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1 Introduction

Statistical inference for diffusion type processes satisfying stochastic differential equations
driven by Wiener processes have been studied earlier and a comprehensive survey of vari-
ous methods is given in Prakasa Rao (1999a). There has been a recent interest to study similar
problems for stochastic processes driven by a fractional Brownian motion. Le Breton (1998)
studied parameter estimation and filtering in a simple linear model driven by a fractional
Brownian motion. In a recent paper, Kleptsyna and Le Breton (2002) studied parameter es-
timation problems for fractional Ornstein-Uhlenbeck process. This is a fractional analogue of
the Ornstein-Uhlenbeck process, that is, a continuous time first order autoregressive process
X = {Xt, t ≥ 0} which is the solution of a one-dimensional homogeneous linear stochastic
differential equation driven by a fractional Brownian motion (fBm) WH = {WH

t , t ≥ 0} with
Hurst parameter H ∈ [1/2, 1). Such a process is the unique Gaussian process satisfying the
linear integral equation

Xt = θ

∫ t

0
Xsds+ σWH

t , t ≥ 0.(1. 1)

They investigate the problem of estimation of the parameters θ and σ2 based on the obsrevation
{Xs, 0 ≤ s ≤ T} and prove that the maximum likelihood estimator θ̂T is strongly consistent as
T →∞.

We now discuss more general classes of stochastic processes satsfying linear stochastic dif-
ferential equations driven fractional Brownian motion and study the asymptotic properties of
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the maximum likelihood and the Bayes estimators for parameters involved in such processes.

2 Preliminaries

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions and the processes dis-
cussed in the following are (FT )-adapted. Further the natural fitration of a process is under-
stood as the P -completion of the filtration generated by this process.

Let WH = {WH
t , t ≥ 0} be a normalized fractional Brownian motion with Hurst pa-

rameter H ∈ (0, 1), that is, a Gaussian process with continuous sample paths such that
WH

0 = 0, E(WH
t ) = 0 and

E(WH
s W

H
t ) =

1
2

[s2H + t2H − |s− t|2H ], t ≥ 0, s ≥ 0.(2. 1)

Let us consider a stochastic process Y = {Yt, t ≥ 0} defined by the stochastic integral
equation

Yt =
∫ t

0
C(s)ds+

∫ t

0
B(s)dWH

s , t ≥ 0(2. 2)

where C = {C(t), t ≥ 0} is an (Ft)-adapted process and B(t) is a nonvanishing nonrandom
function. For convenience we write the above integral equation in the form of a stochastic
differential equation

dYt = C(t)dt+B(t)dWH
t , t ≥ 0(2. 3)

driven by the fractional Brownian motion WH . The integral∫ t

0
B(s)dWH

s(2. 4)

is not a stochastic integral in the Ito sense but one can define the integral of a deterministic
function with respect to the fBM in a natural sense(cf. Norros et al. (1999).) Even though the
process Y is not a semimartingale, one can associate a semimartingale Z = {Zt, t ≥ 0} which
is called a fundamental semimartingale such that the natural filtration (Zt) of the process Z
coincides with the natural filtration (Yt) of the process Y (Kleptsyna et al. (2000)). Define,
for 0 < s < t,

kH = 2HΓ (
3
2
−H)Γ(H +

1
2

),(2. 5)

kH(t, s) = k−1
H s

1
2
−H(t− s)

1
2
−H ,(2. 6)

λH =
2H Γ(3− 2H)Γ(H + 1

2)
Γ(3

2 −H)
,(2. 7)

wHt = λ−1
H t2−2H ,(2. 8)

and
MH
t =

∫ t

0
kH(t, s)dWH

s , t ≥ 0.(2. 9)
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The process MH is a Gaussian martingale, called the fundamental martingale (cf. Norros et
al. (1999)) and its quadratic variance < MH

t >= wHt . Further more the natural filtration of
the martingale MH coincides with the natural fitration of the fBM WH . In fact the stochastic
integral ∫ t

0
B(s)dWH

s(2. 10)

can be represented in terms of the stochastic intehral with respect to the martingale MH . For
a measurable function f on [0, T ], let

Kf
H(t, s) = −2H

d

ds

∫ t

s
f(r)rH−

1
2 (r − s)H−

1
2dr, 0 ≤ s ≤ t(2. 11)

when the derivative exists in the sense of absolute continuity with respect to the Lebesgue
measure(see Samko et al. (1993) for sufficient conditions). The following result is due to
Kleptsyna et al. (2000).

