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Abstract
In this article, we take up the construction of spectral triples and associated calculus in the
context of SU,(2) and Sgc. In order to construct explicit spectral triples, we begin with the
computation of K-groups, and then from explicit generators we construct spectral triples which
induce generating elements in K-homology. Using these spectral triples, we compute a modified
version of the space of Connes-de Rham forms and the associated calculus. The space of L? forms

have also been described explicitly.
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1 Introduction

Quantum SU (2)-group is one of the most well-known examples of a noncommutative space.
This was studied in the topological setting by Woronowicz, and subsequently by many others.
In the present article, we study a class of spectral triples on this noncommutative space and
compute the exterior complexes corresponding to these. We begin with computation of K-
groups, and then from explicit generators we construct spectral triples which induce generating
elements in K-homology.

Let us start with a brief description of the C*-algebra of continuous functions on the quan-
tum SU(2), to be denoted by C(SU,(2)). This is the canonical C*-algebra generated by two

elements « and (3 satisfying the following relations:

afa+ B =1, ao® + BB =1,
aff —qBa =0, af* —qB*a =0,
g*B = BB

The C*-algebra C(SU4(2)) can be described more concretely as follows. Let {e;};>0 and
{e;}icz be the canonical orthonormal bases for La(N) and La(Z) respectively. We denote by

*The first author would like to acknowledge support from the National Board of Higher Mathematics, India.



the same symbol N the operator ey — ke, k > 0, on Lo(N) and ey +— key, k € Z, on Lo(Z).
Similarly, denote by the same symbol ¢ the operator ey — ex_1, k > 1, eg — 0 on Lo(N) and
the operator ey +— ex_1, k € Z on La(Z). Now take H to be the Hilbert space L2(N) ® Lo(Z),
and define 7 to be the following representation of C'(SU,(2)) on H:

() =/IT-N @1, 7(3)=q¢" oL

Then 7 is a faithful representation of C'(SU,(2)), so that one can identify C'(SU,(2)) with the
C*-subalgebra of L(H) generated by m(a) and 7(3). Image of m contains K ® C(S1) as an ideal

with C(S1) as the quotient algebra, that is we have a useful short exact sequence
0— K®C(S) - A -2 (S — 0. (1.1)

The Haar state h on C(SU,4(2)) is given by,

0o
h:ar (1-¢% Zq2i<€m, ae;o).
i=0
Remark 1.1 This representation admits a nice interpretation. Let M be a compact topological
manifold and F, a Hermitian vector bundle on M. Let I'(M, E) be the space of continuous
sections. Then I'(M, E) is a finitely generated projective C'(M) module. Define an inner
product on I'(M, E) as

(51, 82) = / (51(m), 52(m)) (),

where v is a smooth measure on M and (-,-), is the inner product on the fibre on m. Let
Hg be the Hilbert space completion of I'(M, E). Then we have a natural representation of
C(M) in L(Hg). The same program can be carried out in the noncommutative context also.
Let A be a C*-algebra and E a Hilbert A-module with its A valued inner product (-,-) 4. Let
7 be a state on A. Consider the inner product on E given by (e1,e2) = 7((e1,e2) 4). If we
denote by Hg the Hilbert space completion of E, then we get a natural representation of A in
L(Hg). Now in the context of C(SU4(2)), let p = |eg)(eo] ® I € C(SU4(2)). Then it is easy
to verify that Hg = I2(N) ® 12(Z) for E = C(SU,(2))p with its natural left Hilbert C'(SU,(2))-
module structure. Moreover, the associated representation is nothing but the representation of
C(SU4(2)) described above.

2 Generators of K-homology

One way to have some idea about spectral triples is to compute the generators of K-homology.
We will write A for the C*-algebra C(SU4(2)) and Ay for the *-subalgebra of C(SU4(2))
generated by the two elements o and 3. Restriction of m to Ay gives a representation of A, on

‘H, which we denote by the same symbol 7. The short exact sequence
0— K®C(SH) -5 A -2 C(SY) — 0 (2.1)

gives rise to the folowing six-term exact sequence



o i0
K(C(sh)  — KA — K(KeC(sh)
T !
it ol
K'KeC(Sh)) «— KY(A) <  K{C(S).
It is known that Ko(A) = Z = K;(A). Since these are free abelian groups, It follows from the
results of Rosenberg-Schochet ([6]) that K°(A) = Z = K'(A). Therefore the six term sequence
above becomes
Z — Z — Z
T !
it ol
K'K&C(Sh) «— Z < KY(C(SY)

Lemma 2.1 i' and ¢° are isomorphisms while i° and o' are zero morphisms.

