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Abstract

We consider the nonlinear filtering model with Ornstein-Uhlenbeck process as noise and
obtain an analogue of the Bayes’ formula for the filter. For this we need to consider a
modified model, where the instaneteneous effect h(Xt) of the signal in the usual model is
replaced by ξαt = α

∫ t
(t− 1

α )∨0
h(Xu) du, (where α is a large parameter). This means that

there is a lingering effect of the signal for a time period 1
α .

Further, we also show the filter with Ornstein-Uhlenbeck converges to the usual filter in
probability.
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1 Introduction

Filtering thoery deals with the following situation: There is a process of interest, called the
signal process (Xt) that is not directly observable. However, it is assumed that h(Xt) is
observable at time t in the presence of Noise. Here it is assumed that h is a known function.
It is customary to assume that the noise is additive leading to a model

Yt =

t∫
0

h(Xu) du+Nt (1.1)

where Yt denotes the (accumulated) observation at time t and Nt denotes the noise over the
time interval [0, t].

The question of interest is to estimate the signal Xt having observed {Yu : 0 ≤ u ≤ t}
This is known as filtering the noise (to recover the signal). In the classical approach to filtering
theory, the noise (Nt) is modelled as a Brownian motion.

Kunita [5] had initiated study of filtering theory with general Gaussian noise processes.
Filtering with Ornstein-Uhlenbeck noise was studied by Mandrekar and Mandal [6]. However,
they had to require such a stringent condition on the paths of the signal process- namely that
h(Xt) is differentiable almost surely- that it rules out all the standard examples.

We will consider the filtering problem with noise (Nt) replaced by Orstein-Uhlenbeck process
Nβ
t (defined by (2.3))

Yt =

t∫
0

h(Xu) du+Nβ
t .

Since Nβ
t is differentiable (with derivative nβt given by equation (2.2)), it follows that the

observation process Yt is also differentable (with derivative yt). The above model is then
equivalent to

yt = h(Xt) + nβt .

Here, h(Xt) is the instantaneous effect of the signal and yt is the instantaneous observation.
We will consider a modified model where the instantaneous effect h(Xt) is replaced by a

lingering efffect ξαt = α
∫ t

(t− 1
α

)∨0 h(Xu) du - where α is a large parameter. Note that as α
tends to infinity, ξαt converges to h(Xt). This change allows us to get rid of the undesirable
assumptions on Xt - such as differentiability of paths - made in a similar context in Mandrekar
and Mandal [6].

Denoting the optimal filter for this model by πα,β , we first derive an analogue of the
Kallianpur-Striebel Bayes’ formula for πα,β .

It is well known that Nβ
t converges to Wt as β converges to infinity and thus the model

considered here can be thought of as a smooth approximation to the classical model of filtering
with Wiener noise (for large α, β).

Thus we investigate the behaviour of the filter πα,β as α, β tend to infinity. We show that
πα,β converges to the classical filter πt in probability. This shows that the classical filter is
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robust under perturbation of the underlying noise process (namely Ornstein-Uhlenbeck process
with a large parameter β). This result complements the (model) robustness results proved in
Bhatt et. al [1] where it was shown that the filter is robust under perturbation of the law of
the signal process as well as of the underlying function h.

For notational simplicity, we will consider the one dimensional case.

2 Bayes’ formula for filter with OU noise

Fix a probability space (Ω,F , P ). Let E be a complete, separable metric space. We will assume
that the signal process X takes values in E and that the paths of X are right continuous with
left limits (r.c.l.l.). We will assume that the observation function h is continuous. Let W be a
standard Brownian motion independent of X.

Fix α > 0, β > 0. Define processes ξα and nβ by

ξαt = α

∫ t

(t− 1
α

)∨0
h(Xu) du, (2.1)

nβt = e−βtnβ0 + β

∫ t

0
e−β(t−u)dWu, (2.2)

where nβ0 has a normal distribution with mean zero and variance β/2 and is independent of
X and W. Then nβ is the stationary Ornstein - Uhlenbeck velocity process with covariance
function

ρ(s, t) =
β

2
e−β|t−s|.

