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Abstract
A binary operation * over real numbers is said to be associative if (x ∗ y) ∗ z = x ∗ (y ∗ z)

and it is said to be reducible if x ∗ y = x ∗ z or y ∗ w = z ∗ w if and only if z = y. The
operation * is said to have an identity element ẽ if x ∗ ẽ = x. We characterize different classes
of probability distributions under binary operations between random variables. Further more
we characterize distrbutions with the almost lack of memory property or with strong Markov
property or with periodic failure rate under such a binary operation extending the results on
exponential distributions under addition operation as binary operation.

1 Introduction

Summarization of statistical data without loosing information is one of the fundamental ob-
jectives of statistical data analysis. More precisely the problem is to determine whether the
knowledge of a possibly smaller set of functions of several random variables is sufficient to
determine the behaviour of individual random components. For instance, if X,Y, and Z are
three independent random variables, we would like to know sufficient conditions under which
the joint distribution of U = g(X,Y, Z) and V = h(X,Y, Z) determine either the individual
distributions of X,Y and Z, or the family to which they belong when g(.) and h(.) are specified.
The functions g(.) and h(.) could be linear or nonlinear functions or they could be the maxi-
mum or minimum functions etc. Problems of this nature were discussed in Prakasa Rao (1992).
We now study such characterization problems when the operation between the variables is a
binary operation which is associative.

A binary operation * over real numbers is said to be associative if

(x ∗ y) ∗ z = x ∗ (y ∗ z) (1. 1)

for all real numbers x, y, z. The binary operation * is said to be reducible if x ∗ y = x ∗ z if and
only if y = z and if y ∗ w = z ∗ w if and only if y = z. It is known that the general reducible
continuous solution of the functional equation (1.1) is

x ∗ y = g−1(g(x) + g(y)) (1. 2)

where g(.) is a continuous and strictly monotone function provided x, y, x ∗ y belong to a fixed
(possibly infinite) interval A (cf. Aczel (1966)). The function g in (1.2) is determined up to a
multiplicative constant, that is,

g−1
1 (g1(x) + g1(y)) = g−1

2 (g2(x) + g2(y))
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for all x, y in a fixed interval A implies g2(x) = αg1(x) for all x in that interval for some α 6= 0.
We assume here after that the binary operation is reducible and associative with the function
g(.) continuous and strictly increasing. Further assume that there exists an identity element
ẽ ∈ R̄ such that

x ∗ ẽ = x, x ∈ A.

It is also known that every continuous, reducible and associative operation defined on an interval
A in the real line is commutative (cf. Aczel (1966), p.267). Let X be a random variable with
the distribution function F (x) having support A. Define

φ∗X(s) =
∫
A

exp{isg(x)} F (dx),−∞ < s <∞. (1. 3)

Note that the function φ∗X(s) is the characteristic function of the random variable g(X) and
hence determines the distribution function of the random variable g(X) uniquely.

Examples of such binary operations are given in Castagnoli (1974, 1978, 1982), Muliere
(1984) and Castagnoli and Muliere (1984, 1986, 1988). For instance (i) if A = (−∞,∞) and
x ∗ y = x+ y, then g(x) = x, (ii) if A = (0,∞) and x ∗ y = xy, x > 0, y > 0 then g(x) = log x,
(iii) if A = (0,∞) and x ∗ y = (xα + yα)1/α, x > 0, y > 0 for some α > 0, then g(x) = xα,

(iv) if A = (−1,∞) and x ∗ y = x + y + xy + 1, x > −1, y > −1, then g(x) = log(1 + x)
(v)if A = (0,∞) and x ∗ y = xy/(x + y), x > 0, then g(x) = 1/x and (vi)if A = (0,∞) and
x ∗ y = (x+ y)/(1 + xy), x > 0, y > 0, then g(x) = arth x.

A characterization of the multivariate normal distribution through a binary operation which
is associative is given in Prakasa Rao (1974) and in Prakasa Rao (1977) for Gaussian measures
on locally compact abelian groups. Muliere and Scarsini (1987) characterize a class of bivariate
distributions that generalize the Marshall-Olkin bivariate exponential distribution through a
functional equation involving two associative operations.

