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Abstract

The purpose of this paper is to present a large number of highly A-efficient incomplete
block designs for making comparisons among a set of test treatments and a control treat-
ment. These designs are BTIB designs. A simple method of construction of BTIB designs,
based on BIB designs is proposed. The advantage of this method is that one can use the
vast literature on BIB designs to obtain a large number of highly A-efficient BTIB designs.
In several cases, for a given number of test treatments and given block size, these effi-
cient designs require far fewer number of blocks than the corresponding A-optimal designs
available in the literature.

Keywords: Control-test comparisons; A-efficient designs; BTIB designs.

1. INTRODUCTION

This communication deals with the problem of obtaining ‘good’ designs for comparing sev-
eral treatments, called hereafter test treatments with a standard treatment, called the control.
Specifically, it is desired to find efficient block designs for comparing p test treatments with a
control using b blocks, each of size k ≤ p. Under the usual additive and homoscedastic linear
model, the aim is to find block designs that allow the unbiased estimation of the elementary
contrasts among the p test treatments and the control with maximum efficiency.

Among the various optimality criteria that are available in the literature, the most appealing
one in the present context is the A-optimality criterion for which the sum of the variances of the
best linear unbiased estimators for the p elementary contrasts among each of the test treatments
and the control is a minimum. As such, we use the A-criterion as the basis of our choice for
a good design for the problem under consideration. Throughout, we shall denote the class
of all connected designs (i.e., designs permitting the estimability of all elementary treatment
contrasts among the test treatments and the control) having p test treatments, b blocks and
block size k by D(p, b, k). The control treatment will be denoted by 0 and the test treatments
will be labelled 1, 2, . . . , p.
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The issue of obtaining optimal designs for the above stated problem has received a great
deal of attention. For excellent reviews on the subject up to different stages, see Hedayat,
Jacroux and Majumdar (1988) and Majumdar (1996). A useful class of designs for planning
test treatments-control experiments is the class of balanced treatment incomplete block (BTIB)
designs, introduced by Bechhofer and Tamhane (1981). According to Bechhofer and Tamhane
(1981), a design d ∈ D(p, b, k) is called a BTIB design if

(a) d is incomplete, i.e., no block contains all the p+ 1 treatments,
(b) λ0i = λc, 1 ≤ i ≤ p and λi1i2 = λ, 1 ≤ i1 6= i2 ≤ p, where λuu′ =

∑b
j=1 nujnu′j , 0 ≤

u 6= u′ ≤ p and nxy denotes the number of times the xth treatment appears in the yth block,
0 ≤ x ≤ p, 1 ≤ y ≤ b.

The parameters of a BTIB design are denoted by p, b, k, r, rc, λ, λc. Here r is the replication
number of each of the test treatments and rc, that of the control treatment. A perusal of
the existing literature shows that an A-optimal design in D(p, b, k) belongs to a subclass of
BTIB designs, called BTIB (p, b, k; t, s) designs and it is for this reason that BTIB(p, b, k; t, s)
designs have been studied extensively in the literature. A design d ∈ D(p, b, k) is called a
BTIB(p, b, k; t, s) design if

(i) d is a BTIB design which is binary in test treatments, and
(ii) there are s blocks in d each of which contain exactly t+ 1 replications of the control, while
each of the remaining b− s blocks contain exactly t replications of the control.