Proof: We know that K'(K ® C(S')) = K'(C(S')) = Z. Therefore by the exactness of the
diagram above it is enough to show that i! is onto. For that observe H = La(N) ® Lo(Z) and
F=1®S, where S denotes the operator

{ek ikaO,
S :ep—

—ep if k<0,
is an odd Fredholm module on A and hence on i(K ® C(S')) € A. Moreover this Fredholm
module is a generator of K'(K ® C(S')) implying surjectivity of 4'. O

Remark 2.2 Proof of the above lemma also shows that (H, F') is a generating Fredholm
module for K1(A).

3 Spectral triples

In this section we construct spectral triples with nontrivial Chern character. For p € [0, 00),
let D, be the operator NP @ S +1® N on H = La(N) ® La(Z) with S as defined above.

Proposition 3.1 Let u1,(T) denote the nth largest singular value of an opeartor T. Then
1 1
D, R) ~ =
(1D )
Proof: Check that the action of |D,| on H is given by e; ® e; — (¥ + |j|)e; ® e;. If we denote
by A, the number of elements in {(4,5) : ¢, € N,i¥ + 7 < r}, then a simple calculation tells us

that 1>\+Tl — 12Tpp as r — oo. It follows from this that the nth eigenvalue of |D,| is of the order
r p

of nT+1/r / which gives us the required result. O

Lemma 3.2 Define a functional ¢ on Ay by

¢(a) := lim /P tr (aexp(—tD2)).

Then ¢(oy 3 *F) = 9i00j00k0- In particular, ¢ does not depend on p.



Proof: Observe that exp(—tD?)e, ® e = exp(—t(r? + |s|)?)e, ® es, and

=q¢*"e, @ e, ifi=0,j=k
€ Ce,—; ®egyj_ otherwise.

aiﬁjﬁ*ker X € {

Hence we have

0 exp(-1D3) = { T Dren a7 X007 IF) 120, 5=k

0 otherwise.
Therefore it follows that ¢(c;373*%) = 0 for i # 0. Now note that
Z Z ¢ exp(—t(rP + |s])?) = 2 Z Z > exp(—t(rP + |s])?) + Z ¢ exp(—tr?P),
r=0 s€Z r=0 s=1 r=0

and

Zq”k exp(—t(rP +[s])?) < / exp(—t(r? + x)?) dz
0
1> 1,
= — exp(—=y~)d
N p(—5y7)dy
< —.
V2t
Hence for i = 0 and j = k # 0, ¢(a;/37 3*F) = limy_o t*+1/Ptr (a; 37 3** exp(—tD2)) = 0. Finally,
from the previous lemma, it follows that ¢(I) = tr,(|D,|~'=1/P) = 1. O

Proposition 3.3 For each p € (0,1], S, := (A, H, Dy,) defines an odd spectral triple.

Proof: Self-adjointness of D), is trivial, and it follows from proposition 3.1 that D), has compact
resolvent. Let Hog = span{e; ®e; : i € N,j € Z}. Then Hy is dense in H and is invariant under
the actions of D), and the elements of A;. In view of this and the self-adjointness of D), it is

enough to show that [D,,a] and [D,, 5] are bounded. Straightforward calculation now gives

[Dp,0] = a(N—-1)P -=NP)®5),
Dy, 8] = ¢"NP®[S,0*]+ 3. (3.2)
Therefore S, is a spectral triple. O

Remark 3.4 The circle group S' has an action on A given by ¢, : a — za, 3 — 3, where
z e St D, is equivariant with respect to this action. Equivariance follows from the fact that
D, commutes with the generator of the action N ® I + 1 ® N.

Theorem 3.5 The spectral triple (Ay, H, Dp) has nontrivial Chern character.