Let * be a binary operation over an interval A contained in R as described above. Suppose
Xi, 1 ≤ i ≤ 3 are independent real valued random variables with probability distributions
with support A. Define Z1 = X1 ∗ X3 and Z2 = X2 ∗ X3. Suppose the joint distribution of
(Z1, Z2) is specified. We give a characterization of probability distributions of Xi, 1 ≤ i ≤ 3
up to changes in location with respect to the binary operation * under certain conditions in
Section 2. Explicit determination of the distributions of individual components is discussed in
Section 3. The concept of almost lack of memory property under a binary operation * and its
relation to periodic failure rate under the binary operation * is investigated in Sections 4 to
6. A representation for distributions with periodic failure rate under the binary operation * is
given in Section 7. Distributions with strong Markov property under the binary operation *
are characterized in Section 8.
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2 Characterization via binary operations

Let * be a binary operation over an interval A contained in R as described above. Suppose
Xi, 1 ≤ i ≤ 3 are independent real valued random variables with probability distributions with
support A contained in R. Define

Z̃1 = X1 ∗X3 and Z̃2 = X2 ∗X3. (2. 1)

Theorem 2.1: If the characteristic function of (Z̃1, Z̃2) does not vanish, then the joint dis-
tribution of (Z̃1, Z̃2) determines the distributions of X1, X2 and X3 up to changes of locations
under the binary operation *.
Proof: From the comments made earlier, it follows that, given a binary operation * which is
reducible and associative, there exists a continuous strictly increasing function g(.) such that
x ∗ y = g−1(g(x) + g(y)). Let Zi = g(Z̃i), i = 1, 2. Denote the characteristic function of the
bivariate random vector (Z1, Z2) by φ(t1, t2) and let φX(t) denote the characteristic function
of a random variable X. Then

φ(t1, t2) = E[exp(it1Z1 + it2Z2)] (2. 2)

= E[exp(it1g(X1 ∗X3) + it2g(X2 ∗X3))]

= E[exp(it1(g(X1) + g(X3)) + it2(g(X2) + g(X3)))]

= φg(X1)(t1)φg(X2)(t2)φg(X3)(t1 + t2))

by the independence of the random variables Xi, 1 ≤ i ≤ 3. Since φ(t1, t2) 6= 0 for all t1 and t2

by hypothesis, it follows that φg(Xi)(t) 6= 0 for all t for 1 ≤ i ≤ 3.
Let Y1, Y2, Y3 be another set of three independent random variables and define

W̃1 = Y1 ∗ Y3 and W̃2 = Y2 ∗ Y3. (2. 3)

Suppose the conditions stated in the theorem are satisfied by the set of random variables
Y1, Y2, Y3. Let Wi = g(W̃i), i = 1, 2 and let ψ(t1, t2) denote the characteristic function of the
bivariate random vector (W1,W2). Further suppose that the joint distributions of (W̃1, W̃2)
and (Z̃1, Z̃2) are the same. Then it follows that the joint distribution functions of (Z1, Z2) and
(W1,W2) are the same. Hence

ψ(t1, t2) = φ(t1, t2),−∞ < t1, t2 <∞ (2. 4)

and it follows from (2.2) that

φg(X1)(t1)φg(X2)(t2)φg(X3)(t1 + t2)) = φg(Y1)(t1)φg(Y2)(t2)φg(Y3)(t1 + t2)) (2. 5)

for −∞ < t1, t2 <∞. Further more φg(Xi)(t) 6= 0 and φg(Yi)(t) 6= 0 for all t by hypothesis. Let

γi(t) =
φg(Yi)(t)
φg(Xi)(t)

, 1 ≤ i ≤ 3. (2. 6)
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Observe that γi(t), 1 ≤ i ≤ 3 are continuous complex valued functions with γi(0) = 1, 1 ≤ i ≤ 3
satisfying the equation

γ1(t1)γ2(t2)γ3(t1 + t2) = 1 (2. 7)

for −∞ < t1, t2 <∞. Let t1 = t and t2 = 0. Then

γ1(t)γ3(t) = 1 (2. 8)

for −∞ < t <∞. Let t2 = t and t1 = 0. Then

γ2(t)γ3(t) = 1 (2. 9)

for −∞ < t <∞. Substituting for γ1(t) and γ2(t) in terms of γ3(t) in (2.7), it follows that

γ3(t1 + t2) = γ3(t1)γ3(t2) (2. 10)

for −∞ < t1, t2 < ∞ with γ3(0) = 1. It is known that the only measurable solution of the
above functional equation is

γ3(t) = ect (2. 11)

where c is a complex constant. It follows from (2.8) and (2.9) that

γ1(t) = γ2(t) = e−ct (2. 12)

for −∞ < t <∞. Equation (2.6) implies that

φg(Yj)(t) = φg(Xj)(t)e
−ct, 1 ≤ j ≤ 2 (2. 13)

and
φg(Y3)(t) = φg(X3)(t)e

ct (2. 14)