The construction of BTIB(p, b, k; t, s) designs has been addressed among others, by Hedayat
and Majumdar (1984), Stufken (1987), Cheng, Majumdar, Stufken and Türe (1988) and Parsad,
Gupta and Prasad (1995). A BTIB(p, b, k; t, s) design may not exist for all values of the
parameters. Also, highlyA-efficient BTIB designs not belonging to the class of BTIB(p, b, k; t, s)
designs might exist. These considerations motivate one to find highly efficient BTIB designs
not necessarily belonging to the class of BTIB(p, b, k; t, s) designs. In Section 2 of this paper, we
give a simple method of construction of BTIB designs, using balanced incomplete block (BIB)
designs. The advantage of this method is that one can use the extremely rich literature on BIB
designs to construct BTIB designs. Using this method, a large number of highly A-efficient
BTIB designs are obtained. These designs in most cases require far fewer number of blocks
than an available A-optimal design for the same value of p and k. In view of this, the proposed
designs are likely to be useful in practice as the A-efficiency of these designs is close to unity
(the A-efficiency of an A-optimal design is unity) and at the same time there is considerable
saving in terms of experimental units.

From practical considerations, it is useful to have a catalog of efficient designs. In Section 3,
we present a comprehensive catalog of highly A-efficient BTIB designs in the practically useful
ranges 2 ≤ k ≤ 10, r ≤ 10, k ≤ p ≤ b ≤ 50.

2. CONSTRUCTION OF BTIB DESIGNS

Consider a BIB design d0 with usual parameters v∗, b∗, r∗, k∗, λ∗. Replace i (0 ≤ i ≤ v∗−2)

2



of the treatments in d0 by the control treatment and call the resultant design BIBi(v∗, b∗, k∗).
Finally, augment each block of the design BIBi(v∗, b∗, k∗) by t ≥ 0 replications of the control,
such that (i, t) 6= (0, 0) and call this design d. Then, it is easy to see that d is a BTIB design with
parameters p = v∗ − i, b = b∗, k = k∗ + t, r = r∗, rc = ir∗ + b∗t, λ = λ∗, λc = iλ∗ + r∗t, 0 ≤ i ≤
v∗−2, t ≥ 0. For convenience, in the catalog of designs that follows later, the design d is denoted
by BIBi(v∗, b∗, k∗; t). Note that a BIB0(v∗, b∗, k∗; t) design is a BTIB(v∗, b∗, k∗ + t; t, 0) design
(of the R-type) while a BIB1(v∗, b∗, k∗; t) is a BTIB(v∗− 1, b∗, k∗+ t; t, s(= b∗k∗/v∗))design (of
the S-type). For a definition of R- and S-type BTIB designs, see Hedayat and Majumdar (1984).
It may be remarked here that systematic methods of construction of A-optimal (or, highly A-
efficient) S-type BTIB designs are largely not available. The present method of construction
gives a fairly large class of S-type BTIB designs.

A few designs in the catalog are obtained through partially balanced incomplete block
(PBIB) designs. It is therefore thought necessary to describe this method of construction of
BTIB designs as well. Consider two PBIB designs d1 and d2, with two associate classes such
that both these designs are based on the same association scheme. Suppose the parameters of
d1 and d2 respectively are v, bi, ri, ki, λ1i, λ2i, i = 1, 2. Assume without loss of generality that
k2 > k1. If d1 and d2 are such that λ11 + λ12 = λ21 + λ22 = λ, then the design obtained by
taking the union of the blocks of d1 and d2, and adding the control treatment k2 − k1 times
to the blocks of size k1, is a BTIB design with p = v, b = b1 + b2, k = k2, r = r1 + r2,

rc = b1(k2 − k1), λ, λc = r1(k2 − k1). A result similar to the above was obtained earlier by
Parsad, Gupta and Prasad (1995); however they restrict attention only to those PBIB designs
for which k2 = k1 + 1.