Therorem 2.1 Let MH be the fundamental martingale associated with the fBM WH dfined
by (2.9). Then ∫ t

0
f(s)dWH

s =
∫ t

0
Kf
H(t, s)dMH

s , t ∈ [0, T ](2. 12)

a.s [P ] whenever both sides are well defined.

Suppose the sample paths of the process {C(t)
B(t) , t ≥ 0} are smooth enough (see Samko et al.

(1993)) so that

QH(t) =
d

dwHt

∫ t

0
kH(t, s)

C(s)
B(s)

ds, t ∈ [0, T ](2. 13)

is welldefined where wH and kH are as defined in (2.8) and (2.6) respectively and the derivative
is understood in the sense of absoulute continuity. The following theorem due to Kleptsyna et
al. (2000) associates a fundamental semimartingale Z associated with the process Y such that
the natural filtration (Zt) coincides with the natural filtration (Yt) of Y.

Theorem 2.2: Suppose the sample paths of the process QH defined by (2.13) belong P -a.s to
L2([0, T ], dwH) where wH is as defined by (2.8). Let the process Z = (Zt, t ∈ [0, T ]) be defined
by

Zt =
∫ t

0
kH(t, s)B−1(s)dYs(2. 14)

where the function kH(t, s) is as defined in (2.6). Then the following results hold:
(i) The process Z is an (Ft) -semimartingale with the decomposition

Zt =
∫ t

0
QH(s)dwHs +MH

t(2. 15)

where MH is the fundamental martingale defined by (2.9),
(ii) the process Y admits the representation

Yt =
∫ t

0
KB
H(t, s)dZs(2. 16)
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where the function KB
H is as defined in (2.11), and

(iii) the natural fitrations of (Zt) and (Yt) coincide.
Kleptsyna et al. (2000) derived the following Girsanov type formula as a consequence of

the Theorem 2.2.

Theorem 2.3: Suppose the assumptions of Theorem 2.2 hold. Define

ΛH(T ) = exp{−
∫ T

0
QH(t)dMH

t −
1
2

∫ t

0
Q2
H(t)dwHt }.(2. 17)

Suppose that E(ΛH(T )) = 1. Then the measure P ∗ = ΛH(T )P is a probability measure and
the probability measure of the process Y under P ∗ is the same as that of the process V defined
by

Vt =
∫ t

0
B(s)dWH

s , 0 ≤ t ≤ T.(2. 18)

.

3 Main Results

Let us consider the stochastic differential equation

dX(t) = [a(t,X(t)) + θ b(t,X(t))]dt+ σ(t)dWH
t , t ≥ 0(3. 1)

where θ ∈ Θ ⊂ R,W = {WH
t , t ≥ 0} is a fractional Brownian motion with Hurst parameter

H and σ(t) is a positive nonvanishing function on [0,∞). In other words X = {Xt, t ≥ 0} is a
stochastic process satisfying the stochastic integral equation

X(t) = X(0) +
∫ t

0
[a(s,X(s)) + θ b(s,X(s))]ds+

∫ t

0
σ(s)dWH

s , t ≥ 0.(3. 2)

Let
C(θ, t) = a(t,X(t)) + θ b(t,X(t)), t ≥ 0(3. 3)

and assume that the sample paths of the process {C(θ,t)
σ(t) , t ≥ 0} are smooth enough so that the

the process

QH,θ(t) =
d

dwHt

∫ t

0
kH(t, s)