From the property that φg(Xj)(t) and φg(Yj)(t) are characteristic functions, it follows that c = iβ

where β is a real number. Therefore

φg(Yj)(t) = φg(Xj)(t)e
−iβt, 1 ≤ j ≤ 2 (2. 15)

and
φg(Y3)(t) = φg(X3)(t)e

iβt. (2. 16)

From the uniqueness theoren for characteristic functions, it follows that g(Xj) − β and g(Yj)
have the same distribution for j = 1, 2 and g(X3) + β and g(Y3) have the same distribution.
Since

g(Xj)− β = g(Xj ∗ g−1(−β)), j = 1, 2 (2. 17)

and
g(X3) + β = g(X3 ∗ g−1(β)) (2. 18)

and g(.) is continuous and strictly increasing, it follows that that the distributions of Xj ∗
g−1(−β) and Yj are the same for j = 1, 2 and the distribution X3 ∗g−1(β) and Y3 are the same.
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In other words the distributions of Xi, i = 1, 2, 3 are determined up to changes of locations
under the binary operation *.

Remarks: (i)The above result was proved by Kotlarski (1967) for real valued random variables
when the binary operation was the addition. It was later generalised to other types of operations
such as maximum and to random elements taking values in abstract spaces by Kotlarski ,
Prakasa Rao and others (cf. Prakasa Rao (1992)).

(ii) The above theorem can be extended to n independent random variables Xi, 1 ≤ i ≤ n in
the following form: Define Zi = g(Xi∗Xn), 1 ≤ i ≤ n−1 where g(.) is the function corresponding
to the binary operation *. Suppose the characteristic function of (Z1, . . . , Zn−1) does not vanish.
Then the distribution of (Z1, . . . , Zn−1) determines the distributions of Xi, 1 ≤ i ≤ n up to
changes of locations under the binary operation * .

(iii) As can be seen from the proof given above, the joint distribution of (Z1, Z2), where
Zi = g(Z̃i), i = 1, 2 alone will determine the distributions of Xi, 1 ≤ i ≤ 3 up to changes in
locations under the binary operation *.

3 Explicit determination of the distributions of individual com-

ponents

Let Xi, 1 ≤ i ≤ 3 be independent random variables and define

Z̃1 = X1 ∗X3 and Z̃2 = X2 ∗X3 (3. 1)

as defined earlier where * is a binary operation which is continuous, reducible and associative.
Such an operation gives rise to a function g(.) which is continuous and strictly increasing such
that

x ∗ y = g−1(g(x) + g(y)).

Let Zi = g(Z̃i), i = 1, 2. Denote the characteristic function of the bivariate random vector
(Z1, Z2) by φ(t1, t2) and let φX(t) denote the characteristic function of a random variable X.
Then

φ(t1, t2) = E[exp(it1Z1 + it2Z2)] (3. 2)

= E[exp(it1g(X1 ∗X3) + it2g(X2 ∗X3))]

= E[exp(it1(g(X1) + g(X3)) + it2(g(X2) + g(X3)))]

= φg(X1)(t1)φg(X2)(t2)φg(X3)(t1 + t2)

by the independence of the random variables Xi, 1 ≤ i ≤ 3. Suppose the characteristic functions
of g(Xi), 1 ≤ i ≤ 3 are nonvanishing everywhere. Then φ(t1, t2) is nonvanishing for −∞ <

t1, t2 <∞.
Let t2 = 0 in (3.2). Then it follows that

φ(t1, 0) = φg(X1)(t1)φg(X3)(t1),−∞ < t1 <∞. (3. 3)
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Let t1 = 0 in (3.2). Then it follows that

φ(0, t2) = φg(X2)(t2)φg(X3)(t2),−∞ < t2 <∞. (3. 4)

Equations (3.2)-(3.4) show that

φg(X1)(t1)φg(X2)(t2)φg(X3)(t1 + t2)φ(t1, 0)φ(0, t2) (3. 5)

= φ(t1, t2)φg(X3)(t1)φg(X1)(t1)φg(X3)(t2)φg(X2)(t2)

and hence
φg(X3)(t1 + t2) =

φ(t1, t2)
φ(t1, 0)φ(0, t2)

φg(X3)(t1)φg(X3)(t2) (3. 6)

for −∞ < t1, t2 < ∞. Let γi(t) = log φg(Xi)(t) be the continuous branch of the logarithm of
φg(Xi)(.) with γi(0) = 0. Then it follows that

γ3(t′1 + t2) = log{ φ(t′1, t2)
φ(t′1, 0)φ(0, t2)

}+ γ3(t′1) + γ3(t2) (3. 7)

for −∞ < t1, t2 <∞. Integrating on both sides of the equation (3.7)with respect to t′1 over the
interval [0, t1], we have∫ t1

0
γ3(t′1 + t2)dt′1 =

∫ t1

0
log{ φ(t′1, t2)

φ(t′1, 0)φ(0, t2)
}dt′1 + (3. 8)

+
∫ t1

0
γ3(t′1)dt′1 +

∫ t1

0
γ3(t2)dt′1.