3. A CATALOG OF A-EFFICIENT BTIB DESIGNS

The A-efficiency of a design for making test treatments-control comparisons is computed
following the procedure described by Stufken (1988). As before, we denote by D(p, b, k) the
class of all connected designs with p test treatments, one control, b blocks and block size
k. Let (τ̂d0 − τ̂di), i = 1, . . . , p, be the best linear unbiased estimator of (τ0 − τi) under a
design d ∈ D(p, b, k) where τ0 and τi respectively denote the effect of the control and ith test
treatment. A design is called A-optimal if it minimizes Σp

i=1V ar(τ̂d0 − τ̂di) as d varies over
D(p, b, k). Let a = (p−1)2, c = bpk(k−1), q = p(k−1)+k,Λ = {(x, z), x = 0, . . . , [k/2]−1; z =
0, 1, . . . , b with z > 0 when x = 0}. Here [·] is the greatest integer function. Furthermore,
let g(x, z) = a/{c − q(bx + z) + (bx2 + 2xz + z)} + 1/{k(bx + z) − (bx2 + 2xz + z)} and
g(t, s) = min

(x,z)∈Λ
g(x, z). A lower bound to the A-efficiency of a BTIB design d with parameters

p, b, k, r, rc, λ, λc is then given by
e = g(t, s)/Bd

where
Bd =

(λc + λ)
λc(λc + pλ)

.
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If for a design, e = 1, then the design is A-optimal. Using the expression given above, we have
computed lower bounds to the A-efficiency of BTIB designs constructed in this paper.

In Table 1, we present a catalog of highly A-efficient BTIB designs (e ≥ 0.950) in the
practically useful ranges 2 ≤ k ≤ 10, r ≤ 10, k ≤ p ≤ b ≤ 50. Among designs with the same
values of p and k, there may exist several designs with e ≥ 0.950. In Table 1, among such
designs with same values of p and k we do not list designs that satisfy both the following
conditions: (i) small value of e and (ii) large number of blocks. That is, if for the same values
of p and k, there are two designs, say d1 and d2 having b1 and b2 blocks and A-efficiencies e1

and e2 respectively, such that b1 ≥ b2, then d1 is not included in the catalog if e1 ≤ e2.
Furthermore, for some combinations of the parameters p and k, no A-optimal designs have

been reported by Hedayat and Majumdar (1984). Nearly A-optimal designs (that is, designs
with A-efficiency close to unity) for such situations are also reported in Table 1. For instance,
no A-optimal design is reported in Hedayat and Majumdar (1984) for p = 10, k = 3. For these
values of p and k, we report a design (No. 10 in Table 1) with A-efficiency at least 0.986. (Recall
that e is a lower bound to the A-efficiency.) It is also noted that two A-optimal designs, obtained
through trial and error by Hedayat and Majumdar (1984), can also be obtained by following
the method described in this paper. The parameters of these designs are p = 14, b = 35, k = 7
and p = 15, b = 16, k = 7; these are exhibited as Design S6 and S7 respectively in Hedayat
and Majumdar (1984) and can in fact, be obtained as BIB1(15, 35, 6; 1) and BIB1(16, 16, 6; 1)
respectively.

Under the ‘Reference’ column in Table 1, S, SR, R, T and LS refer to PBIB designs in
Clatworthy (1973). In some cases, the trivial disconnected PBIB design with m blocks each of
size k have been used. This fact is exhibited as (m, k). Among the 10 designs (Nos. 5, 6, 10,
17, 19, 21, 25, 26, 41, 45) in Table 1 constructed using PBIB designs, design numbers 6 and
26 have not been reported earlier. The rest of the designs can also be found in Gupta, Pandey
and Parsad (1998). An A-optimal design with p = 9 and k = 3, has been obtained earlier by
Hedayat and Majumdar (1984) and requires only 24 blocks as compared to 36 blocks of design
number 9 in Table 1.

The catalog of designs presented in Table 1 contains 155 designs in the ranges of parameters
specified earlier. Out of these, 45 are R-type BTIB designs and 10 are obtained using PBIB
designs. The remaining 100 designs are apparently new.

