ Jn−1 such that ψ(δω) = (I ⊗ S)n. Take ωk = kω(δαk), k = ±1. Then

ωk ∈ Jn and ψ(δωk) = (I ⊗ S)n+1αk. Similarly choosing ω such that ψ(δω) = (I ⊗ S)n+1β

and ωk as before, we get ωk ∈ Jn and ψ(δωk) = q−k(I ⊗ S)n+2αβ. Finally, take ω such that
ψ(δω) = (I ⊗ S)n+1β∗ and ωk as before to show that (I ⊗ S)n+2αkβ

∗ ∈ ψ(δJn). 2

Proposition 4.4

Ωn
d (Af ) =

{Af ⊕ Iβ if n = 1,
{0} if n ≥ 2.

Proof : Proof follows from lemmas 4.2 and 4.3. 2

4.2 The case 0 < p < 1

Let us first introduce a few notations. Let Xrs denote the operator (N + r)p − (N + s)p, Zr
stand for qN+r(N + r)p and let Brs and Cr be as in the earlier subsection. We have, then,

[Dp, αiβ
jβ∗k] = (I ⊗ S)(X0i ⊗ I)αiβjβ∗

k + (j − k)αiβjβ∗
k + 2(Zi ⊗ Cj)αiβj−1β∗k

−2(Zi ⊗Bjk)αiβjβ∗k−1.

= (I ⊗ S)(X0i ⊗ I)αiβjβ∗
k + (j − k)αiβjβ∗

k + compact (4.10)

7



and hence,

[Dp, (Xr1s1 . . . Xrksk ⊗ I)αiβjβ∗
k] = (I ⊗ S)(Xr1s1 . . . XrkskX0i ⊗ I)αiβjβ∗

k

+ (j − k)(Xr1s1 . . . Xrksk ⊗ I)αiβjβ∗
k + compact (4.11)

We will work with the algebra Ãf generated by {Xrs ⊗ I) : r, s ∈ Z} and the elements of
Af . Note that Ãf is nothing but the span of {(X0s1 . . . X0sn ⊗ I)αiβjβ∗k}. Now first of all
observe that in the proof of lemma 4.1, the only property of Af that has been used is that

a(I ⊗ `) = (I ⊗ `)a (4.12)

for all a ∈ Af , so that one has equation (4.3). Since (4.12) is satisfied by elements of Ãf also,
it follows that lemma 4.1 remains valid even when Af is replaced by the bigger algebra Ãf .

Lemma 4.5 Let Ĩβ denote the ideal in Ãf generated by β and β∗. Then for n ≥ 1, we have

ψ(Ωn(Ãf )) = (I ⊗ S)nÃf + (I ⊗ S)n+1Ĩβ. (4.13)

Lemma 4.6 Let J̃n be the kernel of ψ restricted to Ωn(Ãf ). Then J̃0 = {0}, and for n ≥ 1,
we have

ψ(δJ̃n) = (I ⊗ S)n+1Ãf + (I ⊗ S)n+2Ĩβ. (4.14)

Proof : Arguments used for proving lemma 4.3 goes through. 2

Proposition 4.7

Ωn
d (Ãf ) =

{
Ãf ⊕ Ĩβ if n = 1,
{0} if n ≥ 2.

Proof : Lemma 4.5, and 4.6 yields this as in proposition 4.4. 2

5 L2-complex of Frohlich et. al.

In this section we will compute the complex of square integrable forms for the spectral triple
corresponding to p = 1. For that we begin with similar computations for the spectral triple
(C[z, z−1],H0 = L2(Z), D0 = N) associated with the algebra C[z, z−1]. Here we consider the
embedding π0 : C[z, z−1]→ L(H) that maps z to `.

Lemma 5.1 (i) Ω̃n
D0

(C[z, z−1]) = 0, for n ≥ 2,
(ii) Ω̃1

D0
(C[z, z−1]) = C[z, z−1].