C(θ, s)
σ(s)

ds, t ≥ 0(3. 4)

is welldefined where wHt and kH(t, s) are as defined in (2.8) and (2.6) respectively. Suppose the
sample paths of the process {QH,θ, 0 ≤ t ≤ T} belong almost surely to L2([0, T ], dwHt ). Define

Zt =
∫ t

0

kH(t, s)
σ(s)

dXs, t ≥ 0.(3. 5)

Then the process Z = {Zt, t ≥ 0} is an (Ft)-semimartingale with the decomposition

Zt =
∫ t

0
QH,θ(s)dwHs +MH

t(3. 6)
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where MH is the fundamental martingale defined by (2.9) and the process X admits the
representation

Xt =
∫ t

0
Kσ
H(t, s)dZs(3. 7)

where the function Kσ
H is as defined by (2.11). Let P Tθ be the measure induced by the process

{Xt, 0 ≤ t ≤ T} when θ is the true parameter. Following Theorem 2.3, we get that the
Radon-Nikodym derivative of P Tθ with respect to P T0 is given by

dP Tθ
dP T0

= exp[−
∫ T

0
QH,θ(s)dZs +

1
2

∫ T

0
Q2
H,θ(s)dw

H
s ].(3. 8)

Maximum likelihood estimation
We now consider the problem of estimation of the parameter θ based on the observation of

the process X = {Xt, 0 ≤ t ≤ T} and study its asymptotic properties as T →∞.

Strong consistency:
Let LT (θ) denote the Radon-Nikodym derivative dPTθ

dPT0
. The maximum likelihood estimator

(MLE) is defined by the relation

LT (θ̂T ) = sup
θ∈Θ

LT (θ).(3. 9)

We assume that there exists a measurable maximum likelihood estimator. Sufficient conditions
can be given for the existence of such an estimator (cf. Lemma 3.1.2, Prakasa Rao (1987)).

Note that

QH,θ(t) =
d

dwHt

∫ t

0
kH(t, s)

C(θ, s)
σ(s)

ds(3. 10)

=
d

dwHt

∫ t

0
kH(t, s)

a(s,X(s))
σ(s)

ds+ θ
d

dwHt

∫ t

0
kH(t, s)

b(s,X(s))
σ(s)

ds

= J1(t) + θJ2(t).(say)

Then
logLT (θ) = −

∫ T

0
(J1(t) + θJ2(t))dZt +

1
2

∫ T

0
(J1(t) + θJ2(t))2dwHt(3. 11)

and the likelihood equation is given by

−
∫ T

0
J2(t)dZt +

∫ T

0
(J1(t) + θJ2(t))J2(t)dwHt = 0.(3. 12)

Hence the MLE θ̂T of θ is given by

θ̂T =
∫ T

0 J2(t)dZt +
∫ T

0 J1(t)J2(t)dwHt∫ T
0 J2

2 (t)dwHt
.(3. 13)

Let θ0 be the true parameter. Using the fact that

dZt = (J1(t) + θ0J2(t))dwHt + dMH
t ,(3. 14)
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it can be shown that

dP Tθ
dP Tθ0

= exp[(θ0 − θ)
∫ T

0
J2(t)dMH

t −
1
2

(θ0 − θ)2
∫ T

0
J2

2 (t)dwHt .(3. 15)

Following this representation of the Radon-Nikodym Derivative, we obtain that

θ̂T − θ0 =
∫ T

0 J2(t)dMH
t∫ T

0 J2
2 (t)dwHt

.(3. 16)

Note that the quadratic variation < Z > of the process Z is the same as the quadratic variation
< MH > of the martingale MH which in turn is equal to wH . This follows from the relations
(2.15) and (2.9). Hence we obtain that

[wHT ]−1 lim
n

Σ[Z
t
(n)
i+1

− Z
t
(n)
i

]2 = 1a.s[Pθ0 ]

where (t(n)
i is a partition of the interval [0, T ] such that sup |t(n)

i+1− t
(n)
i | tends to zero as n→∞.