The A-optimal designs given in Hedayat and Majumdar (1984) often require a large number
of blocks. For the same values of p and k, we are able to give designs in smaller number of
blocks, and with high A-efficiencies. For example, Hedayat and Majumdar (1984) reported
an A-optimal design with p = 6 and k = 3 in 37 blocks whereas we have a design for same
(p, k) in 11 blocks, the A-efficiency of this design being at least 0.997. Thus, in this case
there is considerable saving in terms of the number of experimental units with no appreciable
loss in efficiency. For several values of p and k, we have designs with fewer blocks than the
corresponding A-optimal designs reported by Hedayat and Majumdar (1984). These designs
are listed in Table 2; in this table, b0 denotes the number of blocks required for an A-optimal
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design.

Table 1

Catalog of A-efficient BTIB designs with 2 ≤ k ≤ 10, r ≤ 10, k ≤ p ≤ b ≤ 50

No. p b k r rc λ λc e Reference

1 2 3 2 2 2 1 1 1 BIB1(3, 3, 2; 0)
2 3 3 3 2 3 1 2 1 BIB0(3, 3, 2; 1)
3 4 6 3 3 6 1 3 1 BIB0(4, 6, 2; 1)
4 5 10 3 4 10 1 4 1 BIB0(5, 10, 2; 1)
5 6 11 3 4 9 1 3 0.997 SR6, (2,3)
6 6 26 3 9 24 2 8 0.999 R24, (2,3)
7 7 21 3 6 21 1 6 0.985 BIB0(7, 21, 2; 1)
8 8 28 3 7 28 1 7 0.977 BIB0(8, 28, 2; 1)
9 9 36 3 8 36 1 8 0.969 BIB0(9, 36, 2; 1)

10 10 25 3 6 15 1 3 0.986 T2, T9
11 12 35 3 7 21 1 3 0.953 BIB3(15, 35, 3; 0)
12 4 4 4 3 4 2 3 1 BIB0(4, 4, 3; 1)
13 5 7 4 4 8 2 4 0.953 BIB2(7, 7, 4; 0)
14 5 10 4 6 10 3 6 1 BIB0(5, 10, 3; 1)
15 6 10 4 5 10 2 5 1 BIB0(6, 10, 3; 1)
16 7 7 4 3 7 1 3 1 BIB0(7, 7, 3; 1)
17 8 26 4 10 24 3 9 0.993 R58, (2,4)
18 9 12 4 4 12 1 4 1 BIB0(9, 12, 3; 1)
19 10 25 4 8 20 2 6 0.986 T12, T28
20 10 30 4 9 30 2 9 0.999 BIB0(10, 30, 3; 1)
21 12 19 4 5 16 1 4 0.998 SR26, (3,4)
22 13 20 4 5 15 1 3 0.954 BIB3(16, 20, 4; 0)
23 13 26 4 6 26 1 6 0.995 BIB0(13, 26, 3; 1)
24 15 35 4 7 35 1 7 0.991 BIB0(15, 35, 3; 1)
25 16 28 4 6 16 1 3 0.969 LS18, LS29
26 16 36 4 7 32 1 6 0.998 R86, (4,4)
27 20 50 4 8 40 1 5 0.966 BIB5(25, 50, 4; 0)
28 21 50 4 8 32 1 4 0.968 BIB4(25, 50, 4; 0)
29 5 5 5 4 5 3 4 0.970 BIB0(5, 5, 4; 1)
30 5 15 5 10 25 6 16 0.995 BIB1(6, 15, 4; 1)
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Table 1 (Contd.)