Let t = ′t1 + t2 in the integral on the left side of the above equation. Then we have∫ t1+t2

t2
γ3(t)dt =

∫ t1

0
log{ φ(t′1, t2)

φ(t′1, 0)φ(0, t2)
}dt′1 + (3. 9)

+
∫ t1

0
γ3(t)dt+ t1γ3(t2).

Rewriting (3.7) in the form

γ3(t1 + t′2) = log{ φ(t1, t′2)
φ(t1, 0)φ(0, t′2)

}+ γ3(t1) + γ3(t′2) (3. 10)

and integrating on both sides of this equation with respect to t′2 over the interval [0, t2], it can
be shown that ∫ t1+t2

t1
γ3(t)dt =

∫ t2

0
log{ φ(t1, t′2)

φ(t1, 0)φ(0, t′2)
}dt′2 + (3. 11)

+
∫ t2

0
γ3(t)dt+ t2γ3(t1).

Equating (3.9) and (3.11), we have

t1γ3(t2)− t2γ3(t1) =
∫ t2

0
log{ φ(t1, t′2)

φ(t1, 0)φ(0, t′2)
}dt′2 (3. 12)

−
∫ t1

0
log{ φ(t′1, t2)

φ(t′1, 0)φ(0, t2)
}dt′1
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for −∞ < t1, t2 <∞. Dividing both sides of the equation (3.12) by t1t2, we get that

γ3(t2)
t2
− γ3(t1)

t1
=

1
t1t2

[
∫ t2

0
log{ φ(t1, t′2)

φ(t1, 0)φ(0, t′2)
}dt′2 (3. 13)

−
∫ t1

0
log{ φ(t′1, t2)

φ(t′1, 0)φ(0, t2)
}dt′1]

for −∞ < t1, t2 <∞ with t1t2 6= 0. Let t2 = t and t1 → 0.
Assume that E(X3) = m is finite and that the interchange of the limit and the integral is

permitted in the following computations. Then we have

lim
t→0

γ3(t)
t

= im (3. 14)

and, from (3.13),

γ3(t)
t

= im+
1
t

lim
t1→0

[
∫ t

0

1
t1

log{ φ(t1, v)
φ(t1, 0)φ(0, v)

}dv (3. 15)

− 1
t1

∫ t1

0
log{ φ(u, t)

φ(u, 0)φ(0, t)
}du]

= im+
1
t

lim
t1→0

[
∫ t

0

1
t1

log{ φ(t1, v)
φ(t1, 0)φ(0, v)

}dv]

− log
φ(0, t)

φ(0, 0)φ(0, t)

= im+
1
t

lim
t1→0

[
∫ t

0

1
t1

log{ φ(t1, v)
φ(t1, 0)φ(0, v)

}dv]

= im+
1
t

∫ t

0

∂

∂u
[log[

φ(u, v)
φ(u, 0)φ(0, v)

]|u=0dv.

Hence
γ3(t) = imt+

∫ t

0

∂

∂u
[log[

φ(u, v)
φ(u, 0)φ(0, v)

]|u=0dv. (3. 16)

Using this formula for γ3(t), one can compute φg(X3)(t) and hence φg(X1)(t) and φg(X2)(t) by
using the relations

φg(X1)(t) =
φ(t, 0)
φg(X3)(t)

, φg(X2)(t) =
φ(0, t)
φg(X3)(t)

,−∞ < t <∞. (3. 17)

Equations (3.16) and (3.17) give explicit formulae for computing the characteristic functions of
g(Xi), 1 ≤ i ≤ 3 given the characteristic function of (g(X1 ∗X3), g(X2 ∗X3)). Since the function
g is continuous and strictly increasing , one can obtain the distributions of Xi, 1 ≤ i ≤ 3.