Let Nβ be defined by

Nβ
t =

∫ t

0
nβu du =

(1− e−βt)
β

nβ0 +
∫ t

0

(
1− e−β(t−u)

)
dWu. (2.3)

Remark 2.1. Nβ is called the stationary Ornstein - Uhlenbeck displacement process. It is
well-known that Nβ converges to W in L2(P ) as β → ∞. (See Nelson [7]). This fact also
follows easily from (2.3).

We will consider the filtering model with Ornstein - Uhlenbeck noise given by

Y α,β
t =

∫ t

0
ξαs ds+Nβ

t , 0 ≤ t ≤ T. (2.4)

This can be equivalently written as

yα,βt = ξαt + nβt , 0 ≤ t ≤ T (2.5)

where yα,βt = d
dtY

α,β
t .
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Remark 2.2. Note that using (2.1) the filtering model (2.4) can be rewritten as (for t > 1
α)

Y α,β
t =

∫ t−1/α

0
h(Xu) du+ α

∫ t

t− 1
α

(t− u)h(Xu) du+Nβ
t , 0 ≤ t ≤ T. (2.6)

In this form it can be more readily compared with the classical model (1.1). The above model
can be thought of as corresponding to the system where there is a delay in registering the
signal and hence the instantaneous signal is replaced by a lingering effect over a small, fixed
time interval of length 1/α.

Our aim in this section is to get an expression for the filter πα,β for the filtering model
(2.4), where πα,β is defined by

πα,βt (f) = E
[
f(Xt)|Y α,β

u : u ≤ t
]
, ∀f ∈ Cb(E). (2.7)

For this purpose we will recast (2.4) in a form that enables us to use the classical Kallianpur-
Striebel Bayes’ formula. Let

ŷα,βt = eβtyα,βt − nβ0 (2.8)

ξ̂α,βt = eβtξαt , (2.9)

n̂βt = eβtnβt − n
β
0 (2.10)

Then it follows that
ŷα,βt = ξ̂α,βt + n̂βt , 0 ≤ t ≤ T. (2.11)

Using (2.2), it follows that

n̂βt = β

∫ t

0
eβudWu,

so n̂βt is a semimartingale and ∫ t

0

e−βu

β
dn̂βu = Wt. (2.12)

The relation (2.11) implies that ŷα,βu is also a semimartingale. Now define

Ỹ α,β
t =

∫ t

0

e−βu

β
dŷα,βu (2.13)

ξ̃α,βt =
∫ t

0

e−βu

β
dξ̂α,βu . (2.14)

It follows from (2.11)-(2.14) that

Ỹ α,β
t = ξ̃α,βt +Wt, 0 ≤ t ≤ T.

Let ψ̃α,βt = d
dt ξ̃

α,β
t . Then

ψ̃α,βt = ξαt +
α

β

(
h(Xt)− h(X(t− 1

α
)∨0)

)
. (2.15)
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The filtering model now becomes

Ỹ α,β
t =

∫ t

0
ψ̃α,βu du+Wt, 0 ≤ t ≤ T. (2.16)

Also, it follows from (2.8) and (2.13) that

σ
(
Ỹ α,β
u : u ≤ t;nβ0

)
= σ

(
ŷα,βu : u ≤ t;nβ0

)
= σ

(
yα,βu : u ≤ t;nβ0

)
= σ

(
yα,βu : u ≤ t

)
(2.17)

The last equality follows from the fact that yα,β0 = nβ0 .

We need to introduce an independent copy of X. For this purpose let X̄ be a process defined
on some (Ω̄, F̄ , P̄ ) such that

P̄ ◦ X̄−1 = P◦X−1.

Following (2.1) and (2.15) define

ξ̄αt = α

∫ t

(t− 1
α

)∨0
h
(
X̄u

)
du (2.18)

and
ψ̄α,βt = ξ̄αt +

α

β

(
h
(
X̄t

)
− h

(
X̄(t− 1

α
)∨0

))
. (2.19)

With an abuse of notation, we will consider the processes X̄, W and Ỹ α,β to be defined on the
product space

(
Ω̄, F̄ , P̄

)
⊗ (Ω,F , P ) .