No. p b k r rc λ λc e Reference

31 6 7 5 4 11 2 6 0.992 BIB1(7, 7, 4; 1)
32 7 7 5 4 7 2 4 0.996 BIB0(7, 7, 4; 1)
33 8 11 5 5 15 2 6 0.967 BIB3(11, 11, 5; 0)
34 8 14 5 7 14 3 7 0.999 BIB0(8, 14, 4; 1)
35 9 15 5 6 21 2 8 0.981 BIB1(10, 15, 4; 1)
36 9 18 5 8 18 3 8 1 BIB0(9, 18, 4; 1)
37 10 15 5 6 15 2 6 1 BIB0(10, 15, 4; 1)
38 12 13 5 4 17 1 5 0.974 BIB1(13, 13, 4; 1)
39 13 13 5 4 13 1 4 1 BIB0(13, 13, 4; 1)
40 15 20 5 5 25 1 6 0.973 BIB1(16, 20, 4; 1)
41 15 33 5 9 30 2 8 0.995 R117, (3,5)
42 16 20 5 5 20 1 5 1 BIB0(16, 20, 4; 1)
43 17 21 5 5 20 1 4 0.965 BIB4(21, 21, 5; 0)
44 18 21 5 5 15 1 3 0.951 BIB3(21, 21, 5; 0)
45 20 29 5 6 25 1 5 0.999 SR46, (4,5)
46 21 30 5 6 24 1 4 0.968 BIB4(25, 30, 5; 0)
47 24 50 5 8 58 1 9 0.971 BIB1(25, 50, 4; 1)
48 25 50 5 8 50 1 8 0.994 BIB0(25, 50, 4; 1)
49 6 12 6 8 24 5 15 0.973 BIB3(9, 12, 6; 0)
50 6 15 6 10 30 6 20 0.993 BIB0(6, 15, 4; 2)
51 7 7 6 4 14 2 8 0.985 BIB0(7, 7, 4; 2)
52 8 11 6 6 18 3 9 0.982 BIB3(11, 11, 6; 0)
53 8 18 6 10 28 5 15 0.999 BIB1(9, 18, 5; 1)
54 9 11 6 5 21 2 9 0.964 BIB2(11, 11, 5; 1)
55 9 18 6 9 27 4 13 0.999 BIB1(10, 18, 5; 1)
56 10 11 6 5 16 2 7 0.999 BIB1(11, 11, 5; 1)
57 11 11 6 5 11 2 5 0.991 BIB0(11, 11, 5; 1)
58 12 16 6 6 24 2 8 0.972 BIB4(16, 16, 6; 0)
59 13 16 6 6 18 2 6 0.973 BIB3(16, 16, 6; 0)
60 19 21 6 5 31 1 7 0.964 BIB2(21, 21, 5; 1)
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Table 1 (Contd.)

No. p b k r rc λ λc e Reference

61 20 21 6 5 26 1 6 0.986 BIB1(21, 21, 5; 1)
62 21 21 6 5 21 1 5 1 BIB0(21, 21, 5; 1)
63 23 30 6 6 42 1 8 0.964 BIB2(25, 30, 5; 1)
64 24 30 6 6 36 1 7 0.985 BIB1(25, 30, 5; 1)
65 25 30 6 6 30 1 6 1 BIB0(25, 30, 5; 1)
66 26 31 6 6 30 1 5 0.975 BIB5(31, 31, 6; 0)
67 27 31 6 6 24 1 4 0.967 BIB4(31, 31, 6; 0)
68 7 12 7 8 28 5 18 0.968 BIB2(9, 12, 6; 1)
69 8 12 7 8 20 5 13 0.997 BIB1(9, 12, 6; 1)
70 9 11 7 6 23 3 12 0.977 BIB2(11, 11, 6; 1)
71 9 15 7 9 24 5 14 0.998 BIB1(10, 15, 6; 1)
72 10 11 7 6 17 3 9 0.999 BIB1(11, 11, 6; 1)
73 11 11 7 5 22 2 10 0.986 BIB0(11, 11, 5; 2)
74 12 15 7 7 21 3 9 0.983 BIB3(15, 15, 7; 0)
75 13 16 7 6 34 2 12 0.951 BIB3(16, 16, 6; 1)
76 14 16 7 6 28 2 10 0.984 BIB2(16, 16, 6; 1)
77 15 16 7 6 22 2 8 1 BIB1(16, 16, 6; 1)
78 16 16 7 6 16 2 6 0.990 BIB0(16, 16, 6; 1)
79 17 30 7 10 40 3 12 0.982 BIB4(21, 30, 7; 0)
80 18 30 7 10 30 3 9 0.967 BIB3(21, 30, 7; 0)
81 21 36 7 9 63 2 14 0.952 BIB7(28, 36, 7; 0)
82 22 36 7 9 54 2 12 0.970 BIB6(28, 36, 7; 0)
83 23 36 7 9 45 2 10 0.979 BIB5(28, 36, 7; 0)
84 24 36 7 9 36 2 8 0.975 BIB4(28, 36, 7; 0)
85 28 31 7 6 49 1 9 0.961 BIB3(31, 31, 6; 1)
86 29 31 7 6 43 1 8 0.978 BIB2(31, 31, 6; 1)
87 30 31 7 6 37 1 7 0.992 BIB1(31, 31, 6; 1)
88 31 31 7 6 31 1 6 1 BIB0(31, 31, 6; 1)
89 8 12 8 8 32 5 21 0.963 BIB1(9, 12, 6; 2)
90 9 12 8 8 24 5 16 1 BIB0(9, 12, 6; 2)