4 Almost lack of memory property

Let X be a nonnegative random variable with distribution function F (x). Then X is said to
have the lack of memory property if

P (X > s+ t|X > s) = P (X > t) (4. 1)
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for all s, t > 0. If P (X > s) > 0 for all s > 0, then it follows that

F̄ (s+ t) = F̄ (s)F̄ (t) (4. 2)

for all s > 0 and t > 0 where F̄ (x) = 1 − F (x). It is well known that the only continuous
solution of the equation (4.2) is

F̄ (s) = exp{−λs}, s > 0 (4. 3)

for some λ > 0. This result was generalized by Muliere and Scarsini (1987) in the following
manner. Let * be a binary operation as discussed above with an identity ẽ. Suppose it is
continuous, reducible and associative. Further suppose that X is a random variable with the
distribution function F having support (ẽ, g−1(∞)) and satisfying the relation

P (X > s ∗ t|X > s) = P (X > t) (4. 4)

for all s > ẽ and t > ẽ. They proved that the only continuous solution of the equation (4.4) is

F̄ (s) = exp{αg(s)} (4. 5)

for some α < 0 and for ẽ = g−1(0) < s < g−1(∞). The function g(.) is the function correspond-
ing to the binary operation * as discussed in the earlier sections.
Remarks: Suppose the equation (4.4) holds. By choosing the binary operation appropriately,
we can get different classes of distributions (cf. Muliere and Scarsini (1987), Muliere (1984)).
For instance (i) if x∗ y = x+ y, then we obtain the characterization of exponential distribution
through the lack of memory property; (ii) if x ∗ y = xy, then we obtain a characterization of
the Pareto distribution; and (iii) if x ∗ y = (xα + yα)1/α, then we obtain a characterization of
the Weibull distribution.

A nonnegative random variable X is said to have the almost lack of memory property if the
equation (4.1) holds for a sequence sn > 0, n ≥ 1 and for all t ≥ 0. It is known that the equation
(4.1) holds for a sequence sn > 0, n ≥ 1 and for all t ≥ 0 if and only if there exists d > 0 such
that sn = nd except in case when P (X ≥ d) = 0 or P (X ≥ d) = 1. (cf. Ramachandran and
Lau (1991); Prakasa Rao (1997)).

Suppose that * is a binary operation with an identity ẽ ∈ R̄ as discussed above and further
suppose that the equation (4.4) holds for a random variable X, with a continuous distribution
function F with support (ẽ, g−1(∞)), for a sequence g−1(∞) > sn > ẽ, n ≥ 1 for all g−1(∞) >
t > ẽ. Here g(.) is the continuous strictly increasing function corresponding to the binary
associative operation *. Equation (4.4) implies that

F̄ (sn ∗ t) = F̄ (sn)F̄ (t), n ≥ 1 (4. 6)

for all t ≥ 0. Let g(sn) = un, g(t) = v and F̄ og−1 = H.

A random variable X satisfying the equation (4.6) is said to have the almost lack of memory
property under the binary operation *.
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We now characterize the class of all such distributions. The equation (4.6) shows that

F̄ (g−1(g(sn) + g(t)) = F̄ (sn)F̄ (t), t ≥ 0, n ≥ 1 (4. 7)

and hence
H(sn + t) = H(sn)H(t), t ≥ 0, n ≥ 1. (4. 8)

Note that H(.) is a continuous function with g(ẽ) = 0 and hence H(0) = 1. Applying results
from Marsaglia and Tubilla (1975) (cf. Ramachandran and Lau (1991); Prakasa Rao (1997)),
it follows that there exists a constant d > 0 such that sn = nd, n ≥ 1 and further more

H(s) = p(s)e−αs, s > 0 (4. 9)

for some α ∈ R and the function p(s) has period d. Therefore

F̄ og−1(s) = p(s)e−αs, s > 0 (4. 10)

or equivalently
F̄ (s) = p(g(s))e−αg(s), ẽ = g−1(0) < s < g−1(∞) (4. 11)

where g(.) is a continuous strictly increasing function. It easy to see that the constant α > 0
from the fact that the function F (.) is a distribution function of the random variable X. It is
easy to check that if the distribution function of a nonnegative random variable is of the above
type, then it has the almost lack of memory property with respect to the binary operation
corresponding to the function g(.).

We have the following result.

Theorem 4.1: A nonnegative random variable X with a continuous distribution function has
the almost lack of memory property under a binary operation * as described above if and only
if its distribution function F is of the form

F̄ (s) = p(g(s))e−αg(s), ẽ = g−1(0) < s < g−1(∞) (4. 12)

where α < 0, g(.) is the continuous strictly increasing function corresponding to the binary
operation * and p(.) is a periodic function with period d for some constant d > 0.
Remarks: It is easy to see that

p(g(s) + d) = p(g(s))

which implies that
p(g(s) + g(g−1(d)) = p(g(s))

which in turn shows that
p(g(s ∗ g−1(d))) = p(g(s))

for all ẽ = g−1(0) < s < g−1(∞). Let us denote p(g(s)) by (pog)(s). Hence

(pog)(s ∗ ρ) = (pog)(s)

for all ẽ = g−1(0) < s < g−1(∞) for some constant ρ > ẽ. In other words the function pog(.) is
periodic under the operation * with period ρ.
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5 Distributions with periodic failure rate under the binary

operation *

Consider a binary operation * with an identity ẽ as described earlier. Let g(.) be the corre-
sponding continuous strictly increasing function such that

x ∗ y = g−1(g(x) + g(y)).