If the function σ(t) is an unknown constant σ, the above property can be used to obtain a
strongly consistent estimator of σ2 based on the continuous observation of the process X over
the interval [0, T ]. Here after we assume that the nonrandom function σ(t) is known.

We now discuss the probelem of estimation of the parameter θ on the basis of the observation
of the process X or equivalently the process Z on the interval [0, T ].

Theorem 3.1: The maximum likelihood estimator θ̂T is strongly consistent, that is,

θ̂T → θ0 a.s [Pθ0 ] as T →∞(3. 17)

provided ∫ T

0
J2

2 (t)dwHt →∞ a.s [Pθ0 ] as T →∞.(3. 18)

Proof: This theorem follows by observing that the process

Rt ≡
∫ T

0
J2(t)dMH

t , t ≥ 0(3. 19)

is a local martingale with the quadratic variation process

< RT >=
∫ T

0
J2

2 (t)dwHt(3. 20)

and applying the Strong law of large numbers (cf. Liptser (1980); Prakasa Rao( 1999b), p. 61)
under the condition (30) stated above.

Remark: For the case fractional Ornstein-Uhlenbeck process investigated in Kleptsyna and
Le Breton (2002), it can be checked that the condition stated in equation (3.18) holds and
hence the maximum likelihood estimator θ̂T is strongly consistent as T →∞.
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Limiting distribution:
We now discuss the limiting distribution of the MLE θ̂T as T →∞.

Theorem 3.2: Assume that the functions b(t, s) and σ(t) are such that the process {Rt, t ≥ 0}
is a local continuous martingale and that there exists a norming function It, t ≥ 0 such that

I2
T < RT >= I2

T

∫ T

0
J2

2 (t)dwHt → η2 in probability as T →∞(3. 21)

where IT → 0 as T →∞ and η is a random variable such that P (η > 0) = 1. Then

(ITRT , I2
T < RT >)→ (ηZ, η2) in law as T →∞(3. 22)

where the random variable Z has the standard normal distribution and the random variables
Z and η are independent.

Proof: This theorem follows as a consequence of the central limit theorem for martingales (cf.
Theorem 1.49 ; Remark 1.47 , Prakasa Rao(1999b), p. 65).

Observe that
I−1
T (θ̂T − θ0) =

ITRT
I2
T < RT >

(3. 23)

Applying the Theorem 3.2, we obtain the following result.

Theorem 3.3: Suppose the conditions stated in the Theorem 3.2 hold. Then

I−1
T (θ̂T − θ0)→ Z

η
in law as t→∞(3. 24)

where the random variable Z has the standard normal distribution and the random variables
Z and η are independent.

Remarks: If the random variable η is a constant with probability one, then the limiting distri-
bution of the maximum likelihood estimator is normal with mean 0 and variance η−2. Otherwise
it is a mixture of the normal distributions with mean zero and variance η−2 with the mixing
distribution as that of η.

Bayes estimation
Suppose that the parameter space Θ is open and Λ is a prior probability measure on the

parameter space Θ. Further suppose that Λ has the density λ(.) with respect to the Lebesgue
measure and the density function is continuous and positive in an open neighbourhood of θ0,

the true parameter. Let

αT ≡ ITRT = IT

∫ T

0
J2(t)dMH

t(3. 25)

and
βT ≡ I2

T < RT >= I2
T

∫ T

0
J2

2 (t)dwHt .(3. 26)
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We have seen earlier that the maximum likelihood estimator satisfies the relation

αT = (θ̂T − θ0)I−1
T βT .(3. 27)

The posterior density of θ given the observation XT ≡ {Xs, 0 ≤ s ≤ T} is given by

p(θ|XT ) =

dPTθ
dPT
θ0

λ(θ)∫
Θ
dPT
θ

dPT
θ0

λ(θ)dθ
.(3. 28)

Let us write t = I−1
T (θ − θ̂T ) and define

p∗(t|XT ) = IT p(θ̂T + tIT |XT ).(3. 29)

Then the function p∗(t|XT ) is the posterior density of the transformed variable t = I−1
T (θ− θ̂T ).