7



Table 1 (Contd.)

No. p b k r rc λ λc e Reference

91 10 11 8 6 28 3 15 0.961 BIB1(11, 11, 6; 2)
92 10 15 8 9 30 5 18 0.999 BIB0(10, 15, 6; 2)
93 11 11 8 6 22 3 12 0.999 BIB0(11, 11, 6; 2)
94 12 15 8 8 24 4 12 0.985 BIB3(15, 15, 8; 0)
95 13 15 8 7 29 3 13 0.989 BIB2(15, 15, 7; 1)
96 14 15 8 7 22 3 10 0.997 BIB1(15, 15, 7; 1)
97 15 15 8 7 15 3 7 0.961 BIB0(15, 15, 7; 1)
98 16 16 8 6 32 2 12 0.986 BIB0(16, 16, 6; 2)
99 16 24 8 9 48 3 18 0.986 BIB0(16, 24, 6; 2)

100 18 30 8 10 60 3 19 0.972 BIB3(21, 30, 7; 1)
101 19 30 8 10 50 3 16 0.992 BIB2(21, 30, 7; 1)
102 20 30 8 10 40 3 13 0.999 BIB1(21, 30, 7; 1)
103 21 30 8 10 30 3 10 0.987 BIB0(21, 30, 7; 1)
104 24 36 8 9 72 2 17 0.955 BIB4(28, 36, 7; 1)
105 25 36 8 9 63 2 15 0.976 BIB3(28, 36, 7; 1)
106 26 36 8 9 54 2 13 0.991 BIB2(28, 36, 7; 1)
107 27 36 8 9 45 2 11 0.999 BIB1(28, 36, 7; 1)
108 28 36 8 9 36 2 9 0.998 BIB0(28, 36, 7; 1)
109 9 12 9 8 36 5 24 0.962 BIB0(9, 12, 6; 3)
110 9 13 9 9 36 6 24 0.970 BIB4(13, 13, 9; 0)
111 10 13 9 9 27 6 18 0.989 BIB3(13, 13, 9; 0)
112 11 13 9 9 18 6 12 0.951 BIB2(13, 13, 9; 0)
113 12 15 9 8 39 4 20 0.965 BIB3(15, 15, 8; 1)
114 13 15 9 8 31 4 16 0.991 BIB2(15, 15, 8; 1)
115 14 15 9 8 23 4 12 0.989 BIB1(15, 15, 8; 1)
116 15 15 9 7 30 3 14 0.999 BIB0(15, 15, 7; 2)
117 16 19 9 9 27 4 12 0.977 BIB3(19, 19, 9; 0)
118 19 25 9 9 54 3 18 0.970 BIB6(25, 25, 9; 0)
119 20 25 9 9 45 3 15 0.986 BIB5(25, 25, 9; 0)
120 21 25 9 9 36 3 12 0.987 BIB4(25, 25, 9; 0)
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Table 1 (Contd.)