Let X be a random variable with a continuous distribution function of the form

F̄ (s) = p(g(s))e−αg(s), ẽ = g−1(0) < s < g−1(∞) (5. 1)

where α > 0 and pog(.) is periodic under the operation * with period ρ > ẽ. It is obvious that
the function p(g(s)) is nonnegative for ẽ = g−1(0) < s < g−1(∞) and p(g(ẽ)) = p(0) = 1.
Suppose the function p(g(.)) is differentiable with respect to s. Then the probability density
function of X is given by

f(s) = e−αg(s)g′(s)(αp(g(s))− p′(g(s)), ẽ = g−1(0) < s < g−1(∞) (5. 2)

= 0 otherwise.

It follows ,from the properties of a probability density function and the fact that g(.) is strictly
increasing, that

αp(g(s))− p′(g(s)) ≥ 0 a.e. on ẽ = g−1(0) < s < g−1(∞). (5. 3)

Let
λ(s) =

f(s)
F̄ (s)

=
g′(s)(αp(g(s))− p′(g(s)))

p(g(s))
(5. 4)

for s > ẽ = g−1(0) with F (s) < 1. It is easy to see that

(pog)(s ∗ ρ) = (pog)(s), and (p′og)(s ∗ ρ)g′(s ∗ ρ) = (p′og)(s)g′(s), (5. 5)

for ẽ = g−1(0) < s < g−1(∞) from the periodicity of the function pog under the binary
operation * with period ρ. Further more

g(s ∗ ρ) = g(s) + g(ρ), ẽ = g−1(0) < s < g−1(∞) (5. 6)

and hence
g′(s ∗ ρ) = g′(s), ẽ = g−1(0) < s < g−1(∞). (5. 7)

Therefore
λ(s ∗ ρ) = λ(s), ẽ = g−1(0) < s < g−1(∞) (5. 8)

with F (s ∗ ρ) < 1. This shows that the distribution function F has periodic failure rate with
period ρ under the binary operation *.
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6 Distributions with periodic failure rate and ”almost lack of

memory property” under the binary operation *

Suppose X is a random variable with periodic failure rate λ(.) with period ρ under a binary
operation *. Further suppose that the support of X is (ẽ, g−1(∞)) where g(.) is the continuous
strictly increasing function corresponding to *. Let F and f denote the probability distribution
function and the probability density function of the random variable X. Then

λ(s) = λ(s ∗ ρ), s ∈ (ẽ, g−1(∞)), F (s ∗ ρ) < 1. (6. 1)

and hence
f(s)
F̄ (s)

=
f(s ∗ ρ)
F̄ (s ∗ ρ)

, s ∈ (ẽ, g−1(∞)), F (s ∗ ρ) < 1. (6. 2)

Integrating both sides of (6.2) with respect to s on the interval (ẽ, u), we have∫ u

ẽ
λ(s)ds =

∫ u

ẽ
λ(s ∗ ρ)ds, ẽ ≤ u < g−1(∞) (6. 3)

or equivalently

− log F̄ (u) + log F̄ (ẽ) = − log F̄ (u ∗ ρ) + log F̄ (ẽ ∗ ρ), ẽ ≤ u < g−1(∞). (6. 4)

Therefore
F̄ (ẽ)
F̄ (u)

=
F̄ (ρ)

F̄ (u ∗ ρ)
, ẽ ≤ u < g−1(∞). (6. 5)

This implies that
F̄ (u ∗ ρ)F̄ (ẽ) = F̄ (u)F̄ (ρ), ẽ ≤ u < g−1(∞). (6. 6)

Note that F̄ (ẽ) = 1 and hence

F̄ (u ∗ ρ) = F̄ (u)F̄ (ρ), ẽ ≤ u < g−1(∞). (6. 7)

Note that g(u ∗ ρ) = g(u) + g(ρ) and hence

F̄ (g−1(g(u) + g(ρ))) = F̄ (u)F̄ (ρ), ẽ ≤ u < g−1(∞). (6. 8)

Let g(u) = v, g(ρ) = d and F̄ og−1 = H. Then the equation (6.8) reduces to

H(v + d) = H(v)H(d), 0 ≤ v <∞. (6. 9)

Repeated application of the relation (6.9) shows that

H(v + nd) = H(nd)H(v), 0 ≤ v <∞, n ≥ 1. (6. 10)