Theorem 2.1. Consider the filtering model (2.4). The optimal non-linear filter πα,βt admits
the representation

πα,βt (f)(ω) =

∫
f
(
X̄t(ω̄)

)
qα,βt (ω̄, ω)dP̄ (ω̄)∫

qα,βt (ω̄, ω)dP̄ (ω̄)
,∀f ∈ Cb(E) (2.20)

where

qα,βt (ω̄, ω) = exp
{∫ t

0
ψ̄α,βu (ω̄)dỸ α,β

u (ω)− 1
2

∫ t

0
(ψ̄α,βu (ω̄))2 du

}
. (2.21)

Proof : Let π̃α,β denote the optimal non-linear filter for the model (2.16). i.e.

π̃α,βt (f) = E
[
f(Xt)|Ỹ α,β

u : u ≤ t
]
, ∀f ∈ Cb(E).

The filtering model (2.16) is the classical nonlinear filtering model with the Brownian motion
noise being independent of the signal. It is well-known that π̃α,β admits the representation

π̃α,βt (f)(ω) =
∫
f(X̄t(ω̄))qα,βt (ω̄, ω)dP̄ (ω̄)∫

qα,βt (ω̄, ω)dP̄ (ω̄)
∀f ∈ Cb(E), for a.a.ω,

where qα,β is as in (2.21). (See Kallianpur and Karandikar [3, p. 575]).
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Now, since nβ0 is independent of X and W, we get for all f ∈ Cb(E)

EP

[
f(Xt)|Ỹ α,β

u : u ≤ t
]

= EP

[
f(Xt)|Ỹ α,β

u : u ≤ t;nβ0
]
.

It now follows from the observation (2.17) and the definitions of πα,βt and π̃α,β that

πα,βt (f) = π̃α,βt (f) ∀f ∈ Cb(E), a.s. [P ]

This now completes the proof.

Remark 2.3. We will use the pathwise formula for stochastic integral (see Karandikar [4])
while defining qα,βt (ω̄, ω) in (2.21). The same will be the case in the sequel wherever stochastic
integrals are used. This will allow us, for example, to deduce (2.25).

Remark 2.4. In Kallianpur and Karandikar [3], (See also [1]), when the noise is an independent
Brownian motion the nonlinear filter is expressed as a Wiener functional evaluated at the
observation path. The same interpretation can be given to representation (2.20). We will
briefly describe it and use it in the next section.

Consider the model (2.16). Let Pα,β0 be the probability measure defined by

dPα,β0

dP
= exp

{
−
∫ T

0
ψ̃α,βu dWu −

1
2

∫ T

0

(
ψ̃α,βu

)2
du

}
.

Since X and W are independent, Pα,β0 is indeed a probability measure on (Ω,F). Moreover,
under Pα,β0 , Ỹ α,β is a Brownian motion independent of X and Pα,β0 ◦X−1 = P ◦X−1.

Let Ω0 = C ([0, T ], IR) , F0 be the Borel σ-field on Ω0 and Q be the Wiener measure on
(Ω0,F0). Let W 0 be the co-ordinate process on Ω0. Consider the product space (Ω̄, F̄ , P̄ ) ⊗
(Ω0,F0, Q). Note that

Pα,β0 ◦
(
X, Ỹ α,β

)−1
=
(
P̄ ⊗Q

)
◦
(
X̄,W 0

)−1
.

Define

pα,βt (ω̄, ω0) = exp
{∫ t

0
ψ̄α,βu (ω̄)dW 0(ω0)− 1

2

∫ t

0

(
ψ̄α,βu (ω̄)

)2
du

}
, (2.22)

Fα,βt (ω0)(f) =
∫
f
(
X̄t(ω̄)

)
pα,βt (ω̄, ω0)dP̄ (ω̄), ∀f ∈ Cb(E) (2.23)

and

Hα,β
t (ω0)(f) =

Fα,βt (ω0)(f)

Fα,βt (ω0)(1)
. (2.24)

Then (see Remark 2.3)

qα,βt (ω̄, ω) = pα,βt

(
ω̄, Ỹ α,β(ω)

)
a.s.[P ]. (2.25)

and
πα,βt (ω) = Hα,β

t (Ỹ α,β(ω)) a.s.[P ]. (2.26)

This expresses the filter for the OU noise model as a Wiener functional. For later use, let us
define the so-called unnormalised filter σt by

σα,βt (ω) = Fα,βt (Ỹ α,β(ω)). (2.27)
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3 Approximation of the classical filter by filter with OU noise

The classical nonlinear filtering model with signal X and independent noise W is given by

Yt =
∫ t

0
h(Xs)ds+Wt 0 ≤ t ≤ T. (3.1)

We first note that the model (2.4) approximates (3.1) as α → ∞, β → ∞. We had already
noted (Remark 2.1) that Nβ →W in L2(P ) as processes as β →∞. The rest follows from the
following Lemma.