Proof : (i) Let ω =
∑
αn0,···,nkz

n0δzn1 · · · δznk ∈ Ωk(C[z, z−1]), where the sum is a finite one
and δ is the universal differential. Then it is easily verified that

(ω, ω)D0 =
∫

(
∑

n1 · · ·nkαn0,···,nkz
∑k

0 nj )
∗
(
∑

n1 · · ·nkαn0,···,nkz
∑k

0 nj )dz,
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where dz is the Lebesgue measure on the circle. Therefore,

Kk(C[z, z−1]) = {ω ∈ Ωk(C[z, z−1]) : (ω, ω)D0 = 0}
= {

∑
αn0,···,nkz

n0δzn1 · · · δznk :
∑

n0+···+nk=r

n1 · · ·nkαn0,···,nk = 0,∀r}.

Consequently we have,

zn0δzn1 · · · δznk − n1 · · ·nkz
∑k

0 ni−kδz · · · δz ∈ Kk(C[z, z−1]), (5.15)

δzrδz · · · δz − rzrδz · · · δz ∈ Kk(C[z, z−1]), (5.16)

zrδz · · · δz − 1
r + 1

δzr+1δz · · · δz ∈ Kk−1(C[z, z−1]). (5.17)

From (5.17) we get δzrδz · · · δz ∈ δKk−1(C[z, z−1]). Combining this with (5.15) and (5.16) we
get,

zn0δzn1 · · · δznk ∈ Kk(C[z, z−1]) + δKk−1(C[z, z−1]) for large n0.

Since Kk(C[z, z−1]) + δKk−1(C[z, z−1]) is a bimodule we have

zn0δzn1 · · · δznk ∈ Kk(C[z, z−1]) + δKk−1(C[z, z−1]) ∀ n0, · · · , nk.

This proves (i).
(ii) It suffices to note that

zn0δzn1 − n1z
n0+n1−1δz ∈ K1(C[z, z−1]).

The induced d : Ω̃0
D0

(C[z, z−1])→ C[z, z−1] is given by d(zn) = nzn. 2

Now we are in a position to compute the complex of square integrable forms for Af for the
spectral triple associated with p = 1.

Theorem 5.2 (i) Ω̃n
D(Af ) = 0 for n ≥ 2.

(ii) Ω̃n
D(Af ) = C[z, z−1] for n = 0, 1 here equality is as an Af bimodule.

Proof : Note that the homomorphism σ in (2.1) induces a surjective homomorphism denoted
by the same symbol from Af to C[z, z−1]. We have the following short exact sequence

0 −→ Iβ −→ Af
σ−→ C[z, z−1] −→ 0,

Let σk : Ωk(Af ) → Ω(C[z, z−1]) be the induced surjective map. One easily verifies that
(ω, ω)D = (σk(ω), σk(ω))D0 . Therefore,

Kk(Af ) = {ω ∈ Ωk(Af ) : (ω, ω)D = 0} = σ−1
k (Kk(C[z, z−1])).

We have the following commutative diagram
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K0 = Iβ −→ Af
σ−→ C[z, z−1] −→ π0(C[z, z−1])

↓ ↓ ↓
K1(Af ) −→ Ω1(Af ) σ1−→ Ω1(C[z, z−1]) −→ Ω̃1

D0
(C[z, z−1])

↓ ↓ ↓
K2(Af ) −→ Ω2(Af ) σ2−→ Ω2(C[z, z−1]) −→ Ω̃2

D0
(C[z, z−1])

. . . . . . . . . . . .

Kn(Af ) −→ Ωn(Af ) σn−→ Ωn(C[z, z−1]) −→ Ω̃n
D0

(C[z, z−1]).

This along with the previous lemma proves the theorem. We will only illustrate (i).
Let ωn ∈ Ωn(Af ), then by the previous lemma σn(ωn) = ω1,n + δω2,n−1 where ω1,n ∈

Kn(C[z, z−1]), ω2,n−1 ∈ Kn−1(C[z, z−1]). Let ω′1,n = σ−1
n (ω1,n), ω′2,n−1 = σ−1

n−1(ω2,n−1), then
σn(ωn − ω′1,n − δω′2,n−1) = 0 implying ωn ∈ Kn + δKn−1. 2

6 Computations for the quantum sphere

In this section we will do similar computations for quantum spheres. At times we will be
sketchy because some of the arguments are very similar to the earlier one. Quantum sphere
was introduced by Podles in [5]. This is the universal C*-algebra, denoted by C(S2

qc), generated
by two elements A and B subject to the following relations:

A∗ = A, B∗B = A−A2 + cI,

BA = q2AB, BB∗ = q2A− q4 + cI.