This in turn shows that

F̄ (u ∗ nρ) = F̄ (u)F̄ (nρ), ẽ ≤ u < g−1(∞), n ≥ 1 (6. 11)
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where ρ = g−1(d) which proves that the the random variable X has the almost lack of memory
property under the binary operation *. Further more, it follows from the Lemma of Marsaglia
and Tubilla (1975) (cf. Lemma 22.2.1, Prakasa Rao (1997)) that

H(v) = p(v)e−αv, v ≥ 0 (6. 12)

for some α > 0 and p(.) a periodic function with period d > 0. Note that p(0) = 1. Hence

F̄ (s) = p(g(s))e−αg(s), ẽ ≤ s < g−1(∞) (6. 13)

where α > 0 and p(.) is a periodic function with period d > 0. We have seen above that if
a random variable X has a periodic failure rate under a binary operation *, then it has the
almost lack of memory property under the same binary operation *.

Suppose that a random variable X has the almost lack of memory property under a binary
operation *. Then

P (X > s ∗ nρ|X > nρ) = P (X > nρ), ẽ ≤ s < g−1(∞), n ≥ 1 (6. 14)

and hence
F̄ (s ∗ nρ) = F̄ (s)F̄ (nρ), ẽ ≤ s < g−1(∞), n ≥ 1. (6. 15)

Let H(s) = F̄ og−1. It is easy to see that

H(v + nd) = H(nd)H(v), 0 ≤ v <∞, n ≥ 1. (6. 16)

Since
λ(s) =

f(s)
F̄ (s)

, ẽ ≤ s < g−1(∞) (6. 17)

we have
F̄ (ẽ)− F̄ (s) = exp{−

∫ s

ẽ
λ(t)dt}. (6. 18)

Let s = g−1(u). Then ẽ = g−1(0) and we have

H(u) = exp{−
∫ g−1(u)

ẽ
λ(t)dt}. (6. 19)

Combining the relations (6.16) and (6.19), we get that∫ g−1(v)

ẽ
λ(t)dt+

∫ g−1(nd)

ẽ
λ(t)dt =

∫ g−1(v+nd)

ẽ
λ(t)dt, v ≥ 0, n ≥ 1. (6. 20)

Therefore ∫ g−1(v)

ẽ
λ(t)dt =

∫ g−1(v+nd)

g−1(nd)
λ(t)dt, v ≥ 0, n ≥ 1. (6. 21)

Applying the transformation u = g(t), we have∫ v

0
λ(g−1(u))γ(u)du =

∫ v+nd

nd)
λ(g−1(u))γ(u)dt, v ≥ 0, n ≥ 1 (6. 22)

=
∫ v

0
λ(g−1(u+ nd))γ(u)du
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where γ(u) = 1
g′(g−1(u))

. Suppose f is continuous. Then (λog−1)(.) is continuous and it follows
that

λ(g−1(v)) = λ(g−1(v + nd)), v ≥ 0, n ≥ 1. (6. 23)

Even otherwise, we can conclude that

λ(g−1(v)) = λ(g−1(v + nd)) a.e. (6. 24)

with respect to the Lebesgue measure for every n ≥ 1. Equation (6.24) proves that

λ(s) = λ(s ∗ nρ) a.e. (6. 25)

and we have the following result.

Theorem 6.1: A random variable X with a continuous probability density function has a
periodic failure rate under a binary associative, reducible operation * if and only if it has the
almost lack of memory property under that operation.

7 Representation for distributions with periodic failure rate

under a binary associative operation *

Suppose X is a random variable with periodic failure rate λ(.) with period ρ under a binary
associative operation *. Suppose the support of X is (ẽ, g−1(∞)) where g(.) is the continuous
strictly increasing function corresponding to *. Let F and f denote the probability distribution
function and the probability density function of the random variable X respectively.

It is easy to see that the random variable g(X) has the distribution function

H̃(y) = 1−H(y) = (Fog−1)(y), 0 ≤ y <∞ (7. 1)

and it has the periodic failure rate (λog−1)(y) with period d = g(ρ). For convenience, let
us denote the derivative of H̃(y) by h̃(y). Define a new random variable Y with probability
distribution function H̃Y (y) and the probability density function

h̃Y (y) =
h̃(y)
H̃(d)

, 0 ≤ y ≤ d (7. 2)

= 0 otherwise.