Lemma 3.1. ∫ T

0
|ξαs − h(Xs)|2ds→ 0 a.s. [P ]

as α→∞.

Proof. Recall that the signal process X is r.c.l.l. a.s.[P]. Let N ⊂ Ω be such that for ω 6∈
N, X.(ω) is r.c.l.l. and such that P (N) = 0. Fix ω 6∈ N. Since h is continuous, h(Xt(ω)) is
r.c.l.l. Hence sup

0≤t≤T
|h(Xt(ω))| <∞.

Further, it is clear from (2.1) that lim
α→∞

ξαt (ω) = h(Xt(ω)) for all continuity points t of
h(X.(ω)). Since the discontinuity points of this function are at most countable in number, a
simple application of the bounded convergence theorem proves the lemma.

Our aim in this section is to show that the nonlinear filter πα,β for the approximating model
(2.4) converges to the filter π corresponding to the model (3.1) as α, β →∞. Here the filter π
is defined by

πt(f) = EP [f(Xt)|Yu : u ≤ t] ∀f ∈ Cb(E). (3.2)

Let X̄ defined on (Ω̄, F̄ , P̄ ) and W 0 defined on (Ω0,F0, Q) be as in the previous section. We
define processes pt, Ft and Ht as follows.

pt(ω̄, ω0) = exp
{∫ t

0
h(X̄s(ω̄))dW 0(ω0)− 1

2

∫ t

0
(h(X̄s(ω̄))2ds)

}
, (3.3)

Ft(ω0)(f) =
∫
f(X̄t(ω̄))pt(ω̄, ω0)dP̄ (ω̄), ∀f ∈ Cb(E) (3.4)

and

Ht(ω0)(f) =
Ft(ω0)(f)
Ft(ω0)(1)

. (3.5)

(See Remark 2.3). Then we have (See Kallianpur and Karandikar [3])

πt(f)(ω) = Ht(Y (ω))(f) a.s. P (3.6)

Also, let
σt(f)(ω) = Ft(Y (ω))(f) (3.7)

Let M+(E) denote the set of positive finite measures on E. Let d denote the Prohorov metric
on M+(E). We will also denote by P(E), the set of probability measures on E. We are now
ready to prove our first result on robustness. As usual, ⇒ denotes weak convergence.
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Theorem 3.2. Let the signal process X be r.c.l.l. and continuous in probability. Let α→∞,
β →∞ such that α

β ≤M for some M <∞. Then

(i) Fα,β → F in Q- probability as C ([0, T ],M+(E))- valued random variables.

(ii) Hα,β → H in Q- probability as C ([0, T ],P(E))- valued random variables.

(iii) πα,β ⇒ π.

(iv) σα,β ⇒ σ.

Proof : Let αn, βn →∞ with αn ≤Mβn ∀n. We will denote Fαn,βn by Fn and pαn,βn by pn.
Similarly, denote ξ̄αn by ξ̄n and ψ̄αn,βn by ψ̄n. Since P̄◦X̄−1 = P◦X−1, we get

P̄◦
(
ξ̄n
)−1 = P◦ (ξαn)−1 ; P̄◦

(
ψ̄n
)−1 = P◦

(
ψ̃αn,βn

)−1
.

Thus using Lemma 3.1, we get

lim
n→∞

∫ T

0

∣∣ξ̄ns − h(X̄s)
∣∣2 ds = 0, a.s [P̄ ].

Also,

lim
n→∞

αn
βn

∫ T

0

[
h(X̄s)− h(X̄(s− 1

α
)∨0)

]2
ds

≤ M lim
n→∞

∫ T

0

[
h(X̄s)− h(X̄(s− 1

α
)∨0)

]2
ds

= 0 a.s. [P̄ ].