Let

νT (t) ≡
dPθ̂T+tIT

/dPθ0

dPθ̂T /dPθ0
(3. 30)

=
dPθ̂T+tIT

dPθ̂T
a.s.

and
CT =

∫ ∞
−∞

νT (t)λ(θ̂T + tIT )dt.(3. 31)

It can be checked that
p∗(t|XT ) = C−1

T νT (t)λ(θ̂T + tIT ).(3. 32)

Further more, the equations (3.15) and (3.27)-(3.32) imply that

log νT (t) = I−1
T αT [(θ̂T + tIT − θ0)− (θ̂T − θ0)](3. 33)

−1
2
I−2
T βT [(θ̂T + tIT − θ0)2 − (θ̂T − θ0)2]

= tαT −
1
2
t2βT − tβT I−1

T (θ̂T − θ0)

= −1
2
βT t

2

in view of equation (3.27).

Suppose that the convergence in the condition in the equation (3.21) holds almost surely
under the measure Pθ0 and the limit is a constant η2 > 0 with probability one. For convenience,
we write β = η2. Then

βT → β a.s [Pθ0 ] as T →∞.(3. 34)

Then it is obvious that
lim
T→∞

νT (t) = exp[−1
2
βt2] a.s. [Pθ0 ](3. 35)
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and for any 0 < ε < β,

log νT (t) ≤ −1
2
t2(β − ε)(3. 36)

for every t for T sufficiently large. Further more , for every δ > 0, there exists ε′ > 0 such that

sup
|t|>δI−1

T

νT (t) ≤ exp[−1
4
ε′I−2

T ](3. 37)

for T sufficiently large.
Suppose that H(t) is a nonnegative measurable function such that, for some 0 < ε < β,∫ ∞

−∞
H(t) exp[−1

2
t2(β − ε)]dt <∞.(3. 38)

Suppose the maximum likelihood estimator θ̂T is strongly consistent, that is,

θ̂T → θ0 a.s [Pθ0 ] as T →∞.(3. 39)

For any δ > 0, consider∫
|t|≤δI−1

T

H(t)|νT (t)λ(θ̂T + tIT )− λ(θ0) exp(−1
2
βt2)|dt

≤
∫
|t|≤δI−1

T

H(t)λ(θ0)|νT (t)− exp(−1
2
βt2)|dt

+
∫
|t|≤δI−1

T

H(t)νT (t)|λ(θ0)− λ(θ̂T + tIT )|dt

= AT +BT (say).(3. 40)

It is clear that, for any δ > 0,

AT → 0 a.s [Pθ0 ] as T →∞(3. 41)

by the dominated convergence theorem in view of the inequality in (3.36), the equation (3.35)
and the condition in the equation (3.38). On the other hand, for T sufficiently large,

0 ≤ BT ≤ sup
|θ−θ0|≤δ

|λ(θ)− λ(θ0)|
∫
|t|≤δI−1

T

H(t) exp[−1
2
t2(β − ε)]dt(3. 42)

since θ̂T is strongly consistent and I−1
T →∞ as T →∞. The last term on the right side of the

above inequality can be made smaller than any given ρ > 0 by choosing δ sufficiently small in
view of the continuity of λ(.) at θ0. Combining these remarks with the equations (3.41) and
(3.42), we obtain the following lemma.