Here the deformation parameters q and c satisfy |q| < 1, c > 0. For later purpose we also note
down two irreducible representations whose direct sum is faithful. Let H+ = l2(N),H− = H+.
Define π±(A), π±(B) : H± → H± by

π±(A)(en) = λ±q
2nen where λ± =

1
2
± (c+

1
4

)
1/2

π±(B)(en) = c±(n)1/2en−1 where c±(n) = λ±q
2n − (λ±q2n)2 + c.

Since π = π+ ⊕ π− is a faithful representation, an immediate corollary follows.

Theorem 6.1 (Sheu) (i) C(S2
qc) ∼= C∗(T )⊕σC∗(T ) := {(x, y) : x, y ∈ C∗(T ), σ(x) = σ(y)}

where C∗(T ) is the Toeplitz algebra and σ : C∗(T )→ C(S1) is the symbol homomorphism.
(ii) We have a short exact sequence

0 −→ K i−→ C(S2
qc)

α−→ C∗(T ) −→ 0 (6.18)

Proof : (i) An explicit isomorphism is given by x 7→ (π+(x), π−(x)).
(ii) Define α((x, y)) = x then kerα = K. 2

Corollary 6.2 (i) K0(C(S2
qc)) = K0(C(S2

qc)) = Z⊕ Z.
(ii) K1(C(S2

qc)) = K1(C(S2
qc)) = 0.
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Proof : The six term exact sequence associated with (6.18) along with the KK-equivalence of
K, C∗(T ) with C proves the result 2

Proposition 6.3 Let Afin be the *-subalgebra of C(S2
qc) generated by A and B. Then(

Afin, H = H+ ⊕H−, D =
(

0 N

N 0

)
, γ =

(
1
0

0
−1

))
is an even spectral triple.

Proof : We only have to show that [D, a] is bounded for a ∈ Afin. For that it is enough to note
that,
(i) Nπ±(A), π±(A)N are bounded.
(ii) n(c±(n)1/2 −

√
c) is bounded as n becomes large.

(iii) [N, l] = l. 2

Remark 6.4 This spectral triple has nontrivial Chern character. This can be seen as follows:
let P0 = i(|e0〉〈e0|) ∈ C(S2

qc), then applying proposition 4, page 296, [3],we get the index pairing
〈[P0], [(Afin,H, D, γ)]〉 = −1, implying nontriviality of the spectral triple.

Now we will briefly indicate the computations of the complex (Ω•d(Afin), d) introduced at the
beginning of section 4.

Proposition 6.5 (i) Ωn
d (Afin) = 0 for n ≥ 2.

(ii) Ω1
d(Afin) = C[z, z−1], here also equality is as an Afin bimodule.

Proof : Let π be the associated representation of Ω•(Afin) in L(H). Then straightforward
verification gives (i) [D,A] is compact, (ii) [D,B] = l ⊗ κ + compact, and (iii) [D,B∗] =

−l∗ ⊗ κ+ compact, where κ =
(

0 1
1 0

)
. Therefore, modulo compacts

π(Ω2k+1(Afin)) = C∗fin(T )⊗ κ
π(Ω2k(Afin)) = C∗fin(T )⊗ I2,

where C∗fin(T ) is the *-algebra generated by T . Now for (i), note that

ωn = BδB∗ δB · · · δB︸ ︷︷ ︸
n−2 times

+B∗δB δB · · · δB︸ ︷︷ ︸
n−2 times

satisfies (a) π(ωn) is compact and (b)π(δωn) = 2I is invertible, hence (i) follows.
For (ii), observe that if a ∈ Afin and π(a) is compact then Na and aN both compact. Hence,
Ω1
d(Afin) = π(Ω1(Afin)) = C[z, z−1] because modulo compacts C[z, z−1] is C∗(T ). 2
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