Proof: For this one only has to note that the operator F' constructed in the proof of 2.1 is
nothing but sign(D,). We give an explicit description of the pairing with K;(A). Let E =
HE = (N >0)andu = I13(B*B)(B—1)+1. u gives an element [u] € K;(A). By proposition 2
(page 289 of [3]), EuFE is a Fredholm operator and ([u],[(A, H,D)]) = Index(EuE). It is
easily seen that the last quantity is —1. Since K;(A) = Z, this shows [u] generates K (A) and
describes the pairing with K7(A) completely. O

Note that the following corollary is immediate from the proof of this theorem.

Corollary 3.6 Let u = I1(8"6)(8 — 1)+ 1. Then [u] generates K1(A).

4 Modified Connes-de Rham complex

Let Q°(Ayf) = @, (Ay) be the universal graded differential algebra over Ay, i.e. Q" (Ay) =
span{ag(day)...(dan) : a; € Ay, 6(ab) = a(db) + (da)b}. The universal differential algebra
is not very interesting from the cohomological point of view. Interesting cohomologies are
obtained from the representations of the algebra. For the spectral triple (A, H, D,), one has

the standard Connes-de Rham complex of noncommutative exterior forms Q%,(Ay¢), given by
QpH(A) =Q*(A) /(K +6K) = n(Q*(A))/m(K).

where K = @,>0K), is the two sided ideal of Q°(A) given by K, = {w € QP(A) : m(w) = 0}.
But often, the explicit computation of this complex is rather difficult. What we will do is the
following. We will compute the complex obtained from the representation 6 o 7 : Q°*(A) —
Q(H) where 0 : L(H) — Q(H) = L(H)/K(H) is the projection onto the Calkin algebra.
More specifically, let d : Af — L(H) be given by da = [Dp,m(a)]. Define m, : Q"(Af) —
L(H) by mp(ao(dar) ... (0an)) = m(ag)(day)...(day). Define d = 6od, 1, = 6 om,, and
o= @Y, 1 Q" — Q(H). Let J, = kert,. Define QI (Ar) = Q"(Af)/(Jn + 6Jn—1).
Then QF(Ay) = V(" (Ay))/1(6J5). We will compute these cohomologies Q}(Ay). Before
entering the computations, it should be stressed here that by computing these rather than the
standard complex, we do not lose much. Because, first, since for a compact operator K one has
Tr,(K|D,|~1=1/P) = 0, proposition 5, page 550, [3] concerning the Yang-Mills functional holds
in our present case. Second, in the context of the canonical spectral triple associated with a

compact Riemannian spin manifold this prescription also gives back the exterior complex.

4.1 The case p=1

We will write D for Dy throughout this subsection.

First, we need the following lemma which will be very useful for the computations.

Lemma 4.1 Assume a,b€ Ay and c € K(H). Ifa(I® S)+b=c, thena=0b=0.



Proof: For a functional p on £(L2(N)), and T' € L(H), denote by a, the operator (p ® id)T.

Now observe that for any a € Ay and any functional p,
apl = la,. (4.3)

Write P = $(I+5). It is easy to see that the given condition implies that (b,—a,)+2a,P =

Cp, which in turn implies that

(by —aple; = cpe; Vi <O, (4.4)
(by+aplei = cpe; Vi>0. (4.5)

Now from (4.3) and (4.4), it follows that for any ¢,j € Z and j < 0,

[(bp —ap)eil| = ”(bp*ap)éj_iejn

= ”Ej_i(bp - ap)ejH

= {6y = ap)ej
= llepesll-
Since ¢ is compact, lim;_,_ [|cpe;|| = 0. Hence (b, — ay)e; = 0 for all i. In other words,

(bp — ap) = 0. Since this is true for any p, we get a = b. Using this equality, together with

equations (4.3) and (4.5), a similar reasoning yields a = 0. O

Lemma 4.2 Let Zg denote the ideal in Ay generated by B and B*. Then for n > 1, we have
P (Ap) = (T @ S)"Ar + (I ® S)" ;. (4.6)

Proof: Let us first prove the equality for n = 1. Let Z = ¢V (N +k), Bj, = Zg:j_kﬂ lei—1) (e,

and .
0:{ I le)ei| ifj>1,
7o

if j = 0.
It follows from (3.2) that
[D,0i' 5] = —i(I ® )i B + (j — k)i 5" + 2(Zi @ Cp)oi ™' 5"
—2(Z; ® Bjk)ozi,@jﬂ*kfl. (4.7)

Hence d(o; 37 8*%) = —i(I ® )37 3*% + (j — k)37 3**. Thus for any a € Ay,
da=(I®S)b+c, where b € Ay, c¢€ 1. (4.8)

Note that for any o’ € Ay, ¥(a’)(I®S) = (I®S)Y(a') in Q(H). Hence 1(a’(da)) is again of the
form (I ® S)b+c, where b € Ay, ¢ € Ig, i.e. is a member of (I ®S)Ar+Zg. Thus ¢(Q(Ayf)) C
(I®S)As+TIg. For the reverse inclusion, observe that (I®S) = (1—¢%) "' ((da)a* + ¢*(da*)a),
6 =dpg and §* = —dS*.