Lemma 3.3: Suppose the conditions (3.34), (3.38) and (3.39) hold. Then there exists δ > 0
such that

lim
T→∞

∫
|t|≤δI−1

T

H(t)|νT (t)λ(θ̂T + tIT )− λ(θ0) exp(−1
2
βt2)|dt = 0.(3. 43)
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For any δ > 0, consider∫
|t|>δI−1

T

H(t)|νT (t)λ(θ̂T + tIT )− λ(θ0) exp(−1
2
βt2)|dt(3. 44)

≤
∫
|t|>δI−1

T

H(t)νT (t)λ(θ̂T + tIT )dt

+
∫
|t|>δI−1

T

H(t)λ(θ0) exp(−1
2
βt2)dt

≤ exp[−1
4
ε′I−2

T ]
∫
|t|>δI−1

T

H(t)λ(θ̂T + tIT )dt

+λ(θ0)
∫
|t|>δI−1

T

H(t) exp(−1
2
βt2)dt

= UT + VT (say).

Suppose the following condition holds for every ε > 0 and δ > 0 :

exp[−εI−2
T ]

∫
|u|>δ

H(uI−1
T )λ(θ̂T + u)du→ 0 a.s.[Pθ0 ] as T →∞.(3. 45)

It is clear that, for every δ > 0,
VT → 0 as T →∞(3. 46)

in view of the condition stated in (3.38) and the fact that IT → ∞ a.s. [Pθ0 ] as T → ∞. The
condition stated in (3.45) implies that

UT → 0 a.s [Pθ0 ] as T →∞(3. 47)

for every δ > 0. Hence we have the following lemma.

Lemma 3.4: Suppose that the conditions (3.34), (3.38) and (3.39) hold. Then for every δ > 0,

lim
T→∞

∫
|t|>δI−1

T

H(t)|νT (t)λ(θ̂T + tIT )− λ(θ0) exp(−1
2
βt2))|dt = 0.(3. 48)

Lemmas 3.3 and 3.4 together prove that

lim
T→∞

∫
|t|>δI−1

T

H(t)|νT (t)λ(θ̂T + tIT )− λ(θ0) exp(−1
2
βt2)|dt = 0.(3. 49)

Let H(t) ≡ 1. It follows that

CT ≡
∫ ∞
−∞

νT (t)λ(θ̂T + tIT )dt.

Relation (3.49) implies that

CT → λ(θ0)
∫ ∞
−ity

exp(−1
2
βt2)dt = λθ0(

β

2π
)−1/2 a.s[Pθ0 ](3. 50)
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as T →∞. Further more∫ ∞
−∞

H(t)|p∗(t|XT )− (
β

2π
)1/2 exp(−1

2
βt2)|dt(3. 51)

≤
∫ ∞
−∞

H(t)|νT (t)λ(θ̂T + tIT )− λ(θ0) exp(−1
2
βt2)|dt

+
∫ ∞
−∞

H(t)|C−1
T λ(θ0)− (

β

2π
)1/2| exp(−1

2
βt2)dt.

The last two terms tend to zero almost surely [Pθ0 ] by the equations (3.49) and (3.50). Hence
we have the follwing theorem which is an analogue of the Bernstein - von Mises theorem proved
in Prakasa Rao (1981) for a class of processes satisfying a linear stochastic differential equation
driven by the standard Wiener process.

Theorem 3.5: Let the assumptions (3.34),(3.38),(3.39) and (3.45) hold where λ(.) is a prior
density which is continuous and positive in an open neighbourhood of θ0, the true parameter.
Then

lim
T→∞

∫ ∞
−∞

H(t)|p∗(t|XT )− (
β

2π
)1/2 exp(−1

2
βt2)|dt = 0 a.s [Pθ0 ].(3. 52)

As a consequence of the above theorem, we obtain the following result by choosing H(t) =
|t|m, for integer m ≥ 0.