No. p b k r rc λ λc e Reference

121 21 30 9 10 60 3 20 0.989 BIB0(21, 30, 7; 2)
122 22 25 9 9 27 3 9 0.963 BIB3(25, 25, 9; 0)
123 27 36 9 9 81 2 20 0.954 BIB1(28, 36, 7; 2)
124 28 36 9 9 72 2 18 0.975 BIB0(28, 36, 7; 2)
125 29 37 9 9 72 2 16 0.966 BIB8(37, 37, 9; 0)
126 30 37 9 9 63 2 14 0.980 BIB7(37, 37, 9; 0)
127 31 37 9 9 54 2 12 0.987 BIB6(37, 37, 9; 0)
128 32 37 9 9 45 2 10 0.987 BIB5(37, 37, 9; 0)
129 33 37 9 9 36 2 8 0.973 BIB4(37, 37, 9; 0)
130 10 13 10 9 40 6 27 0.970 BIB3(13, 13, 9; 1)
131 11 13 10 9 31 6 21 0.996 BIB2(13, 13, 9; 1)
132 12 13 10 9 22 6 15 0.981 BIB1(13, 13, 9; 1)
133 12 16 10 10 40 6 24 0.985 BIB4(16, 16, 10; 0)
134 13 15 10 8 46 4 24 0.952 BIB2(15, 15, 8; 2)
135 13 16 10 10 30 6 18 0.986 BIB3(16, 16, 10; 0)
136 14 15 10 8 38 4 20 0.984 BIB1(15, 15, 8; 2)
137 15 15 10 8 30 4 16 1 BIB0(15, 15, 8; 2)
138 16 19 10 9 46 4 21 0.979 BIB3(19, 19, 9; 1)
139 17 19 10 9 37 4 17 0.994 BIB2(19, 19, 9; 1)
140 18 19 10 9 28 4 13 0.986 BIB1(19, 19, 9; 1)
141 21 25 10 9 61 3 21 0.968 BIB4(25, 25, 9; 1)
142 22 25 10 9 52 3 18 0.987 BIB3(25, 25, 9; 1)
143 23 25 10 9 43 3 15 0.997 BIB2(25, 25, 9; 1)
144 24 25 10 9 34 3 12 0.993 BIB1(25, 25, 9; 1)
145 25 25 10 9 25 3 9 0.965 BIB0(25, 25, 9; 1)
146 25 31 10 10 60 3 18 0.984 BIB6(31, 31, 10; 0)
147 26 31 10 10 50 3 15 0.990 BIB5(31, 31, 10; 0)
148 27 31 10 10 40 3 12 0.982 BIB4(31, 31, 10; 0)
149 28 31 10 10 30 3 9 0.951 BIB3(31, 31, 10; 0)
150 32 37 10 9 82 2 19 0.964 BIB5(37, 37, 9; 1)
151 33 37 10 9 73 2 17 0.979 BIB4(37, 37, 9; 1)
152 34 37 10 9 64 2 15 0.991 BIB3(37, 37, 9; 1)
153 35 37 10 9 55 2 13 0.998 BIB2(37, 37, 9; 1)
154 36 37 10 9 46 2 11 0.999 BIB1(37, 37, 9; 1)
155 37 37 10 9 37 2 9 0.990 BIB0(37, 37, 9; 1)

9



Table 2

Comparison of A-efficient and A-optimal designs
with respect to number of blocks

No. p b k bo e

1 6 11 3 37 0.997
2 6 26 3 37 0.999
3 5 7 4 10 0.953
4 6 7 5 18 0.992
5 7 7 5 35 0.996
6 9 15 5 18 0.981
7 12 13 5 33 0.974
8 9 11 7 48 0.977
9 9 15 7 48 0.998

10 14 16 7 35 0.984
11 8 12 8 28 0.963
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