The last equality follows since for almost all s, h(X̄s) − h(X̄(s− 1
α

)V 0) → 0 a.s.[P̄ ], and for a
fixed ω̄ for which h(X̄) is r.c.l.l., the integrand is bounded. Now, we get from (2.19) that

lim
n→∞

∫ T

0

[
ψ̄ns − h(X̄s)

]2
ds = 0, a.s.[P̄ ] (3.8)

Let tn → t. (3.8) now implies that pntn → pt in P̄ ⊗Q probability where pt is defined by (3.3).
Further note that ∫

pntndP̄ ⊗Q =
∫
ptdP̄ ⊗Q = 1.

Hence by Scheffe’s Lemma we get

pntn → pt in L1(P̄ ⊗Q).

Since X̄ is continuous in probability we get f(X̄tn) → f(X̄t) in probability for all f ∈ Cb(E).
Hence

f(X̄tn)pntn → f(X̄t)pt in L1(P̄ ⊗Q)

This implies ∫
f(X̄tn)pntndP̄ →

∫
f(X̄t)ptdP̄ in L1(Q).
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In particular, for ε > 0,

lim
n→∞

Q
(
|Fntn(f)− Ft(f)| > ε

)
= 0, ∀f ∈ Cb(E)

⇒ lim
n→∞

Q
(
d(Fntn , Ft) > ε

)
= 0.

⇒ lim
n→∞

Q

(
sup
t∈[0,T ]

d(Fnt , Ft) > ε

)
= 0.

This completes the proof of part (i).
Part (ii) follows immediately from Part (i) and the fact that Fnt (1) and Ft(1) are exponential

martingales and hence satisfy
inf
t
Fnt (1) > 0 a.s. [Q], (3.9)

inf
t
Ft(1) > 0 a.s. [Q] (3.10)

For (iii), note that as in (2.26), the filter π can be written as

πt(ω) = Ht(Y (ω)) a.s. [P ] (3.11)

Let G ∈ Cb(C[0, T ],P(E)). Then

EP [G(πn)] = EP

[
G
(
Hn(Ỹ n)

)]
= EP̄⊗Q [G(Hn)pnT ]

→ EP̄⊗Q [G(H)pT ]

= EP [G(H)(Y )]

= EP [G(π)] .

Part (iv) follows similarly using (i).
We will now show that the convergence of πα,β to π is in a much stronger sense- in probabiity.

For this, we need the following technical Lemma which also appears in Bhatt and Karandikar
[2] in a similar context. It is included here for the sake of completeness.

Lemma 3.3. Let U be a random variable and {Un} be a sequence of random variables on a
probability space (Ω∗,F∗, P ∗) such that

(a) P ∗ ◦ (Un)−1 → P ∗ ◦ U−1

(b) lim inf Un ≥ U a.s P ∗

Then Un → U in P ∗-probability.

Proof. Let Vn = tan−1(Un) and V = tan−1(U). Then Vn, V are bounded, P ∗ ◦ (Vn)−1 ⇒
P ∗ ◦ (V )−1 and

lim inf Vn ≥ V a.s. [P ∗] (3.12)

Since {Vn} are bounded, we get E(Vn)→ E(V )
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On the other hand, using boundedness of {Un}, we get using Fatou’s lemma

E(lim inf
n→∞

Vn) ≤ lim inf
n→∞

E(Vn) = E(V ). (3.13)

Now (3.12) and (3.13) imply
lim inf
n→∞

Vn = V a.s. [P ∗]. (3.14)

Let Ṽm = infn≥m Vn. Then Ṽm → lim inf Vn = V a.s.
We thus have Ṽn ≤ Vn, Ṽn → V a.s. and Vn ⇒ V . Since {Ṽn} and {Vn} are converging

in law, the sequence
{(
Ṽn, Vn

)}
is tight as IR2-valued random variables. If

(
Ṽnk , Vnk

)
is a

convergent subsequence, with
(
Ṽ0, V0

)
as a weak limit, then Ṽnk ≤ Vnk implies that Ṽ0 ≤ V0.

On the other hand, Ṽ0, V0 both have the same law as V . Hence, Ṽ0 = V0. We then conclude,(
Ṽn, Vn

)
→ (V, V ) .