Note that h̃Y (.) is the probability density function of the conditional distribution of the random
variable g(X) restricted to the interval [0, d]. Let γ = 1 − H̃(d) = H(d). It follows from
the arguments given in Prakasa Rao (1997) that the density function h̃(y) of g(X) can be
represented in the form

h̃(y) = h̃Y (y − [
y

d
]d)(1− γ)γ[ y

d
], 0 ≤ y <∞ (7. 3)
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where [x] denotes the greatest integer less than or equal to x and γ = H(d). Further more the
distrbution function of g(X) is given by

H̃(y) = 1− γ[ y
d

] + (1− γ)γ[ y
d

]H̃Y (y − [
y

d
]d), 0 ≤ y <∞. (7. 4)

Equations (7.3) and (7.4) give representations for the density and distribution functions of the
random variable g(X) with a periodic failure rate with period d and γ = H(d). Recall that
H = F̄ og−1 and d = g(ρ). One can obtain a representation of the probability distrbution
function F and the probability density function f from the above equations observing that g(.)
is continuous and strictly increasing.

Let Y be a random variable as defined above and Z be a random variable independent of
Y with

P (Z = k) = (1− γ)γk, k ≥ 0. (7. 5)

It is easy to check that the the random variable g(X) can be represented in the form Y +dZ. For
details, see Prakasa Rao (1997). In particular X can be represented in the form g−1(Y +g(ρ)Z).

8 Distributions with strong Markov property under a binary

associative operation *

Suppose X is a random variable with an exponential distribution and Y be a nonnegative
random variable independent of X. Further suppose that P (X > Y ) > 0. Then it is known that

P (X > Y + x|X > Y ) = P (X > x), x ≥ 0. (8. 1)

This property is known as the strong lack of memory property or the strong Markov property
of the exponential distribution (cf. Ramachandran and Lau (1991); Prakasa Rao (1997)). It
is obvious that this property is stronger than the lack of memory property. Let G be the
distribution function of Y. Then it follows that

cF̄ (x) =
∫ ∞

0
F̄ (x+ y)dG(y), x ≥ 0 (8. 2)

where c = P (X > Y ).

Ramachandran and Lau (1991) proved the following theorem.

Theorem 8.1: Suppose the equation (8.2) holds and further suppose that G(0) < c < 1. Let
α > 0 be defined by the relation ∫ ∞

0
e−αydG(y) = c, (8. 3)

and let, for d > o,A(d) = {nd, n ≥ 1}. Then
(i) F is an exponential distribution with parameter α if the support of G is not contained

in the set A(d) for any d > 0, and
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(ii) F (x) = 1−p(x)e−αx, x ≥ 0 where p(.) is right continuous and has period d if the support
of G is contained in A(d) for some d > 0 which we take it to be the largest such d.

Suppose X is a random variable with the distribution function F and the support of X is
(ẽ, g−1(∞)) where ẽ is the identity corresponding to a binary operation * which is continuous,
reducible and associative with an identity and g(.) is the continuous strictly increasing function
corresponding to the binary operation *. Let Y be a nonegative random variable independent
of X. Further suppose that P (X > Y ) > 0 and P (X > s) > 0 for all s > ẽ and

P (X > Y ∗ s|X > Y ) = P (X > s), ẽ = g−1(0) < s < g−1(∞). (8. 4)

Let K be the distribution function of Y. Then it follows that

cF̄ (s) =
∫ g−1(∞)

ẽ
F̄ (s ∗ y)dK(y), ẽ = g−1(0) < s < g−1(∞) (8. 5)

where c = P (X > Y ). Let H = F̄ og−1. Then it follows that

cH(x) =
∫ ∞

0
H(x+ u) d(Kog−1)(u), x ≥ 0 (8. 6)

Let G(u) = (Kog−1)(u). Suppose that G(0) < c < 1. Let α > 0 be defined by the relation∫ ∞
0

e−αydG(y) = c (8. 7)

and define the set A(d) as given above. Applying the above theorem, we obtain that (i)
H(x) = e−αx with parameter α > 0 if the support of G is not contained in A(d) for any d > 0;
and

(ii)H(x) = p(x)e−αx for all x ≥ 0 where p(.) is right continuous and has period d if the
support of G is contained in A(d) for some d > 0 which we take it to be the largest such d.

This implies that
(i) F̄ (s) = e−αg(s) for all s ∈ (ẽ, g−1(∞)) with parameter α > 0 if the support of the random

variable g(Y ) is not contained in A(d) for any d > 0; and
(ii)F̄ (s) = p(g(s))e−αg(s) for all s ∈ (ẽ, g−1(∞)) where p(.) is right continuous and has

period d if the support of g(Y ) is contained in A(d) for some d > 0 which we take it to be the
largest such d.

This result gives a characterization of the class of all distributions satisfying the equation
(8.4) subject to the conditions stated above.
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