The inductive step follows easily from (4.8). O



Lemma 4.3 Jy = {0}, and for n > 1, we have
V(0Jy) = (I ®8)" A+ (I 8)"*Zs. (4.9)

Proof: By lemma 4.1, ¢ : Ay — Q(H) is faithful. Hence it follows that Jy = {0}.

We will prove here (4.9) by induction. From lemma 4.2, we have 1(5.J1) C % (Q2(Af)) =
Af + (I ® S)Zg. Let us show that I, (I ® S)3 and (I ® S)3* are all members of ¢(5.J7).

Choose w € Q(Ay) such that ¥(w) = (I ® S). Let wx = kagw — §(ay),k = £1. Then
it follows from (3.2) that ¥(wy) = kax(I @ S) — kap(I ® S) = 0, so that wg € Jy. ¥(dwg) =
P(k(Sag)w) = k2ay = ap € ¥(8J1), i.e. both a and o* are in ¢(8.J7). It follows from this that
I ey(3).

Next we show that (1®S)8 € ¢(8.J1). Take w = $(a(8) —5(aB)+gB(5cx)). Then ¢p(w) =0
and 1 (6w) = (I ® S)aB. So (I ® S)aB € (8J1). Similarly taking w = (a*(68) — §(a*B) +
q B(0a*)), it follows that (I ® S)a*B € ¥(8.J1). These two together imply (I ® S)B € ¥(8.J1).

A similar argument shows that (I ® S)8* is also in ¢ (6.J1). Thus Af + (I ® S)Zg = 1(8.J1).

For the inductive step, notice that ¥(8.J,) C ¥(Q" T (Af)) = @ S)" T As + (I ® S)"2Z4.
We will show that the following are all elements of ¥ (d.J,,):

(I®S)"a, (IS8 2ap, (I S)"F2as,
(I® S)nJrlOz*, (I® S)”*%c*ﬁ, (I® S)"“a*ﬁ*.

From the right .A-module structure of ¢(8.J,), it will then follow that (I ® S)"*1, (I®S)"+23
and (I ® S)"*23* are in v(d.J,,), giving us the other inclusion.

Choose w € J,_1 such that ¥(dw) = (I ® S)". Take wy = kw(day), & = £1. Then
wy € Jp and P(dwy) = (I ® S)"*lay. Similarly choosing w such that ¥(dw) = (I ® S)"*1p
and wy, as before, we get wy, € J,, and ¥(dwy) = ¢ *(I ® S)"* 2af. Finally, take w such that
Y(dw) = (I ® )" 3* and wy, as before to show that (I ®@ S)" 2a,3* € ¥(6.J,). O

Proposition 4.4

Ar@Zg ifn=1,
Qo =
a(Ay) {gﬁ ifn>2.
Proof: Proof follows from lemmas 4.2 and 4.3. O

4.2 Thecase 0<p<1

Let us first introduce a few notations. Let X,; denote the operator (N + )P — (N + s)P, Z,
stand for ¢V (N +r)P and let B,s and C,. be as in the earlier subsection. We have, then,

[Dp, s8] = (1@ 8)(Xo; ® Nai¥ 3™ + (j = k)i 57 + 2(Z; @ Cj)oi ' 5
—2(Z; ® Bjk)oziﬁjﬁ*k*l.
= (I®8)(Xo® DB + (j — k)i B + compact (4.10)



and hence,

[Dp7 (Xr151 e ersk & I)O‘iﬁjﬁ*k] = (I ® S)(Xrlsl .. ~erstOi ® I)aiﬁjﬁ*k
+(—k)(Xrsy o Xips, ® I)azﬂjﬂ*k + compact (4.11)

We will work with the algebra ﬂf generated by {X,s ® I) : r,s € Z} and the elements of
Ay. Note that ﬂf is nothing but the span of {(Xos, ... Xos, ® )y 6**}. Now first of all
observe that in the proof of lemma 4.1, the only property of A that has been used is that

a(I®l)=(I®{)a (4.12)

for all @ € Ay, so that one has equation (4.3). Since (4.12) is satisfied by elements of .,Zf also,
it follows that lemma 4.1 remains valid even when Ay is replaced by the bigger algebra Avf.