Thus P (|Ṽn − Vn| ≥ ε)→ P (|V − V | ≥ ε) = 0 for any ε > 0. Since Ṽn → V a.s., it follows that
Vn → V in probability.

Theorem 3.4. Let the signal process X be r.c.l.l. and continuous in probability. Let α→∞,
β → ∞ such that α

β ≤ M for some M < ∞. Then σα,β → σ as C ([0, T ], M+(E)) valued
processes and πα,β → π as C ([0, T ],P(E)) valued processes in P - probability.

Proof. As in the previous theorem, it suffices to prove that if αn → ∞, βn → ∞, αnβn ≤ M,

tn → t and f ∈ Cb(E), then

παn,βntn (f)→ πt(f) in P − probability (3.15)

This in turn would follow if we show

σαnβntn (f)→ σt(f) in P − probability. (3.16)

Here, (3.10) implies
inf
t
σt(1) > 0 a.s. [P ]

and then (3.15) would follow from (3.16).
Fix αn, βn, tn, f as above. Let us write qns = qαn,βns , ψ̄ns = ψ̄αn,βns , ψ̃ns = ψ̃αn,βns , Ỹ n

s =
Ỹ αn,βn
s , θn = σαn,βntn (f), θ = σt(f).

Now,

qns = exp
{∫ s

0
ψ̄nudỸ

n
u −

1
2

∫ s

0
(ψ̄nu)2 du

}
= exp

{∫ s

0
ψ̄nudWu +

∫ s

0
ψ̄nu ψ̃

n
u du−

1
2

∫ s

0
(ψ̄nu)2 du

}
(3.17)

and

qs = exp
{∫ s

0
h(X̄u)dYu −

1
2

∫ s

0
(h(X̄u))2 du

}
= exp

{∫ s

0
h(X̄u)dWu +

∫ s

0
h(X̄u)h(Xu) du− 1

2

∫ s

0
(h(X̄u))2 du

}
(3.18)
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As seen earlier ∫ T

0

(
ψ̄nu − h(X̄u)

)2
du→ 0 in P̄ − probability.

Similarly ∫ T

0

(
ψ̃nu − h(Xu)

)2
du→ 0 in P − probability.

As a consequence
qntn → qt in P̄ ⊗ P − probability.

Now
θn =

∫
f(X̄tn)qntndP̄

and
θ =

∫
f(X̄t)qtdP̄ .

Here f(X̄tn)→ f(X̄t) in P̄ - probability. It was shown in Theorem 3.2 that θn → θ in law. Let
us write gn(ω̄, ω) = f(X̄tn(ω̄))qntn(ω̄, ω)) and g(ω̄, ω) = f(Xt(ω̄))qt(ω̄, ω). Then we have

gn → g in P̄ ⊗ P probability (3.19)

θn(ω) =
∫
gn(ω̄, ω)dP̄ (ω̄) (3.20)

and
θ(ω) =

∫
g(ω̄, ω)dP̄ (ω̄) (3.21)

P ◦ (θn)−1 ⇒ P ◦ (θ)−1 (3.22)

To prove θn → θ in probability, suffices to show that given a subsequence {nk}, there exists
a further subsequence {nkj} such that θnkj → θ in probability. Thus, given {nk}, choose {nkj}
such that ḡj = gnkj converges to g a.s. P. Let θ̄j = θnkj

Applying Fatou’s lemma, it follows that

θ =
∫
gdP̄ =

∫
lim inf
j→∞

ḡjdP̄

≤ lim inf
j→∞

∫
ḡjdP = lim inf

j→∞
θ̄j a.s. P

So,
lim inf
j→∞

θ̄j ≥ θ a.s. P

and of course
θ̄j ⇒ θ.

Using Lemma 3.3 it follows that θ̄j → θ in P -probability.
The subsequence argument given above implies θn → θ in P -probability. This completes

the proof.
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Remark 3.1. From the proof given above, it can be seen that the distribution of nβ0 does not
play any role. Thus even if the OU noise nβt is not stationary (with some initial distribution,
possibly degenerate), the results given above on the expression for the filter as well as the
approximation results continue to be true verbatim.

Remark 3.2. Here we have only considered the one dimensional case for notational convie-
nience. The results carry over to the multi-dimensional case without any difficulty whatsoever.
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