Theorem 3.6: Assume that the following conditions hold:

(C1) θ̂T → θ0 a.s [Pθ0 ] as T →∞,(3. 53)

(C2) βT → β > 0 a.s [Pθ0 ] as T →∞.(3. 54)

Further suppose that
(C3)λ(.) is a prior probability density on Θ which is continuous and positive in an open neigh-
bourhood of θ0, the true parameter and

(C4)
∫ ∞
−∞
|θ|mλ(θ)dθ <∞(3. 55)

for some integer m ≥ 0. Then

lim
T→∞

∫ ∞
−∞
|t|m|p∗(t|XT )− (

β

2π
)1/2 exp(−1

2
βt2)|dt = 0 a.s [Pθ0 ].(3. 56)

In particular, choosing m = 0, we obtain that

lim
T→∞

∫ ∞
−∞
|p∗(t|XT )− (

β

2π
)1/2 exp(−1

2
βt2)|dt = 0 a.s [Pθ0 ](3. 57)

whenver the conditions (C1), (C2) and (C3) hold. This is the analogue of the Bernstein-von
Mises theorem for a class of diffusion processes proved in Prakasa Rao (1981) and it shows the
asymptotic convergence in L1-mean of the posterior density to the normal distribution.
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As a Corollory to the Theorem 3.6, we also obtain that the conditional expectation, under
Pθ0 , of [I−1

T (θ̂T − θ)]m converges to the corresponding m-th abosolute moment of the normal
distribution with mean zero and variance β−1.

We define a regular Bayes estimator of θ, corresponding to a prior probability density λ(θ)
and the loss function L(θ, φ), based on the observation XT , as an estimator which minimizes
the posterior risk

BT (φ) ≡
∫ ∞
−ity

L(θ, φ)p(θ|XT )dθ.(3. 58)

over all the estimators φ of θ. Here L(θ, φ) is a loss function defined on Θ×Θ.

Suppose there exists a measurable regular Bayes estimator θ̃T for the parameter θ (cf. The-
orem 3.1.3, Prakasa Rao (1987).) Suppose that the loss function L(θ, φ) satisfies the following
conditions:

L(θ, φ) = `(|θ − φ|) ≥ 0(3. 59)

and the function `(t) is nondecreasing for t ≥ 0. An example of such a loss function is L(θ, φ) =
|θ − φ|. Suppose there exist nonnegative functions R(t), K(t) and G(t) such that

(D1) R(t)`(tIT ) ≤ G(t) for all T ≥ 0,(3. 60)

(D2) R(t)`(tIT )→ K(t) as T →∞(3. 61)

uniformly on bounded intervals of t. Further suppose that the function

(D3)
∫ ∞
−∞

K(t+ h) exp[−1
2
βt2]dt(3. 62)

has a strict minimum at h = 0, and
(D4)the function G(t) satisfies the conditions similar to (3.38) and (3.45).

We have the following result giving the asymptotic properties of the Bayes risk of the
estimator θ̃T .

Thoeren 3.7: Suppose the conditions (C1) to (C3) in the Theorem 3.6 and the conditions
(D1) to (D4) stated above hold. Then

I−1
T (θ̃T − θ̂T )→ 0 a.s [Pθ0 ] as T →∞(3. 63)

and

lim
T→∞

R(T )BT (θ̃T ) = lim
T→∞

R(T )BT (θ̂T )(3. 64)

= (
β

2π
)1/2

∫ ∞
−∞

K(t) exp[−1
2
βt2]dt a.s [Pθ0 ]

We omit the proof of this theorem as it is similar to the proof of Theorem 4.1 in Borwanker
et al. (1971).
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We have observed earlier that

I−1
T (θ̂T − θ0)→ N(0, β−1) in law as T →∞.(3. 65)

As a consequence of the Theorem 3.7, we obtain that

θ̃T → θ0 a.s [Pθ0 ] as T →∞(3. 66)

and
I−1
T (θ̃T − θ0)→ N(0, β−1) in law as T →∞.(3. 67)

In other words, the Bayes estimator is asymptotically normal and has asymptotically the same
distribution as the maxiumum likelihood estimator. The asymptotic Bates risk of the estimator
is given by the Theorem 3.7.
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