Lemma 4.5 Let fg denote the ideal in ./Zf generated by B and B*. Then for n > 1, we have
Y(O(Af) = (I @ 8)" A + (I @ )" 5. (4.13)

Lemma 4.6 Let J, be the kernel of ¥ restricted to Q”(.Zf) Then Jo = {0}, and for n > 1,
we have
W(6J,) = (I ® S A + (I © S)"H2Z,. (4.14)
Proof: Arguments used for proving lemma 4.3 goes through. a
Proposition 4.7
ny AraTs ifn= 1,
HEDES S
{0} if n > 2.

Proof: Lemma 4.5, and 4.6 yields this as in proposition 4.4. O

5 L’-complex of Frohlich et. al.

In this section we will compute the complex of square integrable forms for the spectral triple
corresponding to p = 1. For that we begin with similar computations for the spectral triple
(Clz,271),Ho = La(Z), Dy = N) associated with the algebra C[z,271]. Here we consider the
embedding 7 : C[z,271] — £L(H) that maps 2 to .

Lemma 5.1 (i) Q%O(C[z, 2 1)) =0, forn >2,
(i) Qp, (Clz,271]) = Clz, 27 1],

Proof: (i) Let w = " g .y, 27062 -+ - 52 € QF(C[z, 271]), where the sum is a finite one

and ¢ is the universal differential. Then it is easily verified that
k * k
(w,w)p, = / (Z ny--- nkanov...’nkzZO ") (Z ny - -nkano,...mkzZO ")dz,
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where dz is the Lebesgue measure on the circle. Therefore,

Kk(C[z,zfl}) = {we Qk((C[z,zfl]) : (w,w)p, =0}
= {Z Qg e 2 002" - 621 Z Ny Mg .omy, = 0, V7 }

TLO+~~'+TLk:T

Consequently we have,

PRI PRI b L) PO = Ki(Clz, 271)), (5.15)
627020z —r2"0z--- 62 € Ki(Clz,z7Y), (5.16)
2"0z -0z — %52”167; bz € Kp_1(Clz, 27 1)). (5.17)

T

From (5.17) we get §2"8z--- 0z € 0Ky_1(C[z, 271]). Combining this with (5.15) and (5.16) we
get,
2M0§2™M 52" € Ki(Clz, 27 Y]) + 0Ky_1(Clz, 271]) for large ng.

Since Ki(C[z,271]) + §K1_1(Clz, 27 1]) is a bimodule we have
2M052™M 2™ € Ki(Clz, 27)) + 0Kp_1(Clz,27Y) Vg, -, ng.

This proves (i).
(ii) It suffices to note that

2052 — 20Tl € K (Clz, 27Y).

The induced d : Q%O((C[z, z71)) — C[z, 271 is given by d(z") = nz". O

Now we are in a position to compute the complex of square integrable forms for A4 for the

spectral triple associated with p = 1.

Theorem 5.2 (i) Q% (As) =0 forn > 2.
(ii) ﬁ%(Af) = Clz,z71] for n =0,1 here equality is as an Ay bimodule.

Proof: Note that the homomorphism ¢ in (2.1) induces a surjective homomorphism denoted

by the same symbol from Ay to C|z, z~1]. We have the following short exact sequence
0— Iy — A 2 Clz,271] — 0,

Let of @ QF(Ay) — Q(C[z,271]) be the induced surjective map. One easily verifies that
(w,w)p = (ok(w),ok(w))p,- Therefore,

Ki(Ayp) = {w € Q"(Ay) : (w,w)p =0} = o (Ki(Clz, 27 1))

We have the following commutative diagram



Ko=1I3 — Ay — Clz, z71] —  7(Clz, 27Y)

! ! !
Ki(Ay) — QiAp) =5 Q(ClezT) — Qp(Clz27))
! ! !

Ka(4y) — Q(4y) 75 Q(Clz2)) — 93 (Clz, 7))

En(Ap) — QYA = Q"(Clez7']) — Qp,(Clz, 271

This along with the previous lemma proves the theorem. We will only illustrate (i).

Let w, € Q"(Ay), then by the previous lemma o,(w,) = w1, + 6w p—1 Where wy, €
Kn(Clz,271),w2n1 € Kno1(Clz, 271)). Let of ,, = 0, (win),wh, 1 = o, (wan—1), then
on(wn —wi,, — 0wy, 1) = 0 implying wy, € Ky, + 0K;-1. O

6 Computations for the quantum sphere

In this section we will do similar computations for quantum spheres. At times we will be
sketchy because some of the arguments are very similar to the earlier one. Quantum sphere
was introduced by Podles in [5]. This is the universal C*-algebra, denoted by C (Sgc), generated

by two elements A and B subject to the following relations:
A*=A, B*B=A-A%+cl,
BA=¢*?AB, BB*=q¢*A—¢*+cl.
Here the deformation parameters g and ¢ satisfy |g| < 1,¢ > 0. For later purpose we also note

down two irreducible representations whose direct sum is faithful. Let H, = I2(N),H_ = H,.
Define w1 (A), 74 (B) : Hx — Hy by

2 1 1.1/2
T+ (A)(en) = Arq™"en where Ay =g E(c+ )

71+(B)(en) = c+(n)Y?e,_1 where ci(n) = Asg® — ()\ti”)Q +c.

Since m = m @ w_ is a faithful representation, an immediate corollary follows.

Theorem 6.1 (Sheu) (i) C(Sgc) 20T, C(T) ={(z,y): x,y € C*(T),0(x) =0(y)}
where C*(T) is the Toeplitz algebra and o : C*(T) — C(S*) is the symbol homomorphism.

(ii) We have a short exact sequence
0— K 5 C(S2) % CH(T) — 0 (6.18)

Proof: (i) An explicit isomorphism is given by z — (74 (x), 7_(z)).
(ii) Define a((z,y)) = = then kera = K. O

Corollary 6.2 (i) Ko(C(S2.)) = K°(C(S2)) =Z® L.
(ii) K1(C(S5)) = K (C(S.)) =0.

10



Proof: The six term exact sequence associated with (6.18) along with the KK-equivalence of
K, C* () with C proves the result O

Proposition 6.3 Let Ay, be the *-subalgebra of C(Sgc) generated by A and B. Then

0N 10

1s an even spectral triple.

Proof: We only have to show that [D, a] is bounded for a € Ay;,. For that it is enough to note
that,

(i) N7 (A), m+(A)N are bounded.

(i) n(ce(n)/? — /c) is bounded as n becomes large.

(iii) [N, ] = L. 0

Remark 6.4 This spectral triple has nontrivial Chern character. This can be seen as follows:
let Py =i(]eg){eg]) € C (Sgc), then applying proposition 4, page 296, [3],we get the index pairing
([Po], [(Afin, H, D,7)]) = —1, implying nontriviality of the spectral triple.

Now we will briefly indicate the computations of the complex (25(Afin), d) introduced at the

beginning of section 4.

Proposition 6.5 (i) Q(Agipn) =0 forn > 2.

(ii) QL(Apin) = Clz, 271, here also equality is as an Ay, bimodule.

Proof: Let m be the associated representation of Q®(Ay;,) in £(H). Then straightforward
verification gives (i) [D, A] is compact, (ii) [D,B] = | ® k + compact, and (iii) [D, B*] =

—I* ® k + compact, where kK = L o) Therefore, modulo compacts
T Apin)) = Cin(T) @8
T(Q*F(Agin)) = Cjin(T) @ I,
where C%, (.7) is the *-algebra generated by .7. Now for (i), note that

wn =BOB*¢{B---6B+B*dB{B---B
SN——— SN———

n—2 times n—2 times

satisfies (a) 7(wy,) is compact and (b)7w(dw,) = 21 is invertible, hence (i) follows.
For (ii), observe that if a € Ay, and 7(a) is compact then Na and aN both compact. Hence,
QL(Agi) = 7(Q(Afin)) = Clz, 271] because modulo compacts Clz, 271 is C*(7). 0

11
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